Structural Basis of Subunit Selectivity for Competitive NMDA Receptor Antagonists with Preference for Glun2a Over Glun2b Subunits
Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits Genevieve E. Linda,b, Tung-Chung Moub,c, Lucia Tamborinid, Martin G. Pompere, Carlo De Michelid, Paola Contid, Andrea Pintof,1, and Kasper B. Hansena,b,1 aDepartment of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; bCenter for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812; cDivision of Biological Sciences, University of Montana, Missoula, MT 59812; dDepartment of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; eRussell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21205; and fDepartment of Food, Environmental and Nutritional Science, University of Milan, 20133 Milan, Italy Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved July 5, 2017 (received for review May 10, 2017) NMDA-type glutamate receptors are ligand-gated ion channels that Considerable progress has been made in the development of contribute to excitatory neurotransmission in the central nervous subunit-selective allosteric modulators (7–13), but the development system (CNS). Most NMDA receptors comprise two glycine-binding of subtype-selective competitive NMDA receptor antagonists has GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We been less successful. The competitive glutamate-site antagonist describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihy- NVP-AAM077 (hereafter NVP) was originally reported to have dro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antag- 100-fold preference for GluN1/2A over GluN1/2B (14). As such, onists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and this compound has been extensively used to investigate the role of 782 nM at GluN1/2B receptors.
[Show full text]