On Solvability of Higher Degree Polynomial Equations Samuel Bonaya Buya Mathematics/Physics Teacher at Ngao Girls, Secondary School, Kenya

Total Page:16

File Type:pdf, Size:1020Kb

On Solvability of Higher Degree Polynomial Equations Samuel Bonaya Buya Mathematics/Physics Teacher at Ngao Girls, Secondary School, Kenya Research & Reviews: Journal of Applied Science and Innovations On Solvability of Higher Degree Polynomial Equations Samuel Bonaya Buya Mathematics/Physics Teacher at Ngao girls, Secondary School, Kenya Research Article Received date: 23/06/2017 ABSTRACT Accepted date: 28/07/2017 I present methods that can be used to obtain algebraic solution Published date: 07/08/2017 of polynomial equations of degree five and above. In this contribution I look into methods by which higher degree polynomial equations can *For Correspondence be factorized to obtain lower degree solvable auxiliary equations. The factorization method has been used to successfully solve quartic Samuel BB, Mathematics/Physics teacher equations. A careful selection of the appropriate factorized form can bear at Ngao girls, Secondary School, Kenya much fruit in solving higher degree polynomial. Ehrenfried Walter von Tschirnhaus (1651-1708) invented the Tschirnhaus transformation. The E-mail: [email protected] Swedish algebraist Erland Bring (1736-1798) showed by a Tschirnhaus transformation that the general quintic equation can be transformed to the trinomial form. The English mathematician George Jerrard Keywords: Algebraic solution of Quintic, Sextic and septic equations; General (1804-1863) generalized this result to higher degree polynomial. The solution of polynomial equations; Review possibility of solvability of higher degree polynomials would pave way of Galois theory; Abel-Ruffini impossibility for transformations that can reduce higher degree polynomials to their theorem; Lagrange and Galois resolvents trinomial form. The Newton Identity relates the roots of polynomials with their coefficients. It is possible to introduce an instantiation of this formula where a root of polynomial is correlated to its coefficient. This is in order to facilitate easy reduction of polynomials to lower degrees for solvability. Once a polynomial is reduced to solvable lower degree forms and there consequent roots it is possible covert it as a root of the degree of original polynomial. The paper will seek to address briefly on the things highlighted in this abstract. Solvability of higher degree polynomials will of necessity call for a re-examination of the Abel-Ruffini impossibility theorem and the Galois Theory at large. INTRODUCTION Background and Literature Review Several mathematicians have tried to obtain a radical solution of the quintic equation. Up to the past century no one succeeded to come up with its general algebraic solution. Joseph Louis Lagrange (1736-1814) wrote a book [1] in which he examined previous attempts to solve the quintic equation. Lagrange [2] introduced the concept of the Lagrange Resolvent and noted that the Resolvent worked for cubic and quartic equations but failed to achieve the desirable results for higher degree equations. In his contribution it is noted that the degree of the Resolvent of a polynomial is equal to the order of the sn. This means any attempt of solving a polynomial of degree 5 would lead to an equation of degree 120 (which is also the order of s5) In math a Resolvent is an equation upon whose solution the solution of a problem depends. For the purpose of this paper I will touch on a few highlights of the Lagrange Resolvent. For an nth degree polynomial the Lagrange Resolvent is defined as = Rx(ωω) = in i−1 Σi=1 i 1 where x_i, i=1,. , n, are the roots of the equation and ω is an nth root of unity. For a cubic equation it means by the method of Lagrange resolvents, 2 zxx=++12ωω x 3 RRJASI | Volume 1 | Issue 2 | July, 2017 7 Research & Reviews: Journal of Applied Science and Innovations Where xi are the roots of the cubic equation and ω is the cube root of unity. By permuting these roots into each other we get six different values of z. The six different permutations are: 2 z112=++ xxωω x 3 zz21= ω 2 zz31= ω 2 z4=++ xx 13ωω x 2 zz54= ω 2 zz64= ω The equation ( xz−1223456)( x −−−−−= z)( xz)( xz)( xz)( xz) 0 is then formed. We then find out that 33 ( xz−122)( x − z)( xz − 3)( xz −=− 4) x z 1 And 33 ( xz−456)( xz −)( xz −=−) x z 4 So that 3333 6 33333 ( xz−1223456)( x −−−−−=−−=−++ z)( xz)( xz)( xz)( xz) ( x z 1)( x z 4) x( z 1414 zx) zz The above equation is quadratic in x3. The importance of the Lagrange resolvent is its ability to solve the cubic and even quartic equations. However if a similar construction is made with a quartic equation it would yield a solvable equation of degree 24. With the quintic equation however the Lagrange Resolvent would yield an unsolvable degree 120 polynomial equation. The Lagrange resolvent failed to provide a way forward to the solution of higher degree polynomial equations. In 1799 Paolo Ruffini provided an incomplete proof of the impossibility of solving quintic and higher degree equations. In 1826 Niels Henrik Abel [3] provided a proof to show the impossibility of solving general degree five equations and above. Evariste Galois (1832) [4] constructed the Galois resolvent that is, if we have a polynomial with coefficients in a field F then the resolvent: in= = is a Galois resolvent if one gets n! different functions when permuting the roots with each v∑ axiiaa12, . ., an ∈ R i=1 other. Pv=−− vv vv. vv − The Galois resolvent is then used to form the polynomial ( ) ( 12)( ) ( n ) where vi are symmetric functions of the roots of the polynomial. With His group theory Galois made the observation that because it is impossible to have a chain of groups for permutation groups of sn ≥ 5 then it is impossible to solve algebraically equations of degree five and above. Galois Theory identified criteria for obtaining solvable cases. Bring [5] and Jerrard [6] how the general quintic equation can be reduced to trinomial form There is the Dummit proof theorem [7] which states that the irreducible quantic f( x) =+ x5 px 32 + qx ++ rx s is solvable in radicals if and only if the sextic equation x6++8 ax 5 40 a 24 x + 160 a 33 x + 400 a 42 x +( 512 a 5 − 3125) x + 256 a6 − 9375 ab4 = 0 has a rational root. If this is the case the sextic factors into the product of a linear polynomial (x - θ) and an irreducible quintic g(x). I will show later in this paper how this sextic can be reduced to linear and quadratic factors. Edward Thabo Motlotle [8], in his 2011 master’s thesis managed to present a formula for solving the Bring-Jerrard quintic equation using the Newton’s sum formula. In his contribution Motlotle convincingly argued that Abel’s impossibility proof has been misconstrued by many as meaning that no general algebraic solution of the quintic equation is attainable. He showed that such a formula in unattainable only within a field of Rational numbers. He then moved on to deriving a formula. Motlotle demonstrated that the Galois group associated with the general quintic equation is solvable over algebraic numbers. RRJASI | Volume 1 | Issue 2 | July, 2017 8 Research & Reviews: Journal of Applied Science and Innovations Motlotle identified a pattern that flows from the work of del Ferro (1465 – 1526) and Ferrari (1522 – 1565) in their approach to the cubic equation. The pattern he identified was of the form: rn − KL −=0 Statement of the Problem Could it be possible that the Galois Theory is incomplete in its treatment of higher degree polynomials? What about the Lagrange and Galois resolvents, are they all that the mathematics principles can provide in the solution of higher degree algebraic equations? Is it possible to come up with factorized forms that can be used to solve higher degree polynomials? Is it possible to come up with instantiations of the Newton’s sum formula? In the most general sense, the newton’s identity is a correlation between roots and coefficients of a polynomial equation. Could it be possible to come up with a correlation connecting the coefficients of a polynomial to a single root? If such a correlation can be obtained should make it possible to factorize a degree n polynomial to linear and degree n-1 factors. Is it possible that after reducing a higher degree polynomial and obtaining solutions in terms of lower degree polynomial to covert the same in forms of roots of the original polynomial? In this paper I will seek to present methods of factorizing higher degree polynomial s to solvable forms. I will seek to present an instantiation of Newton’s identity that can be used factor linear factors from out polynomial equations. I will seek to show that the sextic equation of Dummit’s proof theorem is reducible to quintic and linear factors. OBJECTIVES The main objective of this paper is to show that algebraic equations of degree five and above are solvable algebraically. Specifically I will seek to present a method by which a degree n polynomial can be factored to a linear factor and degree n-1 polynomial. I will seek to present solvable factorized forms of polynomial equations. I will seek to present a method of converting back a root to nth root form where the polynomial has been reduced to lower forms and roots have obtained in lower forms. METHODOLOGY Approach and Justification Abstract algebra asserts the impossibility of solving a general algebraic equation of degree n ≥ 5 because the Alternating group is simple that is it does not permit normal subgroups. In the paper “Solution of Solvable Irreducible Quintic Equations, without the aid of a Resolvent Sextic” [9], George Paxton Young asserts the irreducibility of the Bring-Jerrard quintic equation. G.P. Young, on the basis of irreducibility of the quintic equation in the trinomial form, argues further that it cannot be solved algebraically except in particular cases.
Recommended publications
  • Solving Cubic Polynomials
    Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac.
    [Show full text]
  • Positivity Conditions for Cubic, Quartic and Quintic Polynomials Arxiv:2008.10922V10 [Math.GM] 18 Sep 2020
    Positivity Conditions for Cubic, Quartic and Quintic Polynomials Liqun Qi,∗ Yisheng Song,y and Xinzhen Zhang,z August 17, 2021 Abstract We present a necessary and sufficient condition for a cubic polynomial to be positive for all positive reals. We identify the set where the cubic polynomial is nonnegative but not all positive for all positive reals, and explicitly give the points where the cubic polynomial attains zero. We then reformulate a necessary and sufficient condition for a quartic polynomial to be nonnegative for all posi- tive reals. From this, we derive a necessary and sufficient condition for a quartic polynomial to be nonnegative and positive for all reals. Our condition explic- itly exhibits the scope and role of some coefficients, and has strong geometrical meaning. In the interior of the nonnegativity region for all reals, there is an ap- pendix curve. The discriminant is zero at the appendix, and positive in the other part of the interior of the nonnegativity region. By using the Sturm sequences, we present a necessary and sufficient condition for a quintic polynomial to be positive and nonnegative for all positive reals. We show that for polynomials of a fixed even degree higher than or equal to four, if they have no real roots, then their discriminants take the same sign, which depends upon that degree only, except on an appendix set of dimension lower by two, where the discriminants attain zero. arXiv:2008.10922v10 [math.GM] 18 Sep 2020 Key words. Cubic polynomials, quartic polynomials, quintic polynomials, the Sturm theorem, discriminant, appendix. AMS subject classifications.
    [Show full text]
  • Quartic Equation of General Form
    EqWorld http://eqworld.ipmnet.ru Exact Solutions > Algebraic Equations and Systems of Algebraic Equations > Algebraic Equations > Quartic Equation of General Form 8. ax4 + bx3 + cx2 + dx + e = 0 (a ≠ 0). Quartic equation of general form. 1±. Reduction to an incomplete equation. The quartic equation in question is reduced to an incom- plete equation y4 + py2 + qy + r = 0.(1) with the change of variable b x = y − 4a 2±. Decartes–Euler solution. The roots of the incomplete equation (1) are given by 1 ¡p p p ¢ 1 ¡p p p ¢ y1 = z1 + z2 + z3 , y2 = z1 − z2 − z3 , 2 2 2 1 ¡ p p p ¢ 1 ¡ p p p ¢ ( ) y3 = 2 − z1 + z2 − z3 , y4 = 2 − z1 − z2 + z3 , where z1, z2, z3 are roots of the cubic equation z3 + 2pz2 + (p2 − 4r)z − q2 = 0,(3) which is called the cubic resolvent of equation (1). The signs of the roots in (2) are chosen so that p p p z1 z2 z3 = −q. The roots of the incomplete quartic equation (1) are determined by the roots of the cubic resolvent (3); see the table below. TABLE Relation between the roots of the incomplete quartic equation and the roots of its cubic resolvent Cubic resolvent (3) Quartic equation (1) All roots are real and positive* Four real roots All roots are real, Two pairs of complex conjugate roots one positive and two negative* One roots is positive Two real and two complex conjugate roots and two roots are complex conjugate 2 * By Vieta’s theorem, the product of the roots z1, z2, z3 is equal to q ≥ 0.
    [Show full text]
  • (Trying To) Solve Higher Order Polynomial Equations. Featuring a Recall of Polynomial Long Division
    (Trying to) solve Higher order polynomial equations. Featuring a recall of polynomial long division. Some history: The quadratic formula (Dating back to antiquity) allows us to solve any quadratic equation. ax2 + bx + c = 0 What about any cubic equation? ax3 + bx2 + cx + d = 0? In the 1540's Cardano produced a \cubic formula." It is too complicated to actually write down here. See today's extra credit. What about any quartic equation? ax4 + bx3 + cx2 + dx + e = 0? A few decades after Cardano, Ferrari produced a \quartic formula" More complicated still than the cubic formula. In the 1820's Galois (age ∼19) proved that there is no general algebraic formula for the solutions to a degree 5 polynomial. In fact there is no purely algebraic way to solve x5 − x − 1 = 0: Galois died in a duel at age 21. This means that, as disheartening as it may feel, we will never get a formulaic solution to a general polynomial equation. The best we can get is tricks that work sometimes. Think of these tricks as analogous to the strategies you use to factor a degree 2 polynomial. Trick 1 If you find one solution, then you can find a factor and reduce to a simpler polynomial equation. Example. 2x2 − x2 − 1 = 0 has x = 1 as a solution. This means that x − 1 MUST divide 2x3 − x2 − 1. Use polynomial long division to write 2x3 − x2 − 1 as (x − 1) · (something). Now find the remaining two roots 1 2 For you: Find all of the solutions to x3 + x2 + x + 1 = 0 given that x = −1 is a solution to this equation.
    [Show full text]
  • Low-Degree Polynomial Roots
    Low-Degree Polynomial Roots David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Created: July 15, 1999 Last Modified: September 10, 2019 Contents 1 Introduction 3 2 Discriminants 3 3 Preprocessing the Polynomials5 4 Quadratic Polynomials 6 4.1 A Floating-Point Implementation..................................6 4.2 A Mixed-Type Implementation...................................7 5 Cubic Polynomials 8 5.1 Real Roots of Multiplicity Larger Than One............................8 5.2 One Simple Real Root........................................9 5.3 Three Simple Real Roots......................................9 5.4 A Mixed-Type Implementation................................... 10 6 Quartic Polynomials 12 6.1 Processing the Root Zero...................................... 14 6.2 The Biquadratic Case........................................ 14 6.3 Multiplicity Vector (3; 1; 0; 0).................................... 15 6.4 Multiplicity Vector (2; 2; 0; 0).................................... 15 6.5 Multiplicity Vector (2; 1; 1; 0).................................... 15 6.6 Multiplicity Vector (1; 1; 1; 1).................................... 16 1 6.7 A Mixed-Type Implementation................................... 17 2 1 Introduction Consider a polynomial of degree d of the form d X i p(y) = piy (1) i=0 where the pi are real numbers and where pd 6= 0. A root of the polynomial is a number r, real or non-real (complex-valued with nonzero imaginary part) such that p(r) = 0. The polynomial can be factored as p(y) = (y − r)mf(y), where m is a positive integer and f(r) 6= 0.
    [Show full text]
  • The Conditions for Multiple Roots in Cubic and Quartic Equations
    Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Summer 1953 The Conditions For Multiple Roots In Cubic and Quartic Equations Laurence Dryden Fort Hays Kansas State College Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Algebraic Geometry Commons Recommended Citation Dryden, Laurence, "The Conditions For Multiple Roots In Cubic and Quartic Equations" (1953). Master's Theses. 508. https://scholars.fhsu.edu/theses/508 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. THE CONDITIONS FOR MULTIPLE ROOTS IN CUBI C AND QUARTIC EQUATIONS being A Thesis Presented to the Graduate F aculty of the Fort Hays Kansas State College in Partial Fulfillment of the Requireme nts for t h e De gree Master of Science by Laurence A. Dryden, B.S. in Education Ohio State University Approved~,R;I;_#~ Major Departme Date 7- '-?.. - ..,-.3 ACKNOWLEDGlvIENT The writer of this thesis wishes to acknowledge all sources of information used in its preparation and is especially indebted to the Head of the Mathematics Department, Professor Emmet C. Stopher, for his assistance, criticisms, and advice. \ TABLE OF CONTENTS CHAPTER PAGE INTRODUCTION 1 I. DISCRil'HNANT 1. Definition of Discriminant ••• . 2 2. Definition of Resultant 2 3. Relation between Discriminant and Resultant 3 4. Definition of Sylvester's Determinant D(f,g) •••• 3 S. Relation between Sylvester's Determinant and Resultant 6. Relation between Discriminant and Sylvester's Determinant 7 7.
    [Show full text]
  • Cardano's Method for Roots of Cubic Equations
    Lecture 23 : Solutions of Cubic and Quartic Equations Objectives (1) Cardano's method for roots of cubic equations. (2) Lagrange's method for roots of quartic equations. (3) Ferrari's method for roots of quartic equations. Keywords and Phrases : Cubic equations, quartic equations. In this section we present algorithms for finding roots of cubic and quartic polynomials over any field F of characteristic different from 2 and 3: This is to make sure that irreducible cubics and quartics are separable. Cubic polynomials Cardano published Tartaglia's method to find roots of cubic polynomials in 1545. This is known as Cardano's method. We may assume that the given cubic is of the form f(x) = x3 + px + q since a general cubic can be transformed into this form without changing its splitting field. One begins by introducing two unknowns u and v: Put x = u + v into f(x) = 0 to get u3 + v3 + 3u2v + 3uv2 + p(u + v) + q = u3 + v3 + q + (3uv + p)(u + v) = 0: We set u3 + v3 + q = 0 and 3uv + p = 0: Hence v = −p=3u: Put this into the first equation to get u6 + qu3 − p3=27 = 0: This is a quadratic equation in u3: Put D = −(4p3 +27q2): By the quadratic formula we get −q ± pq2 + (4p3=27) q u3 = = − ± p−D=108: 2 2 Set A = −q=2 + p−D=108 and B = −q=2 − p−D=108: By symmetry of u and v; we set u3 = A and v3 = B: Let ! be a primitive cube root of unity. Then p p p p p p u = 3 A; ! 3 A; !2 3 A; and v = 3 B; ! 3 B; !2 3 B: 97 98 p p We must choose cube roots of A and B in such a way that 3 A 3 B = −p=3: Having chosen these we see that the three roots of f(x) are p p p p p p 3 A + 3 B; ! 3 A + !2 3 B; !2 3 A + ! 3 B: Example 23.1.
    [Show full text]
  • Cubic and Quartic Equations (Pdf File)
    CUBIC AND QUARTIC EQUATIONS From the point of view of medieval mathematicians, there are actually 13 different types of cubic equations rather than just one. Basically this is because they not merely did not admit imaginary or complex numbers, but only considered positive real num- bers, so also did not admit negative numbers or zero. Thus to them ¢¡¤£¥ §¦©¨ was a different type of equation from ¢¡ ¦ £ ¨ . Now we can write a general cubic equation ¡ £££¦ ¦ (in which § or the equation is not genuinely cubic) in the form ¡ £¥ £¥£¥ ¦! "¦# after dividing by a constant. The case where ¦! leads to an inadmissible root and anyway is easily soluble, so we get different cases as $ $ $ ¦ % '& ¦ % (& ¦ % leading to 18 cases. However, the cases $ )¦ )¦!'&* % )¦ )¦!'&* are not taken seriously as cubic equations (and indeed the first has no real positive solution), while evidently the cases $ $ $ '&* (&+ $ $ )¦!'&* (&+ $ $ '&*,¦ (&+ have no real positive solution. This leaves 13 cases to be considered. The case of the cosa and the cube, in modern notation the case ¡-£¥.¦ where and are positive, was solved by Scipione del Ferro (1465–1626) early in the six- teenth century. He taught his method to his pupil Antonio Maria Fior (Florido) (dates unknown), who had a contest with Nicolo` Tartaglia (1500–1557) which resulted in the latter’s discovery of the method for solving this particular type. Girolamo Cardano (Jerome Cardan) (1501–1576) persuaded Tartaglia to tell him the solution, first in a cryptic verse and then with a full explanation, after swearing he would keep the solu- tion secret. But, after he had found the solution in the posthumous papers of del Ferro, Cardan felt free to publish, which he did in his Ars Magna (1545).
    [Show full text]
  • ON the COBLE QUARTIC 1. Introduction in This Paper We
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza ON THE COBLE QUARTIC SAMUEL GRUSHEVSKY AND RICCARDO SALVATI MANNI Abstract. We review and extend the known constructions relat- ing Kummer threefolds, G¨opel systems, theta constants and their derivatives, and the GIT quotient for 7 points in P2 to obtain an explicit expression for the Coble quartic. The Coble quartic was recently determined completely in [RSSS12], where (Theorem 7.1a) it was computed completely explicitly, as a polynomial with 372060 monomials of bidegree (28; 4) in theta constants of the second or- der and theta functions of the second order, respectively. Our expression is in terms of products of theta constants with charac- teristics corresponding to G¨opel systems, and is a polynomial with 134 terms. Our approach uses the relationship of G¨opel systems and Jacobian determinants of theta functions, and highlights the geometry and combinatorics of syzygetic octets of characteristics, and the corresponding representations of Sp(6; F2). In genus 2, we similarly obtain a short explicit equation for the universal Kummer surface, and relating modular forms of level two to binary invariants of six points on P1. 1. Introduction In this paper we provide an explicit description of the Coble quartic. This is a quartic equation in 8 variables whose eight partial derivatives defines the Kummer variety of a smooth plane quartic. This sixfold is particularly interesting as it is the moduli space of semistable vector bundles of rank 2 with trivial determinant on the genus three curve [?] or [?].
    [Show full text]
  • Some Useful Functions - C Cnmikno PG - 1
    Some useful functions - c CNMiKnO PG - 1 • Linear functions: The term linear function can refer to either of two different but related concepts: 1. The term linear function is often used to mean a first degree polynomial function of one variable. These functions are called ”linear” because they are precisely the functions whose graph in the Cartesian coordinate plane is a straight line. 2. In advanced mathematics, a linear function often means a function that is a linear map, that is, a map between two vector spaces that preserves vector addition and scalar multiplication. We will consider only first one of above meanings. Equations of lines: 1. y = ax + b - Slope-intercept equation 2. y − y1 = a(x − x1) - Point-slope equation 3. y = b - Horizontal line 4. x = c - Vertical line where x ∈ R, a, b, c ∈ R and a is the slope. −b If the slope a 6= 0, then x-intercept is equal . a • Quadratic function: f(x) = ax2 + bx + c for x ∈ R, where a, b, c ∈ R, a 6= 0. ∆ = b2 − 4ac This formula is called the discriminant of the quadratic equation. ! −b −∆ The graph of such a function is a parabola with vertex W , . 2a 4a A quadratic function is also referred to as: - a degree 2 polynomial, - a 2nd degree polynomial, because the highest exponent of x is 2. If the quadratic function is set equal to zero, then the result is a quadratic equation. The solutions to the equation are called the roots of the equation or the zeros of the function.
    [Show full text]
  • Polynomial Equations and Solvability: a Historical Perspective
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 1996 Polynomial equations and solvability: A historical perspective Laurie Jan Riggs Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Riggs, Laurie Jan, "Polynomial equations and solvability: A historical perspective" (1996). Theses Digitization Project. 1186. https://scholarworks.lib.csusb.edu/etd-project/1186 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. '' " "" ' " ' ' ' ' ' ' POLYNOMIAL EQUATIONS AND SOLVABILITY: A HISTORICAL PERSPECTIVE "vt: ::-V - ■" -/''-V ■' ' ' ■■^V• .■':j ' ■ ■"TV; ;, \ " A Project >;'■;•• ■■■" ■ ■ f: ' •'-;•• . , , , .... ... .. .. ... ... .. Presented to the v., SiTO Faculty of California State University, San Bernardino InPartial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics ■ Laurie Jan Riggs , ■:■.■■ y' . June 1996 ' y 'X' ■ '" '/' 'V \;y/'v^ :j-:y,,y:.., 'y, ;■ y;yy.:.'yy'-y"yvy:'yy;;.y ''[.y' ■ '' : ■ ' "■■ y.v.:y y., :.' 'y;;y/yy' .'i­ ' ■ v' y'yyyyyy.yy'y;-.;'y ' 'y '.yv-y'='-y'.; .v;;v.V "■ - '■r ■. ■ . ' ■ ■yy-- yy^.^y.'..' 'yya.^y--"■ .y - .y .-■V ■y-r''. u;y■yyy^.;yyy■• • •• ;.! ••••. '?■ • ' ■ ■ ■■^-y''' ■ ■"' '•y• v:"yyr■^'■-­V. , ■ • ; • y ' iyyyyy^ yyy;..-yyyy:y..-i::yvy.^ POLYNOMIAL EQUATIONS AND SOLVABILITY: A HISTORICAL PERSPECTIVE A Project Presented to the Faculty of California State University, San Bernardino by Laurie Jan Riggs June 1996 Approved by: ^ tics Date Dr. Robert Stein Dr. Rolland Trapp The search for the solittions of polynomial equations was the catalyst for inany profound mathematical discoveries.
    [Show full text]
  • Solving Polynomial Equations by Radicals
    SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying1 and Zhang De-Qi2 1Raffles Girls’ School (Secondary), 20 Anderson Road, Singapore 259978 2Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543 ABSTRACT The aim of this project is to determine the solvability by radicals of polynomials of different degrees. Further, for polynomials which are solvable by radicals, the Galois- theoretic derivation of the general solution to the polynomial is sought. Where a degree k ≥ 5 polynomial is found to be insolvable, the project aims to prove this, as well as find more specific cases of the polynomial which can be solved. The solvability by radicals is shown through the use of Galois Theory as well as aspects of Group and Field theory. This solvability is demonstrated through the showing of the solvability of the Galois group of the polynomial. Polynomials of degree one and two are easily shown to be solvable by radicals due to the presence of a general formula for both. More complex formulas exist for cubic and quartic polynomials, and are thus solvable by radicals. However, general polynomials of degree five are not solvable, and hence no general formulas exist. Rather, more specific cases of polynomials of degree five are solvable, namely polynomials reducible over rational numbers, and cyclotomic polynomials. Research into the study of polynomials and the solving of its roots is of practical and widespread use in computer aided design and other computer applications in both the fields of physics and engineering. INTRODUCTION Polynomials are functions of the type where 0. The root(s) of a polynomial are the value(s) of which satisfy 0.
    [Show full text]