Warrego River Scoping Study – Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schedule 1 — DETERMINATION AREA A. Description of Determination Area the Determination Area Comprises All of the Land and Wate
Schedule 1 — DETERMINATION AREA A. Description of Determination Area The Determination Area comprises all of the land and waters described in Parts 1, 2 and 3 below, to the extent that they are within the External Boundary Description as described in Part 4 below, and depicted in the map, excluding the areas described in Schedule 2. Part 1 — Exclusive Areas: All of the land and waters described in column 1 of the following table and shown on the determination map described in column 2 of the following table: Area Description Determination Map Sheet Number Lot 10 on CS46 Sheet 1 and Sheet 3 Lot 4 on CS47 Sheet 3 and Sheet 5 Inset 17 Part 2 — Non-Exclusive Areas: (a) The land and waters comprised of the lots and part lots listed in column 1 of the table below and shown on the determination map described in column 2. Area Description Determination Map Sheet Number Lot 55 on B2191 Sheet 5 Inset 1 Lot 37 on B2194 Sheet 5 Inset 1 Lot 61 on B2194 Sheet 5 Inset 1 Lot 11 on B21910 Sheet 5 Inset 1.1 Lot 12 on B21910 Sheet 5 Inset 1.1 Lot 13 on B21910 Sheet 5 Inset 1.1 Lot 14 on B21910 Sheet 5 Inset 1.1 That Part of Lot 4 on BAN100 that falls Sheet 1 within the External Boundary Description Lot 6 on BAN23 Sheet 1 Lot 2 on BEL53167 Sheet 4 Lot 48 on BLM1023 Sheet 5 Inset 1 Lot 49 on BLM1031 Sheet 2 Lot 4 on BLM1089 Sheet 4 Lot 1 on BLM1187 Sheet 5 Inset 1.2 Lot 8 on BLM182 Sheet 5 Inset 12 Area Description Determination Map Sheet Number Lot 3 on BLM255 Sheet 4 Lot 7 on BLM279 Sheet 5 Inset 14 Lot 9 on BLM333 Sheet 5 Inset 3 Lot 2 on BLM339 Sheet 5 -
Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J. -
Ken Hill and Darling River Action Group Inc and the Broken Hill Menindee Lakes We Want Action Facebook Group
R. A .G TO THE SOUTH AUSTRALIAN MURRAY DARLING BASIN ROYAL COMMISSION SUBMISSION BY: The Broken Hill and Darling River Action Group Inc and the Broken Hill Menindee Lakes We Want Action Facebook Group. With the permission of the Executive and Members of these Groups. Prepared by: Mark Hutton on behalf of the Broken Hill and Darling River Action Group Inc and the Broken Hill Menindee Lakes We Want Action Facebook Group. Chairman of the Broken Hill and Darling River Action Group and Co Administrator of the Broken Hill Menindee Lakes We Want Action Facebook Group Mark Hutton NSW Date: 20/04/2018 Index The Effect The Cause The New Broken Hill to Wentworth Water Supply Pipeline Environmental health Floodplain Harvesting The current state of the Darling River 2007 state of the Darling Report Water account 2008/2009 – Murray Darling Basin Plan The effect on our communities The effect on our environment The effect on Indigenous Tribes of the Darling Background Our Proposal Climate Change and Irrigation Extractions – Reduced Flow Suggestions for Improvements Conclusion References (Fig 1) The Darling River How the Darling River and Menindee Lakes affect the Plan and South Australia The Effect The flows along the Darling River and into the Menindee Lakes has a marked effect on the amount of water that flows into the Lower Murray and South Australia annually. Alought the percentage may seem small as an average (Approx. 17% per annum) large flows have at times contributed markedly in times when the Lower Murray River had periods of low or no flow. This was especially evident during the Millennium Drought when a large flow was shepherded through to the Lower Lakes and Coorong thereby averting what would have been a natural disaster and the possibility of Adelaide running out of water. -
Grey Thrush Feeding Young. Photo, by A
Grey Thrush feeding young. Photo, by A. D. Selby, R.A.O.U. Chlamydera nuchalis. Great Bower Bird.—Several were seen at our first camp on the Gregory River where they came to water at a stony crossing. At Gregory Downs we were told that they were a nuisance in the vegetable gardens, pulling up and eating the young plants, and that in consequence four had been shot on the previous day. Mr. Watson guided us to a bower placed in the centre of a clump of currant bushes, about a mile from the house in open forest country. A bird was seen to leave the bower as we approached it. The bower was very compactly built and decorated at either end with a litter of shells and pebbles. Corvus coronoides. Australian Raven.—Ravens were seen on the Gregory, fully one hundred; with an equal number of Black Kites and a few Whistling Eagles; all were disturbed from a dead bullock. They came about our camp on the Gregory and were the earliest at any carcase. The Whistling Eagles, however, disputed possession but the Ravens obtained their share by stealth. On the Leichhardt River Ravens were seen. C. bennettii. Little Crow.—After South Queensland this bird was seen only near Headingly Station on the Georgina River. Corcorax melanorhamphus. White-winged Chough.—Numbers seen at a camp on the Nive River, where a nest was being built by a party of them. Cracticus nigrogularis. Pied Butcher Bird. — These fine birds were first seen at the Long Waterhole on the Wilson River; afterwards they were met with on Kyabra Creek, and, after the dry stretch from Win- dorah we did not see them until the hilly country near Dajarra. -
The Profound Response of the Dryland Warrego River, Eastern Australia, to Holocene Hydroclimatic Change Zacchary Larkin
BSG Postgraduate Research Grant – March 2017 A shifting ‘river of sand’: the profound response of the dryland Warrego River, eastern Australia, to Holocene hydroclimatic change Zacchary Larkin Department of Earth and Environmental Sciences, Macquarie University, Sydney, Australia [email protected] Project outline Understanding how rivers respond to extrinsic forcing (e.g. hydroclimatic change) is increasingly important given concerns surrounding the changes to climate projected for the coming decades and beyond. However, disentangling changes brought about by extrinsic forcing and those brought about by intrinsic fluvial dynamics can be difficult. A long-term perspective on dryland river development can improve our understanding of fluvial responses to extrinsic forcing and the associated thresholds that influence river behaviour. The Warrego River is a dryland river in the northern Murray-Darling Basin. Little is known about its geomorphology and late Quaternary evolution, however large palaeochannels preserved on the floodplain that have a significantly different morphology to the modern river may provide insight into threshold responses of rivers to changing hydroclimatic conditions. The main aims of this project were to: 1) characterise the hydrology and geomorphology of the modern Warrego River, and 2) to determine the age of large palaeochannels adjacent to the modern river and to characterise their palaeohydrology and geomorphology. 2017 Fieldwork The BSG postgraduate grant provided critical funding to help support an 11-day fieldtrip to the Warrego River in southwest Queensland and northwest New South Wales, Australia. The aim of this fieldwork was to undertake topographic surveys of the Warrego River and to collect samples for optically stimulated luminescence (OSL) dating from large palaeochannels on the Warrego floodplain. -
Queensland Water Quality Guidelines 2009
Queensland Water Quality Guidelines 2009 Prepared by: Environmental Policy and Planning, Department of Environment and Heritage Protection © State of Queensland, 2013. Re-published in July 2013 to reflect machinery-of-government changes, (departmental names, web addresses, accessing datasets), and updated reference sources. No changes have been made to water quality guidelines. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. -
Annual Operations Plan Barwon-Darling 2019-20 Acronym Definition
Annual Operations Plan Barwon-Darling 2019-20 Acronym Definition AWD Available Water Determination Contents BLR Basic Landholder Rights BoM Bureau of Meteorology CWAP Critical Water Advisory Introduction 2 Panel The Barwon-Darling river system 2 CWTAG Critical Water Technical Unregulated system flow 3 Advisory Group Rainfall trends 3 DPI CDI Department of Primary Water users in the valley 4 Industries - Combined Drought Indicator Water availability 5 DPIE EES Department of Planning, Current drought conditions 6 Industry and Environment Resource assessment in the Northern regulated valleys 7 - Environment, Energy & Science Water resource forecast 9 DPI Department of Primary Barwon-Darling - past 24 month rainfall 9 Fisheries Industries - Fisheries Northern NSW River Systems - past 24 month flows 10 DPIE Department of Planning, Water Industry and Environment Weather forecast - 3 month BoM forecast 12 - Water Barwon-Darling flow 12 FSL Full Supply Level Annual operations 13 HS High Security Barwon-Darling flow class map 13 IRG Incident Response Guide Scenarios 14 ISEPP Infrastructure State Environmental Planning Projects 14 Policy LGA Local Government Areas ROSCCo River Operations Stakeholder Consultation Committee D&S Domestic and Stock vTAG Valley Technical Advisory Group Introduction This plan considers the current volume of water in storages of the tributary catchments and weather forecasts. This plan may be updated as a result significant changes to weather patterns. This year’s plan outlines WaterNSW’s response to the drought in the Barwon-Darling Valley including: • Identification of critical dates. • Our operational response. The NSW Department of Planning, Industry and Environment’s Extreme Events Policy and Incident Response Guides outlines the 4 stages of drought. -
South West Queensland Floods March 2010
South West Queensland Floods March 2010 1 2 3 4 5 6 7 8 1. Floodwaters inundate the township of Bollon. Photo supplied by Bill Speedy. 2. Floodwaters at the Autumnvale gauging station on the lower Bulloo River. Photo supplied by R.D. & C.B. Hughes. 3. Floodwaters from Bradley’s Gully travel through Charleville. 4. Floodwaters from Bungil Creek inundate Roma. Photo supplied by the Maranoa Regional Council. 5. Floodwaters at the confluence of the Paroo River and Beechal Creek. Photo supplied by Cherry and John Gardiner. 6. Balonne River floodwaters inundate low lying areas of St. George. Photo supplied by Sally Nichol. 7. Floodwaters from the Moonie River inundate Nindigully. Photo supplied by Sally Nichol. 8. Floodwaters from the Moonie River inundate the township of Thallon. Photo supplied by Sally Nichol. Revision history Date Version Description 6 June 2010 1.0 Original Original version of this report contained an incorrect date for the main flood peak at Roma. Corrected to 23 June 2010 1.1 8.1 metres on Tuesday 2 March 2010. See Table 3.1.1. An approximate peak height has been replaced for Bradley’s Gully at Charleville. New peak height is 4.2 28 June 2010 1.2 metres on Tuesday 2 March 2010 at 13:00. See Table 3.1.1. Peak height provided from flood mark at Teelba on 01 July 2010 1.3 Teelba Creek. See Table 3.1.1. 08 Spectember Peak height provided from flood mark at Garrabarra 1.4 2010 on Bungil Creek. See Table 3.1.1. -
Northern Basin 2019-20 Summary
Northern Basin 2019-20 Summary This fact sheet highlights the use of Commonwealth Environmental Water in the 2019-20 water year in the northern Murray-Darling Basin - August 2020 Useful links Highlights from CEWO’s 2019-20 engagement with Current water availability: communities in the Northern Basin http://www.environment.gov.au/water/cewo/ • The Gwydir case study: planning with and learning from about/water-holdings Aboriginal communities about how to work more effectively on Country. Water Management Plan 2020-21: • Presentations on rivers and wetlands to Collarenebri http://www.environment.gov.au/water/cewo/ Central School and Moree Secondary College. publications/water-management-plan-2020-21 • Sharing information at Agquip. Catchment summaries for 2020-21: • Visiting wetlands with various bird groups. https://www.environment.gov.au/water/cewo / • Providing information and activities at fishing publications/overview-water-mgt- competitions at Collarenebri and Mungindi. planning-2020-21 • Providing radio interviews on 2WEB Outback Radio. • Presenting at the NSW Mayors conference in Sydney, the Lower Balonne flow 2020: Murray-Darling Association conference in Toowoomba http://www.environment.gov.au/water/cewo/ and to the Goondiwindi Regional Council. catchment/lower-balonne-updates • Assisting the Toomelah-Boggabilla community with Gwydir valley river refuge pool flow: Northern Basin Aboriginal Nations Aboriginal Waterways http://www.environment.gov.au/water/cewo/ Assessment. catchment/gwydir-valley-river-refuge-pool-flow • Meeting with community members and visiting On the back of three record-breaking drought years, where water for the environment (both Commonwealth and catchments. NSW) was used in 2018 and 2019 to reconnect major northern basin rivers, water availability in 2019-20 began Gwydir recovery flows: • Sharing information through email, including flow extremely low. -
Using Genome-Wide Snps
CSIRO PUBLISHING Marine and Freshwater Research, 2019, 70, 857–869 https://doi.org/10.1071/MF18347 Phylogeography and species delimitation of Cherax destructor (Decapoda: Parastacidae) using genome-wide SNPs P. J. UnmackA,C, M. J. YoungA, B. GruberA, D. WhiteA, A. KilianB, X. ZhangA and A. GeorgesA AInstitute for Applied Ecology, University of Canberra, ACT 2601, Australia. BDiversity Arrays Technology Pty Ltd, University of Canberra, ACT 2601, Australia. CCorresponding author. Email: [email protected] Abstract. Cherax is a genus of 58 species of decapod crustaceans that are widespread across Australia and New Guinea. We use single-nucleotide polymorphisms (SNPs) to examine phylogeographic patterns in the most widespread species of Cherax, namely, C. destructor, and test the distinctiveness of one undescribed species, two C. destructor subspecies, previously proposed evolutionarily significant units, and management units. Both the phylogenetic analyses and the analysis of fixed allelic differences between populations support the current species-level taxonomy of C. setosus, C. depressus, C. dispar and C. destructor, the distinctiveness of C. destructor albidus and C. d. destructor and the existence of one undescribed species. The two populations of C. d. albidus from the Glenelg and Wimmera rivers were significantly distinct, with eight diagnostic differences (,1% fixed differences, null expectation is four fixed differences), but this low level of divergence is interpreted as within the range that might be expected of management units, that is, among allopatric populations of a single species or subspecies. A southern clade of C. d. destructor comprising the Murray River and its tributaries upstream from its confluence with the Darling River is genetically distinct from a northern clade comprising populations from the Lake Eyre Basin, the northern half of the Murray–Darling Basin (Darling River catchment) and the Lower Murray River below the Darling confluence. -
Queensland Murray-Darling Basin Catchments
LEGEND Catchment Boundary Charleville PAROO Catchment Name Roma Toowoomba St George State Border ondiwindi QUEENSLAND Go Leslie Dam SunWater Storages Brewarrina Glenlyon Dam Border Rivers Commission Storages Nygan Cooby Dam Other Storages Broken Hill Menindee NEW SOUTH WALES Major Streams SOUTH WARREGO AUSTRALIA Towns Canberra VICTORIA bury Gauging Stations Al ndigo Be Nive River Ward River Ward Augathella L Murray Darling Basin a Maranoa n g lo R Bungil Ck While every care is taken to ensure the accuracy of this product, Department Environment and Resource iv River er Neil Turner Weir Disclaimer: completeness or suitability for any particular reliability, Management makes no representations or warranties about its accuracy, purpose and disclaims all responsibility liability (including without limitation, in negligence) for expenses, losses, or incomplete in any way and for reason. damages (including indirect or consequential damage) and costs which you might incur as a result of the product being inaccurate Binowee Charleville Mitchell Roma Chinchilla Weir Creek Gilmore Weir Charleys Creek Weir Chinchilla CONDAMINE BALONNE k gw oo d C Warrego o D Warra Weir Surat Weir Brigalow Condamine Weir C River Creek o Loudon Weir reviR reviR Cotswold n Surat d Dalby a Wyandra Tara m r e i iv n Fairview Weribone e R Ck e Oak ey n Creek n o Cecil Weir Cooby Dam l a Wallen B Toowoomba Lemon Tree Weir NEBINE Cashmere River PAROO MOONIE Yarramalong Weir Cardiff R iv Tummaville Bollon Weir Beardmore Dam Moonie er Flinton River Talgai Weir Cunnamulla -
Guide to Traditional Owner Groups for WRP Areas Combined Maps
A Guide to Traditional Owner Groups Endorsed by for Murray Lower Darling Rivers Indigenous Nations Water Resource Plan Areas and Groundwater Northern Basin Aboriginal Nations June 2015 Nivelle River r e v i R e l a v i Nive River r e M M a Beechal Creek Langlo River r a n o a R i !( v Gunggari e Ward River Charleville r Roma Bigambul !( Guwamu/Kooma Barunggam Jarowair k e Bidjara GW22 e Kambuwal r GW21 «¬ C Euahlayi Mandandanji a «¬ Moola Creek l Gomeroi/Kamilaroi a l l Murrawarri Oa a k Bidjara Giabel ey Cre g ek n Wakka Wakka BRISBANE Budjiti u Githabul )" M !( Guwamu/Kooma Toowoomba k iver e nie R e oo Kings Creek Gunggari/Kungarri r M GW20 Hodgson Creek C Dalrymple Creek Kunja e !( ¬ n « i St George Mandandanji b e Bigambul Emu Creek N er Bigambul ir River GW19 Mardigan iv We Githabul R «¬ a e Goondiwindi Murr warri n Gomeroi/Kamilaroi !( Gomeroi/Kamilaroi n W lo a GW18 Kambuwal a B Mandandanji r r ¬ e « r g Rive o oa r R lg ive r i Barkindji u R e v C ie iv Bigambul e irr R r r n Bigambul B ive a Kamilleroi R rr GW13 Mehi River Githabul a a !( G Budjiti r N a ¬ w Kambuwal h « k GW15 y Euahlayi o Guwamu/Kooma d Gomeroi/Kamilaroi Paroo River B Barwon River «¬ ir GW13 Gomeroi/Kamilaroi Ri Bigambul Kambuwal ver Kwiambul Budjiti «¬ Kunja Githabul !( GW14 Kamilleroi Euahlayi Bourke Kwiambul «¬ GW17 Kambuwal Namo iver Narrabri ¬ i R « Murrawarri Maljangapa !( Gomeroi/Kamilaroi Ngemba Murrawarri Kwiambul Wailwan Ngarabal Ngarabal B Ngemba o g C a Wailwan Talyawalka Creek a n s Barkindji R !( t l Peel River M e i Wiradjuri v r Tamworth Gomeroi/Kamilaro