Oral Presentations Anthropogenic Impacts

Total Page:16

File Type:pdf, Size:1020Kb

Oral Presentations Anthropogenic Impacts Oral Presentations Anthropogenic Impacts Impact of bottom trawling on meiobenthos off Kakinada, East coast of India Annapurna, C Department of Zoology, Andhra University, Visakhapatnam- 530 003, India [email protected] The present work envisages a comprehensive study of the species composition, abundance and biomass of meiobenthic fauna, in general and impact of bottom trawling on meiobenthos in particular off Kakinada Bay, east coast of India, which is an important fishing ground and a nursery area for juvenile fish. Two sampling corridors were established at 50-65 m namely Trawling Experimental Corridor (TEC) and a Reference Corridor (RC). The area covered by Trawling Experimental Corridor (TEC) is approximately 15*2 km and by Reference Corridor (RC) is approximately 15*1 km. The sediment nature and physico – chemical parameters of the ambient milieu were also studied to explain spatial and temporal variations of the meiobenthic abundance and biomass in relation to impacts of bottom trawling. During the present study an attempt was made to study the responses for meiobenthic taxa. The magnitude of response of each variable to the fishing treatment was calculated by Meta analysis and explained the cause and effect relationship of trawling and meiobenthic population. From the data it is observed that nematodes and polychaetes in terms of abundance and biomass have shown a negative impact on the trawling in the study area. Presenting author status: Faculty Preferred Presentation type: Oral Topic area of preference: Anthropogenic Impacts, Biodiversity A Disturbance in the Force: Copper Impairs Herbivore Response Towards Seaweed Inducible Defenses Warneke, A.M.; Long, J.D. San Diego State University, San Diego, CA 92182. [email protected] Herbivory plays a quintessential function in controlling seaweed communities. Seaweeds often counter herbivore pressure through morphological or chemical modifications. Several biotic and abiotic factors have exhibited influence over these interactions, yet the roles of anthropogenic stressors are less understood. The objective of this study was to examine the effect of copper on herbivore perception of seaweed inducible defenses. To investigate these interactions within a contaminant context, we subjected the brown seaweed Silvetia compressa and the herbivorous snail Chlorostoma funebralis to an initial grazing period (induction phase) and a subsequent bioassay phase in the presence and absence of copper (50 ug/l). Preliminary results indicate that under uncontaminated settings, nongrazed tissues were more palatable than previously grazed tissues. This confirmed the presence of inducible defenses in Silvetia. However, copper additions prevented snails from distinguishing between control and previously grazed tissues. Further experiments have confirmed that this behavior persists only when herbivores have been copper exposed for an extended duration of time. This study is the first to demonstrate that contaminants can act as stressors by reducing the effectiveness of seaweed inducible defenses. Overall, this information will allow us to predict how communities will shift in response to rapidly changing aquatic environments. Presenting author status: Grad Preferred Presentation type: Oral Topic Area Preference: Anthropogenic Impacts; Community Ecology Presentation Recording and Evaluation: Yes Light requirements of seagrasses determined from historical records of light attenuation Choice, Z. D.1,2; Frazer, T. K.2,3; Jacoby, C. A.4 1USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Oxford, MS 38655 2School of Natural Resources and Environment, University of Florida, Gainesville, Florida 32611 3Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32653 4Department of Soil and Water Science, University of Florida, Gainesville, Florida 32653 [email protected] Seagrasses around the world are threatened by human activities that degrade water quality and reduce light availability. In this study, light requirements were determined for four common and abundant seagrasses along the Gulf coast of peninsular Florida using a threshold detecting algorithm. Light requirements ranged from 8-10% of surface irradiance for Halophila engelmannii to 25-27% of surface irradiance for Halodule wrightii. Requirements for all species differed from previous reports generated at other locations. Variations were attributed to morphological and physiological differences, as well as adaptation to light histories at specific locations. In addition, seagrasses were absent from stations with significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a and color. These results confirm the need to address links between increased anthropogenic nutrient loads, eutrophication, reduced light penetration, and loss of seagrasses and the services they provide. Presenting author status: Faculty Presentation Preference: Oral Topic Area Preferences: Anthropogenic Impacts and/or Conservation and Management Presentation Recording and Evaluation: Yes Deep-sea harpacticoid families expand the scope of impacts of the Deepwater Horizon oil spill and provide family-level indicators of tolerance and sensitivity Baguley, J.G.1; Bang, H.W.1; Moon, H.1; Montagna, P.A.2 1Department of Biology, University of Nevada, Reno, NV 89557; 2Texas A&M University-Corpus Christi, Corpus Christi, TX 78412. [email protected] In response to the Deepwater Horizon (DWH) oil spill, a large-scale investigation was initiated to elucidate potential impacts to biological communities across the northern Gulf of Mexico. Deep-sea benthic soft-sediment communities and environmental variables were sampled at 68 high-priority stations during September-October 2010 response cruises aboard the R/V Gyre and R/V Ocean Veritas. The DWH deep-sea benthic footprint, and identified impacts to major meiofaunal and macrofaunal taxa, extends to 5 km in all directions around the wellhead and up to 17 km to the southwest. Here, we test the hypothesis that benthic impacts can be more finely resolved if a higher degree of taxonomic resolution is provided. For this purpose, Harpacticoida were identified to the family level. Family-level indicators of tolerance and sensitivity have been identified. Reduced harpacticoid family diversity was found near the DWH wellhead and in the trajectory of the subsurfance plume. The harpacticoid community response suggests an expanded area of benthic impacts associated with the Deepwater Horizon blowout and oil spill. This expanded area of impacts is consistent with the trajectory of the subsurface oil plume and extends up to 90 km to the southwest of the wellhead. Presenting author status: Faculty Preferred presentation type: Oral Topic area: 1) Anthropogenic Impacts; 2) Community Ecology Nutritional status drives hypoxia tolerance in the Asian green mussel Perna viridis from Indonesia Huhn, M.1,2; Lenz, M.1; von Juterzenka, K1,2 1Bogor Agricultural University, Jl. Raya Darmaga Kampus, IPB Darmaga Bogor, 16680 West Java, Indonesia; 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. [email protected] The Asian green mussel Perna viridis commonly occurs in anthropogenically impacted habitats where it survives under stressful conditions such as hypoxia. To test whether hypoxia tolerance is a consequence of habitat quality, e.g. through selection of stress-tolerant genotypes, we cross- transplanted mussels between the highly impacted Jakarta Bay and the pristine Lada Bay, Indonesia. After two months, we exposed mussels transplanted within (treatment control) and between (treatment) bays to hypoxia (0.5 mg/l dissolved oxygen) in the laboratory and monitored their survival during 14 days. Regardless of their origin, body condition indices (BCI, a measure for the nutritional status) and survival rates were significantly higher in mussels that spent the last two months in the pristine bay. This is in contrast to results from a similar study, in which hypoxia tolerance but also the BCI was higher in mussels from Jakarta Bay. This new picture suggests that the nutritional status is actually more important for hypoxia tolerance in green mussel populations than the quality of their habitat of origin. Therefore, a good nutritional status could mitigate detrimental effects of anthropogenic stressors in filter feeders. This is a relevant aspect for predicting the future of mussel populations in highly impacted coastal waters. Presenting author status: Grad Preferred presentation type: Oral Topic area preference: Anthropogenic impacts, Conservation and Management Evaluation of presentation: Yes Are cumulative impact indices an appropriate proxy for ecosystem health? Haupt, A.J.1; Baruch-Mordo, S.2; JBourque, J.3; Smith, S.4 1University of Massachusetts Boston; 2The Nature Consevancy; 3United States Geological Service; 4University of Michigan As humans expand current and planned uses of the ocean, it is increasingly important to understand how these impacts affect coastal ecosystems. A cumulative human impact score was created for the California Current by synthesizing fine-scale information on the distribution of multiple environmental stressors (Halpern et al. 2009). The resulting cumulative impact score is potentially useful to managers and policy makers, because it narrows a complex interaction of factors into a single number that can directly contribute to environmental
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Behavioral Influences on Predator-Prey Interactions Between Juvenile Teleosts and Meiofauna
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1992 Behavioral Influences on Predator-Prey Interactions Between Juvenile Teleosts and Meiofauna. John Nathan Mccall Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mccall, John Nathan, "Behavioral Influences on Predator-Prey Interactions Between Juvenile Teleosts and Meiofauna." (1992). LSU Historical Dissertations and Theses. 5450. https://digitalcommons.lsu.edu/gradschool_disstheses/5450 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Chemists with No Backbones
    Medicines from the Deep Sea: Exploration of the Gulf of Mexico Chemists with No Backbones FOCUS TEACHING TIME Benthic invertebrates that produce pharmacologi- One or two 45-minute class periods, plus time for cally-active substances student research GRADE LEVEL SEATING ARRANGEMENT 5-6 (Life Science) Classroom style, or groups of 2-3 students FOCUS QUESTION MAXIMUM NUMBER OF STUDENTS What groups of marine organisms produce sub- 30 stances that may be helpful in treating human dis- eases? KEY WORDS Cardiovascular disease LEARNING OBJECTIVES Cancer Students will be able to identify at least three Arthritis groups of benthic invertebrates that are known to Natural products produce pharmacologically-active compounds. Sponge Tunicate Students will be able to describe why pharmaco- Ascidian logically-active compounds derived from benthic Bryozoan invertebrates may be important in treating human Octocorals diseases. BACKGROUND INFORMATION Students will be able to infer why sessile marine Despite the many advances of modern medicine, invertebrates appear to be promising sources of disease is still the leading cause of death in the new drugs. United States. Cardiovascular disease and cancer together account for more than 1.5 million deaths MATERIALS annually (40% and 25% of all deaths, respectively). Marker board, blackboard, or overhead projector In addition, one in six Americans have some form with transparencies for group discussions of arthritis, and hospitalized patients are increas- ingly threatened by infections that are resistant to AUDIO/VISUAL MATERIALS conventional antibiotics. The cost of these diseases None is staggering: $285 billion per year for cardiovas- cular disease; $107 billion per year for cancer; $65 billion per year for arthritis.
    [Show full text]
  • Meiobenthos of the Discovery Bay Lagoon, Jamaica, with an Emphasis on Nematodes
    Meiobenthos of the discovery Bay Lagoon, Jamaica, with an emphasis on nematodes. Edwards, Cassian The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. https://qmro.qmul.ac.uk/jspui/handle/123456789/522 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] UNIVERSITY OF LONDON SCHOOL OF BIOLOGICAL AND CHEMICAL SCIENCES Meiobenthos of The Discovery Bay Lagoon, Jamaica, with an emphasis on nematodes. Cassian Edwards A thesis submitted for the degree of Doctor of Philosophy March 2009 1 ABSTRACT Sediment granulometry, microphytobenthos and meiobenthos were investigated at five habitats (white and grey sands, backreef border, shallow and deep thalassinid ghost shrimp mounds) within the western lagoon at Discovery Bay, Jamaica. Habitats were ordinated into discrete stations based on sediment granulometry. Microphytobenthic chlorophyll-a ranged between 9.5- and 151.7 mg m -2 and was consistently highest at the grey sand habitat over three sampling occasions, but did not differ between the remaining habitats. It is suggested that the high microphytobenthic biomass in grey sands was related to upwelling of nutrient rich water from the nearby main bay, and the release and excretion of nutrients from sediments and burrowing heart urchins, respectively. Meiofauna abundance ranged from 284- to 5344 individuals 10 cm -2 and showed spatial differences depending on taxon.
    [Show full text]
  • ART/SMSG/SAERI Expedition Report: Hummock Island February 2021
    ART/SMSG/SAERI Expedition Report: Hummock Island February 2021 Significance of peat dust and terrestrial erosion for marine communities around Hummock Island Amy Guest, Dr Paul Brewin, Dr Paul Brickle, Dr Karen von Juterzenka, and Dr Klemens Pütz Cosmasterias lurida (beaded starfish) and Munida gregaria (lobster krill) on a peat covered sandy substrate, Hummock Island February 2021 ART/SMSG/SAERI expedition report: Hummock Island, February 2021 Logistics Expedition dates: 4 - 14th Feb 2021 (for Daily Log see Appendix 1; Dive log see Appendix 2) Vessels: SMSG Fram (5.8 m RHIB), launched from Roy Cove; Sailing Yacht Porvenir II. Accommodation: Roy Cove self-catering, ART House Hummock Island Participants: Dr Paul Brickle (Co-PI) Dr Paul Brewin (Co-PI) Steve Cartwright (Dive Officer / Coxswain) Joost Pompert (Scientist / Surveyor) Sacha Cleminson (Scientist / Surveyor) 4th – 8th February, N.B. flew out from Fox Bay. Amy Guest (PhD Student / Surveyor / Logistics) Sally Poncet (Antarctic Research Trust) Ken Passfield (Antarctic Research Trust) Background Hummock Island lies to the west of West Falkland (Figure 1). Like on other islands in the Falklands, Hummock Island´s rocky surface is covered by peat soil. Decades of grazing on the island has led to de- vegetation of about one third of the 303 ha and subsequent substantial erosion. Large areas were replaced by black ground indicating the extension and distribution of exposed peat soil. The Antarctic Research Trust (ART) is currently re-vegetating the island by tussac planting campaigns. Tussac roots and above ground blade structures will stabilise the peat soil and, moreover, will prove very efficient in storage of atmospheric carbon.
    [Show full text]
  • Solomon Islands Marine Life Information on Biology and Management of Marine Resources
    Solomon Islands Marine Life Information on biology and management of marine resources Simon Albert Ian Tibbetts, James Udy Solomon Islands Marine Life Introduction . 1 Marine life . .3 . Marine plants ................................................................................... 4 Thank you to the many people that have contributed to this book and motivated its production. It Seagrass . 5 is a collaborative effort drawing on the experience and knowledge of many individuals. This book Marine algae . .7 was completed as part of a project funded by the John D and Catherine T MacArthur Foundation Mangroves . 10 in Marovo Lagoon from 2004 to 2013 with additional support through an AusAID funded community based adaptation project led by The Nature Conservancy. Marine invertebrates ....................................................................... 13 Corals . 18 Photographs: Simon Albert, Fred Olivier, Chris Roelfsema, Anthony Plummer (www.anthonyplummer. Bêche-de-mer . 21 com), Grant Kelly, Norm Duke, Corey Howell, Morgan Jimuru, Kate Moore, Joelle Albert, John Read, Katherine Moseby, Lisa Choquette, Simon Foale, Uepi Island Resort and Nate Henry. Crown of thorns starfish . 24 Cover art: Steven Daefoni (artist), funded by GEF/IWP Fish ............................................................................................ 26 Cover photos: Anthony Plummer (www.anthonyplummer.com) and Fred Olivier (far right). Turtles ........................................................................................... 30 Text: Simon Albert,
    [Show full text]
  • Recruitment of Marine Invertebrates: the Role of Active Larval Choices and Early Mortality
    Oecologia (Berl) (1982) 54:348-352 Oer Springer-Verlag 1982 Recruitment of Marine Invertebrates: the Role of Active Larval Choices and Early Mortality Michael J. Keough and Barbara J. Downes Department of Biological Sciences, University of California, Santa Barbara, Ca 93106, USA Summary. Spatial variation in the recruitment of sessile a reflection of the limitations of the observer. The number marine invertebrates with planktonic larvae may be derived of organisms passing through the fourth phase is termed from a number of sources: events within the plankton, recruitment, while the number passing to the third phase choices made by larvae at the time of settlement, and mor- is termed settlement. Recruitment is a composite of larval tality of juvenile organisms after settlement, but before a and juvenile stages, while settlement involves only larval census by an observer. These sources usually are not distin- stages. guished. It is important to distinguish between settlement and A study of the recruitment of four species of sessile recruitment. Non-random patterns of recruitment, such as invertebrates living on rock walls beneath a kelp canopy differences in the density of recruitment with height on the showed that both selection of microhabitats by settling shore (Underwood 1979) or differences in the density of larvae and predation by fish may be important. Two micro- recruitment with patch size (Jackson 1977; Keough 1982a), habitats were of interest; open, flat rock surfaces, and small or with microhabitat, may have two causes: (1) differential pits and crevices that act as refuges from fish predators. settlement, and (2), different probabilities of early mortality The polychaete Spirorbis eximus and the cyclostome in different parts of an organism's habitat.
    [Show full text]
  • Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2019 Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA Angelo Jason Spadaro Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Spadaro, Angelo J.. "Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA" (2019). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/fg35-1j72 https://digitalcommons.odu.edu/biology_etds/86 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. CRYPTIC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA by Angelo Jason Spadaro B.S. May 2010, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY May 2019 Approved by: Mark J Butler, IV (Director) Eric Walters (Member) Dan Barshis (Member) Seabird McKeon (Member) ABSTRACT CRYPTC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA Angelo Jason Spadaro Old Dominion University, 2019 Director: Dr.
    [Show full text]
  • Biology of Marine Fungi 20130420 151718.Pdf
    Progress in Molecular and Subcellular Biology Series Editors Werner E.G. Mu¨ller Philippe Jeanteur, Robert E. Rhoads, Ðurðica Ugarkovic´, Ma´rcio Reis Custo´dio 53 Volumes Published in the Series Progress in Molecular Subseries: and Subcellular Biology Marine Molecular Biotechnology Volume 36 Volume 37 Viruses and Apoptosis Sponges (Porifera) C. Alonso (Ed.) W.E.G. Mu¨ller (Ed.) Volume 38 Volume 39 Epigenetics and Chromatin Echinodermata Ph. Jeanteur (Ed.) V. Matranga (Ed.) Volume 40 Volume 42 Developmental Biology of Neoplastic Antifouling Compounds Growth N. Fusetani and A.S. Clare (Eds.) A. Macieira-Coelho (Ed.) Volume 43 Volume 41 Molluscs Molecular Basis of Symbiosis G. Cimino and M. Gavagnin (Eds.) J. Overmann (Ed.) Volume 46 Volume 44 Marine Toxins as Research Tools Alternative Splicing and Disease N. Fusetani and W. Kem (Eds.) Ph. Jeanlevr (Ed.) Volume 47 Volume 45 Biosilica in Evolution, Morphogenesis, Asymmetric Cell Division and Nanobiotechnology A. Macieira Coelho (Ed.) W.E.G. Mu¨ller and M.A. Grachev (Eds.) Volume 48 Volume 52 Centromere Molecular Biomineralization Ðurdica- Ugarkovic´ (Ed.) W.E.G. Mu¨ller (Ed.) Volume 49 Volume 53 Aestivation Biology of Marine Fungi C.A. Navas and J.E. Carvalho (Eds.) C. Raghukumar (Ed.) Volume 50 miRNA Regulation of the Translational Machinery R.E. Rhoads (Ed.) Volume 51 Long Non-Coding RNAs Ðurdica- Ugarkovic (Ed.) Chandralata Raghukumar Editor Biology of Marine Fungi Editor Dr. Chandralata Raghukumar National Institute of Oceanography Marine Biotechnology Laboratory Dona Paula 403004 Panjim India [email protected] ISSN 0079-6484 ISBN 978-3-642-23341-8 e-ISBN 978-3-642-23342-5 DOI 10.1007/978-3-642-23342-5 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011943185 # Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright.
    [Show full text]
  • De Los Cangrejos Del Genero Neostrengeria
    ^ MARTHA ROCHA CAMPOS V- • ^•'v. O o V^' ^ •IVERSIDAD EN COLOMBIA DE LOS CANGREJOS DEL GENERO NEOSTRENGERIA i'í, /- í-fS • ,í i-.' ¡ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS. FISICAS YNATURALES COLECCION JORGE ALVARE2 LLERAS No. 5 •' © Academia Colombiana de Ciencias Exactas, Físicas y Naturales Cra. 3A No. 17-34, Piso 3o. - Apartado 44743 - Fax (571) 2838552 Primera Edición, 1994 - Santafé de Bogotá, D.C. - Colombia © MARTHA ROCHA CAMPOS CONTENIDO INTRODUCCION 1 Reservados todos los derechos. Estelibro no puede ser reproducido total o Colecciones 1 parcialmente sin autorización. Identiñcación taxonómica 2 Dalos estadísticos 2 Acn3ninios. 2 Caracteres morfológicos 2 TRATAMIENTO SISTEMÁTICO 7 Antecedentes de la sistemática de los cangrejos dulceacuícolas del Neotrópico 7 Clasificación sistemática de la familia PseudQthelphusidae 9 GÉNERO NEOSTRENGERIA PRETZMANN, 1965 11 Clave para las especies del género Neostrengería 13 Neostrengería boyacensís Rodríguez, 1980 25 Neostrengería charalensís Campos & Rodríguez, 1985 34 Neostrengería gílbertí Campos, 1992 43 Neostrengería gnenterí (PRETZMANN, 1965) 47 Neostrengería lasalleíRODRÍGUEZ, 1980 57 Neostrengería líbradensís líbradensís Rodríguez, 1980 65 Neostrengería líbradensís appressa Campos, 1992 69 Neostrengería líndígíana (Ratlibun, 1897) 75 Neostrengería lobulata Campos, 1992 83 Neostrengería macarenae Campos, 1992 87 ISBN 958 - 9205 - 00 - 3 obra completa Neostrengería macropa (H. Milne Edwards, 1853) 90 Neostrengería monterrodendoensís Botl, 1967 98 Clasificación Dewey: 595.382 Neostrengería
    [Show full text]
  • Unit One Introduction to Marine Invertebrates
    Unit One Introduction to Marine Invertebrates Activity 1 - Live Sea Animals . .3 Activity 2- Making an Undersea World . ..6 Objectives: To help students: Touch and identify common beach creatures such as sponges, jellyfishes, anemones, worms, crabs, barnacles, shrimps, amphipods, mollusks, sea stars, sea urchins and sea cucumbers (Activity 1). Understand the meaning of “invertebrate”: a soft-bodied animal without bones (Activity 1). Talk to a diver and/or marine biologist and observe their equipment (Activity 2). Decorate the classroom like an undersea world (Activity 2). Train “animals”(paper bag puppets) for an underwater circus (Activity 2). 1 . -- ., ., -<:.y:: ,.‘. :,” ; . .* . ‘. ..* 7 .*. ‘. ---=j.‘.’ : , ’ . UNIT ONE: Introduction to Marine Invertebrates. The ideal way to approach the study of invertebrates in all their diversity is through observation of live animals. All living things can be classified as belonging to either the plant Activity 1 kingdom orthe animal kingdom. Vertebrates and invertebrates are Live Sea Animals the two major subdivisions of the animal kingdom. Vertebrates are animals with backbones: humans, horses, elephants, mice, fishes, etc. Invertebrates are animals without backbones: sponges, sea stars,insects, worms, jellyfishes. Ninety-five percent of all animal species are invertebrates. There is a great assortment of colors, shapes and sizes among invertebrates found in Alaskan waters. Lacking backbones, they have various ways of supporting their bodies. Some,such as ane- 1 mones, rely on the water itself to give them shape and support. Sponges have a support system of Background: needlelike structures, which form In teaching children about marine entwining mesh. Crabs, an biology, nothing compares in shrimps,and beach hoppers have external skeletons, or “exoskele- excitement and value to the obser- vation of living creatures.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]