Environmental Learning Outside the Classroom (ELOC)

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Learning Outside the Classroom (ELOC) Environmental Learning Outside the Classroom (ELOC) This guidebook provides lesson ideas and activities to get students engaged with outdoor learning. Created by the Virgin Islands Marine Advisory Service (VIMAS), an extension arm of the University of Puerto Rico’s Sea Grant College Program. For more information, contact: Howard Forbes Jr. (VIMAS Coordinator) ph: 340-693-1672/340-513-7203 E-mail: [email protected] Website: vimas.uvi.edu VIMAS Lesson Plan Topic: Marine Invertebrates / Coral Reefs / Marine Protected Areas Grade level: 5th to 12th Estimated time for activity: Lecture: Interactive 30 minutes, Activity: 30 minutes Information Purpose: Procedure: To teach students about marine Students will have an opportunity to interact invertebrates and how they differ from with marine life both in a water table as well as Activity vertebrates. To educate students on how in their natural environment via snorkeling. to identify various marine species. Students will be actively engaged in discussion about the various marine invertebrates. After exposure students should be able to identify at least 3 marine invertebrates and name something special about each. By dispelling myths associated with some of the marine invertebrates, students should be more comfortable with snorkeling and handling Assessment of marine invertebrates. Google was used for all images. NOAA’s Territorial Coral Reef Monitoring Program (TCRMP) http://coralreef.noaa.gov/education/educators/resourcecd/lessonplans/resources/protect _this_lp.pdf References http://marinebio.org/oceans/marine-invertebrates/ Marine Invertebrates What are invertebrates? • An invertebrate is a species that does not possess a backbone. • There are vertebrates in the marine environment, namely most fish. • Some marine invertebrates pictured on the right include: Coral banded shrimp, Sea cucumber, West-Indian Sea egg, and Brittle Star. Invert Facts Important facts about marine organisms Most urchins are not Safety and handling venomous or poisonous. Urchins help to keep reefs clean. Brittle stars don’t have eyes and move via a All marine organisms should be sense of chemical handled with care. They need detection. water to breathe so be sure to keep them in the water. Most organisms produce a slime The sea cucumber will coating to help protect them spit out its intestines from parasites which is why or a stringy web when they feel slimy. Holding the stressed. organisms stresses them out so try to be very brief. Touch Tank Outdoor learning activity A touch tank is an aquarium that allows its observers to interact with the marine organisms within. Each organism within the tank plays an important role to maintaining the ecosystem balance, much like a natural environment. Some organisms provide habitat for others while some help clean off parasites. Species Identification Can you identify each species? • Brittle star • Pencil urchin • Sea cucumber • Sun anemone • Long-spined urchin • Feather duster worm • Lettuce sea slug • West-Indian sea egg • Decorator crab • Cleaner shrimp • Arrow crab • Coralimorph Species Scavenger Hunt Team activity In groups, your snorkel guide instructor will facilitate a guided tour around Brewers Bay. Along this trail, you will encounter colored markers to point out locations on the trail that have a Group Discussion Topic: significant amount of • How do you think an oil spill could life. negatively impact all of these organisms? Precaution Notice A B When you enter the marine ecosystem, just like any other ecosystem, caution should always be exercised. Fire coral (A), Long spine sea urchins (C), and Fire worms (E) should not be touched. D Rockfish (B) have venomous spines and look very much like a rock. They can often be found on the ocean floor camouflaging with rocks and sand. Just like the barracuda C (D), if you encounter one, E don’t panic. Just freeze and back away slowly. These creatures will not pursue you unless you have food in your pockets! Coral Reefs Do you know what a coral is? Which of these objects are corals? Corals are marine organisms that provide a number of ecosystem services such as serving as important habitat for fish, shoreline protection A B from waves, and even medicine. However, our reefs are being threatened by increased water temperatures, coral diseases, C and coastal pollution. What D are some things you can do to help protect our coral reefs? Threats to Coral Reefs Healthy coral reefs, pictured on the left. However, threats from sediment and coral disease are causing a significant decline in coral reef populations. Researchers at UVI are working diligently to understand what is influencing this decline. Non-sustainable Fishing Practices Many ecosystems are dependent on the services provided by their inhabitants. Overfishing is one such problem that has negatively affected coral reefs. By using trawl nets, fish that aren’t intended to be caught are netted in the process. Commercially Important Fish These marine organisms are all commercially important species; humans utilize these species as food sources. However, due to non- Nassau grouper Spiny lobster sustainable fishing practices, many of these fish populations have been significantly decreased. These organisms such as the parrotfish, serve ecological Stoplight parrotfish Queen conch roles such as consuming algae that could otherwise smother and kill coral as well as producing the beautiful sand on the beach. Red snapper Marine Protected Areas Marine protected areas (MPA) are protected areas of seas, oceans, or large lakes. MPAs restrict human activity for a conservation purpose, typically to protect natural or cultural resources. Discussion topic: How do you think MPAs help the environment? They increase biodiversity (the number of “different” species found within an ecosystem. They also allow for juvenile (young) fish to grow up to maturity and reproduce. One Fish, Two Fish What you’ll need: • Large playing area (beach) • Hoola hoops To play, have 2 students volunteer to be trawlers which collect fish; all other students will be fish. The object is for the trawlers to capture all of the fish and the fish can only walk, not run. Any fish caught becomes a trawler and all trawlers must be connected at all times. This usually ends after 2-3 minutes. When the students reconvene, discuss with them ways we can better protect the fish; i.e. introduce the hoola hoop as a marine protected area that fish can be protected in for approximately x seconds. See how many other solutions the students can come up with. Coral Reef Snorkel Students will be provided with snorkel gear. Once all students are suited, beginning from the MSC dock, students will near the coral reefs close to the shoreline/dock. Be on the lookout for any fish and observe everything in its natural habitat. Precaution Notice A B When you enter the marine ecosystem, just like any other ecosystem, caution should always be exercised. Fire coral (A), Long spine sea urchins (C), and Fire worms (E) should not be touched. D Rockfish (B) have venomous spines and look very much like a rock. They can often be found on the ocean floor camouflaging with rocks and sand. Just like the barracuda C (D), if you encounter one, E don’t panic. Just freeze and back away slowly. These creatures will not pursue you unless you have food in your pockets! .
Recommended publications
  • Chemists with No Backbones
    Medicines from the Deep Sea: Exploration of the Gulf of Mexico Chemists with No Backbones FOCUS TEACHING TIME Benthic invertebrates that produce pharmacologi- One or two 45-minute class periods, plus time for cally-active substances student research GRADE LEVEL SEATING ARRANGEMENT 5-6 (Life Science) Classroom style, or groups of 2-3 students FOCUS QUESTION MAXIMUM NUMBER OF STUDENTS What groups of marine organisms produce sub- 30 stances that may be helpful in treating human dis- eases? KEY WORDS Cardiovascular disease LEARNING OBJECTIVES Cancer Students will be able to identify at least three Arthritis groups of benthic invertebrates that are known to Natural products produce pharmacologically-active compounds. Sponge Tunicate Students will be able to describe why pharmaco- Ascidian logically-active compounds derived from benthic Bryozoan invertebrates may be important in treating human Octocorals diseases. BACKGROUND INFORMATION Students will be able to infer why sessile marine Despite the many advances of modern medicine, invertebrates appear to be promising sources of disease is still the leading cause of death in the new drugs. United States. Cardiovascular disease and cancer together account for more than 1.5 million deaths MATERIALS annually (40% and 25% of all deaths, respectively). Marker board, blackboard, or overhead projector In addition, one in six Americans have some form with transparencies for group discussions of arthritis, and hospitalized patients are increas- ingly threatened by infections that are resistant to AUDIO/VISUAL MATERIALS conventional antibiotics. The cost of these diseases None is staggering: $285 billion per year for cardiovas- cular disease; $107 billion per year for cancer; $65 billion per year for arthritis.
    [Show full text]
  • Solomon Islands Marine Life Information on Biology and Management of Marine Resources
    Solomon Islands Marine Life Information on biology and management of marine resources Simon Albert Ian Tibbetts, James Udy Solomon Islands Marine Life Introduction . 1 Marine life . .3 . Marine plants ................................................................................... 4 Thank you to the many people that have contributed to this book and motivated its production. It Seagrass . 5 is a collaborative effort drawing on the experience and knowledge of many individuals. This book Marine algae . .7 was completed as part of a project funded by the John D and Catherine T MacArthur Foundation Mangroves . 10 in Marovo Lagoon from 2004 to 2013 with additional support through an AusAID funded community based adaptation project led by The Nature Conservancy. Marine invertebrates ....................................................................... 13 Corals . 18 Photographs: Simon Albert, Fred Olivier, Chris Roelfsema, Anthony Plummer (www.anthonyplummer. Bêche-de-mer . 21 com), Grant Kelly, Norm Duke, Corey Howell, Morgan Jimuru, Kate Moore, Joelle Albert, John Read, Katherine Moseby, Lisa Choquette, Simon Foale, Uepi Island Resort and Nate Henry. Crown of thorns starfish . 24 Cover art: Steven Daefoni (artist), funded by GEF/IWP Fish ............................................................................................ 26 Cover photos: Anthony Plummer (www.anthonyplummer.com) and Fred Olivier (far right). Turtles ........................................................................................... 30 Text: Simon Albert,
    [Show full text]
  • Recruitment of Marine Invertebrates: the Role of Active Larval Choices and Early Mortality
    Oecologia (Berl) (1982) 54:348-352 Oer Springer-Verlag 1982 Recruitment of Marine Invertebrates: the Role of Active Larval Choices and Early Mortality Michael J. Keough and Barbara J. Downes Department of Biological Sciences, University of California, Santa Barbara, Ca 93106, USA Summary. Spatial variation in the recruitment of sessile a reflection of the limitations of the observer. The number marine invertebrates with planktonic larvae may be derived of organisms passing through the fourth phase is termed from a number of sources: events within the plankton, recruitment, while the number passing to the third phase choices made by larvae at the time of settlement, and mor- is termed settlement. Recruitment is a composite of larval tality of juvenile organisms after settlement, but before a and juvenile stages, while settlement involves only larval census by an observer. These sources usually are not distin- stages. guished. It is important to distinguish between settlement and A study of the recruitment of four species of sessile recruitment. Non-random patterns of recruitment, such as invertebrates living on rock walls beneath a kelp canopy differences in the density of recruitment with height on the showed that both selection of microhabitats by settling shore (Underwood 1979) or differences in the density of larvae and predation by fish may be important. Two micro- recruitment with patch size (Jackson 1977; Keough 1982a), habitats were of interest; open, flat rock surfaces, and small or with microhabitat, may have two causes: (1) differential pits and crevices that act as refuges from fish predators. settlement, and (2), different probabilities of early mortality The polychaete Spirorbis eximus and the cyclostome in different parts of an organism's habitat.
    [Show full text]
  • Studies on Cnidophage, Specialized Cell for Kleptocnida, of Pteraeolidia Semperi (Mollusca: Gastropoda: Nudibranchia)
    Studies on Cnidophage, Specialized Cell for Kleptocnida, of Pteraeolidia semperi (Mollusca: Gastropoda: Nudibranchia) January 2021 Togawa Yumiko Studies on Cnidophage, Specialized Cell for Kleptocnida, of Pteraeolidia semperi (Mollusca: Gastropoda: Nudibranchia) A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Doctoral Program in Life Sciences and Bioengineering) Togawa Yumiko Table of Contents General Introduction ...........................................................................................2 References .............................................................................................................5 Part Ⅰ Formation process of ceras rows in the cladobranchian sea slug Pteraeolidia semperi Introduction ..........................................................................................................6 Materials and Methods ........................................................................................8 Results and Discussion........................................................................................13 References............................................................................................................18 Figures and Tables .............................................................................................21 Part II Development, regeneration and ultrastructure of ceras, cnidosac and cnidophage, specialized organ, tissue
    [Show full text]
  • Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2019 Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA Angelo Jason Spadaro Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Spadaro, Angelo J.. "Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA" (2019). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/fg35-1j72 https://digitalcommons.odu.edu/biology_etds/86 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. CRYPTIC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA by Angelo Jason Spadaro B.S. May 2010, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY May 2019 Approved by: Mark J Butler, IV (Director) Eric Walters (Member) Dan Barshis (Member) Seabird McKeon (Member) ABSTRACT CRYPTC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA Angelo Jason Spadaro Old Dominion University, 2019 Director: Dr.
    [Show full text]
  • Gastropod Bingo
    Gastropod Bingo Purpose of activity: To review gastropods (mollusks with one shell or no shell) Target age group: 8-13 Time needed: Flexible-- you can play just one round or several Materials needed: A copy of the picture page for each player printed onto card stock, scissors, tokens to place on the squares, one copy of the clue pages How to assemble: 1) Make one copy per player of the picture page, printed onto heavy card stock. 2) Cut apart the pictures. TIP: If you are making many copies of the board pieces so you can play with many students, number the sets (put a number 1 on the backs of all the cards in one set, a number 2 on the cards in another set, etc.) so that if they get mixed up they are easy to sort out again. It is surprising how easily the cards can get mixed up. How to set up the board: Here are three different ways to set up the board. You can use just one way, or you can use a differ- ent set up for each round. 1) Standard 4x4 bingo board: Have the players choose 16 of the 20 squares and arrange them into a square. 2) Five small 2x2 squares: Have the players arrange their 20 squares into five separate 2x2 squares. They must fill all four spaces in one of those 2x2 squares to get a Bingo. 3) 5x5 square with free space: Cut an extra square for each player, to use as a FREE square in the middle.
    [Show full text]
  • Unit One Introduction to Marine Invertebrates
    Unit One Introduction to Marine Invertebrates Activity 1 - Live Sea Animals . .3 Activity 2- Making an Undersea World . ..6 Objectives: To help students: Touch and identify common beach creatures such as sponges, jellyfishes, anemones, worms, crabs, barnacles, shrimps, amphipods, mollusks, sea stars, sea urchins and sea cucumbers (Activity 1). Understand the meaning of “invertebrate”: a soft-bodied animal without bones (Activity 1). Talk to a diver and/or marine biologist and observe their equipment (Activity 2). Decorate the classroom like an undersea world (Activity 2). Train “animals”(paper bag puppets) for an underwater circus (Activity 2). 1 . -- ., ., -<:.y:: ,.‘. :,” ; . .* . ‘. ..* 7 .*. ‘. ---=j.‘.’ : , ’ . UNIT ONE: Introduction to Marine Invertebrates. The ideal way to approach the study of invertebrates in all their diversity is through observation of live animals. All living things can be classified as belonging to either the plant Activity 1 kingdom orthe animal kingdom. Vertebrates and invertebrates are Live Sea Animals the two major subdivisions of the animal kingdom. Vertebrates are animals with backbones: humans, horses, elephants, mice, fishes, etc. Invertebrates are animals without backbones: sponges, sea stars,insects, worms, jellyfishes. Ninety-five percent of all animal species are invertebrates. There is a great assortment of colors, shapes and sizes among invertebrates found in Alaskan waters. Lacking backbones, they have various ways of supporting their bodies. Some,such as ane- 1 mones, rely on the water itself to give them shape and support. Sponges have a support system of Background: needlelike structures, which form In teaching children about marine entwining mesh. Crabs, an biology, nothing compares in shrimps,and beach hoppers have external skeletons, or “exoskele- excitement and value to the obser- vation of living creatures.
    [Show full text]
  • Marine Invertebrates As Indicators of Reef Health
    MARINE INVERTEBRATES AS INDICATORS OF REEF HEALTH A STUDY OF THE REEFS IN THE REGION OF ANDAVADOAKA, SOUTH WEST MADAGASCAR Anna Hopkins MSc Conservation Science September 2009 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science and the Diploma of Imperial College London i ABSTRACT Coral reefs are under increasing pressure from anthropogenic threats, especially over- harvesting. Certain invertebrate species are considered indicators of ecological change and any possible disturbance to the reef can be gauged by monitoring their abundance. The densities of eight invertebrate species were measured over a four year period within three types of reef; fringing, barrier and patch, surrounding the area of Andavadoaka, Southwest Madagascar. General linear mixed effect models indicated complex patterns of abundance in relation to annual, seasonal and spatial variation in all species, with season being the weaker explanatory variable. There was no evidence of ecological disturbance in any of the reef types and echinoid densities were comparable to those found in protected areas. Acanthaster planci was found in very low densities and therefore not an ecological threat. Echinostrephus was found to be the dominant echinoid throughout the area. Harvested species T. gigas and C. tritonis were uniformly rare at all sites but compared to reefs in Southeast Asia are in healthy numbers. Holothurians have decreased in number although recent increases have been noted on patch reefs. Patch reefs were found to harbour the healthiest abundance of echinoids and harvested species. Fringing reefs had lower densities of all species possibly as a result of more intense harvesting effort.
    [Show full text]
  • Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama
    Caribbean Journal of Science, Vol. 41, No. 3, 638-707, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama R. COLLIN1,M.C.DÍAZ2,3,J.NORENBURG3,R.M.ROCHA4,J.A.SÁNCHEZ5,A.SCHULZE6, M. SCHWARTZ3, AND A. VALDÉS7 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama. 2Museo Marino de Margarita, Boulevard El Paseo, Boca del Rio, Peninsula de Macanao, Nueva Esparta, Venezuela. 3Smithsonian Institution, National Museum of Natural History, Invertebrate Zoology, Washington, DC 20560-0163, USA. 4Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil. 5Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A – 10, Bogotá, Colombia. 6Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. 7Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. This identification guide is the result of intensive sampling of shallow-water habitats in Bocas del Toro during 2003 and 2004. The guide is designed to aid in identification of a selection of common macroscopic marine invertebrates in the field and includes 95 species of sponges, 43 corals, 35 gorgonians, 16 nem- erteans, 12 sipunculeans, 19 opisthobranchs, 23 echinoderms, and 32 tunicates. Species are included here on the basis on local abundance and the availability of adequate photographs. Taxonomic coverage of some groups such as tunicates and sponges is greater than 70% of species reported from the area, while coverage for some other groups is significantly less and many microscopic phyla are not included.
    [Show full text]
  • Marine Invertebrates – Introduction
    Appendix 4, Page 1 Marine Invertebrates – Introduction Marine ecosystems worldwide are being altered by human disturbances such as overfishing (Botsford et al. 1997; Jackson et al. 2001; Pauly et al, 2002; Myers and Worm 2003) coastal shoreline development, climate change, and eutrophication (Howarth et al. 2000; Rabalais et al. 2002), and these impacts are beginning to be felt in Alaska. Achieving sustainability of resources, economies, coastal communities and the ecosystems in which these are all embedded requires conservation strategies that acknowledge the complex social and ecological interactions that drive marine ecosystem dynamics (Scheffer et al. 2001; Walker et al. 2002). The focus of this template is on the approach that will be used for conservation planning, one that encompasses the ecological relationships among multiple species and habitats. Literature Cited Botsford, L.W., Castilla, J.C., and C.H. Peterson. 1997. The management of fisheries and marine ecosystems. Science 277: 509–515. Howarth, R.W., D. Anderson, J. Cloern, C. Elfring, et al. 2000. Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology. 7:1–5. Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner, and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638. Myers, R.A. and B. Worm. 2003. Rapid worldwide depletion of predatory fish communities.
    [Show full text]
  • Plankton in the Air (PDF)
    NYSDEC Environmental Education Plankton in the Air A game illustrating filter-feeding animals and describing plankton Group Size one class Duration 10-15 minutes Concepts Plankton, Marine Food Chains, Filter Feeding, Role-playing Location Classroom area allowing movement or outside Age/grade Pre-K through 5 Objectives Students will identify places that animals live. Students will identify that some animals can live in more than one habitat. Materials Bubble liquid Bubble blower (suggested) Examples (photos or props) representing filter-feeding organisms Background for Instructors Plankton is defined as floating plants and animals that cannot move against the current under their own power. We usually refer to any floating, small or microscopic organism (plant or animal) as plankton. Plankton is divided into phytoplankton (plant plankton) and zooplankton (animal plankton). Phytoplankton is made up of single-celled and multi-cellular green organisms that use photosynthesis to live and grow from solar energy, in much the same way plants do on land. Phytoplankton lives and dies floating around on the currents of the world’s oceans, bays, and estuaries. Zooplankton includes a vast array of tiny animals that feeds on phytoplankton and one another. Zooplankton includes many animals that never get very large, eggs of fish and marine invertebrates, and many larval forms of familiar sea creatures (crabs, lobsters, jellyfish) that leave the plankton as they mature. Many types of marine animals feed by forcing sea water through filters to remove edible particles from the water. This method of capturing food is known as filter-feeding. Bivalves, such as clams and mussels draw water into their body through a siphon, pass it through a series of filters, and expel the water, digesting the microscopic organisms that were floating in the water.
    [Show full text]
  • Benthic Field Guide 5.5.Indb
    Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.
    [Show full text]