Cubic and Quartic Equations (Pdf File)

Total Page:16

File Type:pdf, Size:1020Kb

Cubic and Quartic Equations (Pdf File) CUBIC AND QUARTIC EQUATIONS From the point of view of medieval mathematicians, there are actually 13 different types of cubic equations rather than just one. Basically this is because they not merely did not admit imaginary or complex numbers, but only considered positive real num- bers, so also did not admit negative numbers or zero. Thus to them ¢¡¤£¥ §¦©¨ was a different type of equation from ¢¡ ¦ £ ¨ . Now we can write a general cubic equation ¡ £££¦ ¦ (in which § or the equation is not genuinely cubic) in the form ¡ £¥ £¥£¥ ¦! "¦# after dividing by a constant. The case where ¦! leads to an inadmissible root and anyway is easily soluble, so we get different cases as $ $ $ ¦ % '& ¦ % (& ¦ % leading to 18 cases. However, the cases $ )¦ )¦!'&* % )¦ )¦!'&* are not taken seriously as cubic equations (and indeed the first has no real positive solution), while evidently the cases $ $ $ '&* (&+ $ $ )¦!'&* (&+ $ $ '&*,¦ (&+ have no real positive solution. This leaves 13 cases to be considered. The case of the cosa and the cube, in modern notation the case ¡-£¥.¦ where and are positive, was solved by Scipione del Ferro (1465–1626) early in the six- teenth century. He taught his method to his pupil Antonio Maria Fior (Florido) (dates unknown), who had a contest with Nicolo` Tartaglia (1500–1557) which resulted in the latter’s discovery of the method for solving this particular type. Girolamo Cardano (Jerome Cardan) (1501–1576) persuaded Tartaglia to tell him the solution, first in a cryptic verse and then with a full explanation, after swearing he would keep the solu- tion secret. But, after he had found the solution in the posthumous papers of del Ferro, Cardan felt free to publish, which he did in his Ars Magna (1545). However, Cardan went further than his predecessors because he considered all 13 forms successively. We can express Cardan’s approach in modern terms as follows. We first define ¦ £0/ , so that the equation becomes 1 1 1 ¡ .23/4 £ .23/'45£¥ 26/'47£¦ (8 1 /"¦!:9<; If we take , the coefficient of vanishes so that the equation can be written in the form ¡ £>=¢ £¥?¦ '8 Now write @¦!A £B , so that 1 1 ¡ ¡ A £B £ = £¥;CADB'4 AE£¥B(4F£?¦!'8 B Clearly A and will satisfy this equation if ¡ ¡ A £¥B ¦©2,? ADBG¦©2H=I9<;'8 ¡ ¡ ¦KA ¦!B L Setting J and these equations amount to £ ¦©2,? J L ¡ ¦©2H= 9NMCO J¢L and solutions of these equations can be found by considering the quadratic P P ¡ -£¥? 2@= 9NMCO¦ L so that we can take J and as S R S = ? ? ¡ £ 8 2 M.Q MFT ;7T L J As J and enter into the problem symmetrically, we may as well take as the expres- £ 2 sion with the sign and L as the expression with the sign. We can then take W A ¦VU J BG¦©2H=I9<;CAF8 A£¥B Finally we can find as , that is as W W ¦VU £XU 8 J L IY ¡ If we suppose the roots are , and , then the equation must be equivalent to 1 1 1 Z2[ \Y]4 Z2[ 4 Z23 4^¦! ¡ so that \Y^£ £ ¦# ¡ £¥ \Y^£ \Y_ ¦`= ¡ ¡ IY ¦a2,? ¡ and hence it can shown that bc1 1 1 ¡ \Y¤2[ 4 2[ \Y:4 23 4ed ¦f2)g]= 20MCON?< ¡ ¡ 2 (cf. Chapter 5, h 6 of the book by Birkhoff and MacLane quoted below). The latter quantity is often referred to as the discriminant and denoted i . We see that the above L expressions for J an can be written as 2,?j9NM 2 9ml:Cn i Q!k so that o o W W U U ¦ £ ¦ 2,?j9jM¤£ 2 9mlpjn)£ 2,?j9NM 2 2 9l:Cnm8 U U J L i i k k This is the celebrated formula of Cardan. There is a difficulty in this solution which was first observed by Cardan, although he did not see the way round it. When the roots of the cubic are all real and distinct, then i B is real and positive, so that the above roots for A and are complex. This means that the real roots can be expressed in terms of the cube roots of complex numbers. However, these real roots cannot be obtained by algebraic means, that is, by radicals. This case D¡ ¦ ¨C;N q£Zlp¨CM was called irreducible by Tartaglia. (For example 2,¨ is a root of which W W W 1 U U n(l-£;C 2,;-£ n'l)2`;j 2,;r¦ 2,;-£`M 2,;j4D£ k Cardan’s expression derives as k W 1 2,;C4 2,;E2M .) In fact the Ars Magna included several complex roots of quadratics, but Cardan says of them, “So progresses arithmetic sublety the end of which, as is said, is as refined as it is useless” (Chapter XXXVII). Cardan also discussed the number of roots to be expected in a cubic and began the study of symmetric functions. Since every number has three distinct cube roots, we have evidently obtained sev- eral values of . This is as it should be, for a cubic equation usually has three distinct roots. But at first sight it appears that there are nine, or even eighteen, possibilities in the formula, since alternative solutions exist for square roots and also for cube roots. As for square roots, a glance shows that the signs are fixed—one must be positive and one negative. Accordingly we consider the cube roots. ¡ 2l ¦ lj&ts,&5s Let the distinct roots of be , so that W W l ; l ; l-£0s§£0s ¦ (& s¥¦©2 £u & s ¦f2 23u 8 M M M M A swxA B szy:B u&x{.¦vlj&|M'&}; A Then s¡¦vl and we can replace by and by where . Now and B were constructed to satisfy ¡ ¡ A £B ¦a2,? A¢BG¦a2H=I9<; but while 1 1 w ¡ y ¡ s A¢4 £ s B'4 ¦a2,? for any u&e{ , the equation 1 1 w y s A¢4 s B'4^¦f2H=\9N; holds only if u\£3{ ~!"; , reducing us to three possibilities. Given a quartic (or biquadratic) equation ¡ m-£¥ £¥-£¥j£ ¦# 3 ©¦ (where is not necessarily the base of natural logarithms) in which , we can ¦#£6/ divide through by a constant, so that we can act as if "¦©l . We then define , so that the equation becomes 1 1 1 1 ¡ .23/45-£¥ .23/4 £ .23/4t£ 26/'47£¥ ¦!'8 ¢¡ If we take /"¦!:9g , the coefficient of vanishes so the equation can be written in the form ( £§=( D-£? "£0r¦#(8 Now the left-hand side of £§=( ¦©2,? G2[ £¥= contains two of the terms of the square of . Complete the square by adding =( £§= to each side to get 1 ¢ £§=D4t¦# ¢ £M=( D£>=D¦0=¢ ¢-£§=¢¤2`? .2[<8 We now introduce another unknown for the purpose of converting the left-hand side of 1 1 £3="£¥m4 M £6=D45£ the this equation into . This is done by adding to each side, and leads to 1 1 £>= £¥m4 ¦=( £>= 2[? .2[,£¥M £>=\45 £¥ 1 1 ¦ = £MNm4 2`? £ = 23,£M=¢£¥ 48 The problem now reduces to finding a value of that makes the right-hand side, a quadratic in , a perfect square. This will be the case when the discriminant of the quadratic is zero; that is, when 1 1 ?< ¦g = £MNm4 =D¤23,£M=¢£¥:4& which requires solving a cubic in , namely 1 1 ¡ ¡ nj £¥Mj_=D £ l:¨]= 2`nNN45£ g]= 2[g]=¢20? 4^¦!'8 The last equation is known as the resolvent cubic of the given quartic equation, and it can be solved as described above. There are in general three solutions of the resolvent cubic, and can be determined from any one of them by extracting square roots. Once a value of is known, the solution of the original quartic is readily deduced. An expression for the quartic discriminant is given by Turnbull in equation (12) on p. 123 of the book quoted below. The solution of the quartic was first given by Ludovico Ferrari (1522–1565). References G Birkhoff and S. MacLane, A Survey of Modern Algebra, New York, NY: Macmillan h 1941, 1953 and 1965, Chapter V, h]h 5-6 and Chapter XV, 7. D M Burton, The History of Mathematics: An Introduction, Boston, MA, etc: Allyn and Bacon 1985, Chapter 7. 4 G Cardano, Ars Magna or The Rules of Algebra, translated and edited by T.R. Witmer, Cambridge, MA: MIT Press 1968 and New York, NY: Dover 1993. J Fauvel and J Gray, The History of Mathematics: A Reader, Macmillan: Basingstoke and London 1987, Chapter 8, h 8A. S Neumark, Solution of Cubic and Quartic Equations, Oxford, etc.: Pergamon 1965. H W Turnbull, Theory of Equations, Edinburgh and London: Oliver and Boyd 1939, 1944, 1946, 1947 and 1952, Chapters IX and X. B L van der Waerden, Modern Algebra, New York, NY: Ungar 1949 and 1953, Volume I, Chapter VII, h 58. P.M.L. 5.
Recommended publications
  • Solving Cubic Polynomials
    Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac.
    [Show full text]
  • Positivity Conditions for Cubic, Quartic and Quintic Polynomials Arxiv:2008.10922V10 [Math.GM] 18 Sep 2020
    Positivity Conditions for Cubic, Quartic and Quintic Polynomials Liqun Qi,∗ Yisheng Song,y and Xinzhen Zhang,z August 17, 2021 Abstract We present a necessary and sufficient condition for a cubic polynomial to be positive for all positive reals. We identify the set where the cubic polynomial is nonnegative but not all positive for all positive reals, and explicitly give the points where the cubic polynomial attains zero. We then reformulate a necessary and sufficient condition for a quartic polynomial to be nonnegative for all posi- tive reals. From this, we derive a necessary and sufficient condition for a quartic polynomial to be nonnegative and positive for all reals. Our condition explic- itly exhibits the scope and role of some coefficients, and has strong geometrical meaning. In the interior of the nonnegativity region for all reals, there is an ap- pendix curve. The discriminant is zero at the appendix, and positive in the other part of the interior of the nonnegativity region. By using the Sturm sequences, we present a necessary and sufficient condition for a quintic polynomial to be positive and nonnegative for all positive reals. We show that for polynomials of a fixed even degree higher than or equal to four, if they have no real roots, then their discriminants take the same sign, which depends upon that degree only, except on an appendix set of dimension lower by two, where the discriminants attain zero. arXiv:2008.10922v10 [math.GM] 18 Sep 2020 Key words. Cubic polynomials, quartic polynomials, quintic polynomials, the Sturm theorem, discriminant, appendix. AMS subject classifications.
    [Show full text]
  • Quartic Equation of General Form
    EqWorld http://eqworld.ipmnet.ru Exact Solutions > Algebraic Equations and Systems of Algebraic Equations > Algebraic Equations > Quartic Equation of General Form 8. ax4 + bx3 + cx2 + dx + e = 0 (a ≠ 0). Quartic equation of general form. 1±. Reduction to an incomplete equation. The quartic equation in question is reduced to an incom- plete equation y4 + py2 + qy + r = 0.(1) with the change of variable b x = y − 4a 2±. Decartes–Euler solution. The roots of the incomplete equation (1) are given by 1 ¡p p p ¢ 1 ¡p p p ¢ y1 = z1 + z2 + z3 , y2 = z1 − z2 − z3 , 2 2 2 1 ¡ p p p ¢ 1 ¡ p p p ¢ ( ) y3 = 2 − z1 + z2 − z3 , y4 = 2 − z1 − z2 + z3 , where z1, z2, z3 are roots of the cubic equation z3 + 2pz2 + (p2 − 4r)z − q2 = 0,(3) which is called the cubic resolvent of equation (1). The signs of the roots in (2) are chosen so that p p p z1 z2 z3 = −q. The roots of the incomplete quartic equation (1) are determined by the roots of the cubic resolvent (3); see the table below. TABLE Relation between the roots of the incomplete quartic equation and the roots of its cubic resolvent Cubic resolvent (3) Quartic equation (1) All roots are real and positive* Four real roots All roots are real, Two pairs of complex conjugate roots one positive and two negative* One roots is positive Two real and two complex conjugate roots and two roots are complex conjugate 2 * By Vieta’s theorem, the product of the roots z1, z2, z3 is equal to q ≥ 0.
    [Show full text]
  • (Trying To) Solve Higher Order Polynomial Equations. Featuring a Recall of Polynomial Long Division
    (Trying to) solve Higher order polynomial equations. Featuring a recall of polynomial long division. Some history: The quadratic formula (Dating back to antiquity) allows us to solve any quadratic equation. ax2 + bx + c = 0 What about any cubic equation? ax3 + bx2 + cx + d = 0? In the 1540's Cardano produced a \cubic formula." It is too complicated to actually write down here. See today's extra credit. What about any quartic equation? ax4 + bx3 + cx2 + dx + e = 0? A few decades after Cardano, Ferrari produced a \quartic formula" More complicated still than the cubic formula. In the 1820's Galois (age ∼19) proved that there is no general algebraic formula for the solutions to a degree 5 polynomial. In fact there is no purely algebraic way to solve x5 − x − 1 = 0: Galois died in a duel at age 21. This means that, as disheartening as it may feel, we will never get a formulaic solution to a general polynomial equation. The best we can get is tricks that work sometimes. Think of these tricks as analogous to the strategies you use to factor a degree 2 polynomial. Trick 1 If you find one solution, then you can find a factor and reduce to a simpler polynomial equation. Example. 2x2 − x2 − 1 = 0 has x = 1 as a solution. This means that x − 1 MUST divide 2x3 − x2 − 1. Use polynomial long division to write 2x3 − x2 − 1 as (x − 1) · (something). Now find the remaining two roots 1 2 For you: Find all of the solutions to x3 + x2 + x + 1 = 0 given that x = −1 is a solution to this equation.
    [Show full text]
  • Low-Degree Polynomial Roots
    Low-Degree Polynomial Roots David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Created: July 15, 1999 Last Modified: September 10, 2019 Contents 1 Introduction 3 2 Discriminants 3 3 Preprocessing the Polynomials5 4 Quadratic Polynomials 6 4.1 A Floating-Point Implementation..................................6 4.2 A Mixed-Type Implementation...................................7 5 Cubic Polynomials 8 5.1 Real Roots of Multiplicity Larger Than One............................8 5.2 One Simple Real Root........................................9 5.3 Three Simple Real Roots......................................9 5.4 A Mixed-Type Implementation................................... 10 6 Quartic Polynomials 12 6.1 Processing the Root Zero...................................... 14 6.2 The Biquadratic Case........................................ 14 6.3 Multiplicity Vector (3; 1; 0; 0).................................... 15 6.4 Multiplicity Vector (2; 2; 0; 0).................................... 15 6.5 Multiplicity Vector (2; 1; 1; 0).................................... 15 6.6 Multiplicity Vector (1; 1; 1; 1).................................... 16 1 6.7 A Mixed-Type Implementation................................... 17 2 1 Introduction Consider a polynomial of degree d of the form d X i p(y) = piy (1) i=0 where the pi are real numbers and where pd 6= 0. A root of the polynomial is a number r, real or non-real (complex-valued with nonzero imaginary part) such that p(r) = 0. The polynomial can be factored as p(y) = (y − r)mf(y), where m is a positive integer and f(r) 6= 0.
    [Show full text]
  • The Conditions for Multiple Roots in Cubic and Quartic Equations
    Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Summer 1953 The Conditions For Multiple Roots In Cubic and Quartic Equations Laurence Dryden Fort Hays Kansas State College Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Algebraic Geometry Commons Recommended Citation Dryden, Laurence, "The Conditions For Multiple Roots In Cubic and Quartic Equations" (1953). Master's Theses. 508. https://scholars.fhsu.edu/theses/508 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. THE CONDITIONS FOR MULTIPLE ROOTS IN CUBI C AND QUARTIC EQUATIONS being A Thesis Presented to the Graduate F aculty of the Fort Hays Kansas State College in Partial Fulfillment of the Requireme nts for t h e De gree Master of Science by Laurence A. Dryden, B.S. in Education Ohio State University Approved~,R;I;_#~ Major Departme Date 7- '-?.. - ..,-.3 ACKNOWLEDGlvIENT The writer of this thesis wishes to acknowledge all sources of information used in its preparation and is especially indebted to the Head of the Mathematics Department, Professor Emmet C. Stopher, for his assistance, criticisms, and advice. \ TABLE OF CONTENTS CHAPTER PAGE INTRODUCTION 1 I. DISCRil'HNANT 1. Definition of Discriminant ••• . 2 2. Definition of Resultant 2 3. Relation between Discriminant and Resultant 3 4. Definition of Sylvester's Determinant D(f,g) •••• 3 S. Relation between Sylvester's Determinant and Resultant 6. Relation between Discriminant and Sylvester's Determinant 7 7.
    [Show full text]
  • Unit 3 Cubic and Biquadratic Equations
    UNIT 3 CUBIC AND BIQUADRATIC EQUATIONS Structure 3.1 Introduction Objectives 3.2 Let Us Recall Linear Equations Quadratic Equations 3.3 Cubic Equations Cardano's Solution Roots And Their Relation With Coefficients 3.4 Biquadratic Equations Ferrari's Solution Descartes' Solution Roots And Their Relation With Coeftlcients 3.5 Summary - 3.1 INTRODUCTION In this unit we will look at an aspect of algebra that has exercised the minds of several ~nntllematicians through the ages. We are talking about the solution of polynomial equations over It. The ancient Hindu, Arabic and Babylonian mathematicians had discovered methods ni solving linear and quadratic equations. The ancient Babylonians and Greeks had also discovered methods of solviilg some cubic equations. But, as we have said in Unit 2, they had llol thought of complex iiumbers. So, for them, a lot of quadratic and cubic equations had no solutioit$. hl the 16th century various Italian mathematicians were looking into the geometrical prob- lein of trisectiiig an angle by straight edge and compass. In the process they discovered a inethod for solviilg the general cubic equation. This method was divulged by Girolanlo Cardano, and hence, is named after him. This is the same Cardano who was the first to iiilroduce coinplex numbers into algebra. Cardano also publicised a method developed by his contemporary, Ferrari, for solving quartic equations. Lake, in the 17th century, the French mathematician Descartes developed another method for solving 4th degree equrtioiis. In this unit we will acquaint you with the solutions due to Cardano, Ferrari and Descartes. Rut first we will quickly cover methods for solving linear and quadratic equations.
    [Show full text]
  • Cardano's Method for Roots of Cubic Equations
    Lecture 23 : Solutions of Cubic and Quartic Equations Objectives (1) Cardano's method for roots of cubic equations. (2) Lagrange's method for roots of quartic equations. (3) Ferrari's method for roots of quartic equations. Keywords and Phrases : Cubic equations, quartic equations. In this section we present algorithms for finding roots of cubic and quartic polynomials over any field F of characteristic different from 2 and 3: This is to make sure that irreducible cubics and quartics are separable. Cubic polynomials Cardano published Tartaglia's method to find roots of cubic polynomials in 1545. This is known as Cardano's method. We may assume that the given cubic is of the form f(x) = x3 + px + q since a general cubic can be transformed into this form without changing its splitting field. One begins by introducing two unknowns u and v: Put x = u + v into f(x) = 0 to get u3 + v3 + 3u2v + 3uv2 + p(u + v) + q = u3 + v3 + q + (3uv + p)(u + v) = 0: We set u3 + v3 + q = 0 and 3uv + p = 0: Hence v = −p=3u: Put this into the first equation to get u6 + qu3 − p3=27 = 0: This is a quadratic equation in u3: Put D = −(4p3 +27q2): By the quadratic formula we get −q ± pq2 + (4p3=27) q u3 = = − ± p−D=108: 2 2 Set A = −q=2 + p−D=108 and B = −q=2 − p−D=108: By symmetry of u and v; we set u3 = A and v3 = B: Let ! be a primitive cube root of unity. Then p p p p p p u = 3 A; ! 3 A; !2 3 A; and v = 3 B; ! 3 B; !2 3 B: 97 98 p p We must choose cube roots of A and B in such a way that 3 A 3 B = −p=3: Having chosen these we see that the three roots of f(x) are p p p p p p 3 A + 3 B; ! 3 A + !2 3 B; !2 3 A + ! 3 B: Example 23.1.
    [Show full text]
  • Reflection Theorems for Number Rings
    Reflection theorems for number rings Evan O’Dorney July 13, 2021 Contents I Introduction 4 1 Introduction 4 1.1 Historicalbackground . ............ 4 1.2 Methods......................................... ....... 5 1.3 Results......................................... ........ 6 1.4 Outlineofthepaper ............................... .......... 7 1.5 Acknowledgements ................................ .......... 7 2 Examples for the lay reader 7 2.1 Reflectionforquadraticequations. ................ 7 2.2 Reflectionforcubicequations . .............. 9 2.3 Reflection for 2 n n boxes.................................... 11 2.4 Reflectionforquarticequations× × . ............... 12 3 Notation 15 II Galois cohomology 15 4 Étale algebras and their Galois groups 16 4.1 Étalealgebras................................... .......... 16 4.2 TheGaloisgroupofanétalealgebra . .............. 17 4.3 Resolvents...................................... ......... 17 4.4 Subextensionsandautomorphisms . .............. 18 4.5 Torsors ......................................... ....... 18 arXiv:2107.04727v1 [math.NT] 10 Jul 2021 4.6 AfreshlookatGaloiscohomology . ............. 20 5 Extensions of Kummer theory to explicitize Galois cohomology 23 5.1 TheTatepairingandtheHilbertsymbol. ............... 27 6 Rings over a Dedekind domain 29 6.1 Indicesoflattices............................... ............ 29 6.2 Discriminants................................... .......... 30 6.3 Quadraticrings.................................. .......... 32 6.4 Cubicrings .....................................
    [Show full text]
  • View This Volume's Front and Back Matter
    i i “IrvingBook” — 2013/5/22 — 15:39 — page i — #1 i i 10.1090/clrm/043 Beyond the Quadratic Formula i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page ii — #2 i i c 2013 by the Mathematical Association of America, Inc. Library of Congress Catalog Card Number 2013940989 Print edition ISBN 978-0-88385-783-0 Electronic edition ISBN 978-1-61444-112-0 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iii — #3 i i Beyond the Quadratic Formula Ron Irving University of Washington Published and Distributed by The Mathematical Association of America i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iv — #4 i i Council on Publications and Communications Frank Farris, Chair Committee on Books Gerald M. Bryce, Chair Classroom Resource Materials Editorial Board Gerald M. Bryce, Editor Michael Bardzell Jennifer Bergner Diane L. Herrmann Paul R. Klingsberg Mary Morley Philip P. Mummert Mark Parker Barbara E. Reynolds Susan G. Staples Philip D. Straffin Cynthia J Woodburn i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page v — #5 i i CLASSROOM RESOURCE MATERIALS Classroom Resource Materials is intended to provide supplementary class- room material for students—laboratory exercises, projects, historical in- formation, textbooks with unusual approaches for presenting mathematical ideas, career information, etc. 101 Careers in Mathematics, 2nd edition edited by Andrew Sterrett Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein Beyond the Quadratic Formula, Ronald S.
    [Show full text]
  • ON the COBLE QUARTIC 1. Introduction in This Paper We
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza ON THE COBLE QUARTIC SAMUEL GRUSHEVSKY AND RICCARDO SALVATI MANNI Abstract. We review and extend the known constructions relat- ing Kummer threefolds, G¨opel systems, theta constants and their derivatives, and the GIT quotient for 7 points in P2 to obtain an explicit expression for the Coble quartic. The Coble quartic was recently determined completely in [RSSS12], where (Theorem 7.1a) it was computed completely explicitly, as a polynomial with 372060 monomials of bidegree (28; 4) in theta constants of the second or- der and theta functions of the second order, respectively. Our expression is in terms of products of theta constants with charac- teristics corresponding to G¨opel systems, and is a polynomial with 134 terms. Our approach uses the relationship of G¨opel systems and Jacobian determinants of theta functions, and highlights the geometry and combinatorics of syzygetic octets of characteristics, and the corresponding representations of Sp(6; F2). In genus 2, we similarly obtain a short explicit equation for the universal Kummer surface, and relating modular forms of level two to binary invariants of six points on P1. 1. Introduction In this paper we provide an explicit description of the Coble quartic. This is a quartic equation in 8 variables whose eight partial derivatives defines the Kummer variety of a smooth plane quartic. This sixfold is particularly interesting as it is the moduli space of semistable vector bundles of rank 2 with trivial determinant on the genus three curve [?] or [?].
    [Show full text]
  • Some Useful Functions - C Cnmikno PG - 1
    Some useful functions - c CNMiKnO PG - 1 • Linear functions: The term linear function can refer to either of two different but related concepts: 1. The term linear function is often used to mean a first degree polynomial function of one variable. These functions are called ”linear” because they are precisely the functions whose graph in the Cartesian coordinate plane is a straight line. 2. In advanced mathematics, a linear function often means a function that is a linear map, that is, a map between two vector spaces that preserves vector addition and scalar multiplication. We will consider only first one of above meanings. Equations of lines: 1. y = ax + b - Slope-intercept equation 2. y − y1 = a(x − x1) - Point-slope equation 3. y = b - Horizontal line 4. x = c - Vertical line where x ∈ R, a, b, c ∈ R and a is the slope. −b If the slope a 6= 0, then x-intercept is equal . a • Quadratic function: f(x) = ax2 + bx + c for x ∈ R, where a, b, c ∈ R, a 6= 0. ∆ = b2 − 4ac This formula is called the discriminant of the quadratic equation. ! −b −∆ The graph of such a function is a parabola with vertex W , . 2a 4a A quadratic function is also referred to as: - a degree 2 polynomial, - a 2nd degree polynomial, because the highest exponent of x is 2. If the quadratic function is set equal to zero, then the result is a quadratic equation. The solutions to the equation are called the roots of the equation or the zeros of the function.
    [Show full text]