ABSTRACT BINION-ROCK, SAMANTHA MICHELLE. Trophic

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT BINION-ROCK, SAMANTHA MICHELLE. Trophic ABSTRACT BINION-ROCK, SAMANTHA MICHELLE. Trophic Dynamics and Ecosystem Modeling of Finfishes in Pamlico Sound, North Carolina (Under the direction of Dr. Jeffrey A. Buckel). Fisheries management is increasingly becoming more holistic and shifting from single-species to multispecies and ecosystem-based approaches. Understanding trophic dynamics is critical for these approaches; however, the quality of the food habits data used in these models can vary. I conducted a multispecies food habits study for 25 finfish species in Pamlico Sound, NC and its tributaries. Seventeen thousand predators were sampled from four fisheries-independent surveys conducted by the North Carolina Division of Marine Fisheries (NCDMF). I used spatial kernel density estimation (SKDE) to adjust for spatial dependence when estimating predator diet composition. I conducted a Monte Carlo simulation study, at a range of bandwidths (i.e. width of the kernel; smaller bandwidths represent higher levels of spatial clustering) and predator stomach sample sizes, to compare the performance of SKDE to a traditional diet estimator that does not account for spatial dependence. Mean squared error, bias, and Bhattacharyya distance were the metrics used to evaluate estimator performance. For all bandwidths and predator sample sizes, SKDE was consistently favored over the traditional diet estimator for all metrics. Agglomerative hierarchical cluster analyses and similarity profiles were used to identify significant trophic guilds. Differences in the size-selectivity of NCDMF survey gears (e.g. trawl, gill net) had a significant impact on the observed diet composition and trophic guild classification for predators. Predators sampled from a trawl survey were generally smaller, relied more heavily on invertebrate prey, and consumed less types of fish, with anchovy (Anchoa mitchilli and A. hepsetus) being the main fish prey. Predators sampled from gill net surveys were larger and exhibited higher levels of piscivory. Atlantic menhaden (Brevoortia tyrannus), spot (Leiostomus xanthurus), and Atlantic croaker (Micropogonias undulatus) were the most commonly consumed fish for larger predators. Spatial correlation and size-selectivity of sampling gears should be addressed when analyzing food habits data. I constructed a 43 compartment Ecopath model for Pamlico Sound with an emphasis on piscivores and their prey. Forage fish were identified using qualitative and quantitative metrics and consumption estimates from Ecopath. The proportion of production removed for forage fish, blue crabs, and penaeid shrimp through consumption and fisheries harvest was estimated at current predator biomasses and with the biomasses of five predators increased to meet management thresholds. Mixed trophic impacts (MTI) analysis in Ecopath identified the potential impacts of small increases in the biomass of a predator on other compartments within Pamlico Sound. MTI predicted that small increases in the biomass of predators had the potential to have indirect and direct negative impacts on commercially-important species in Pamlico Sound. Choice of metric also influenced forage fish identification. Qualitative metrics identified Atlantic menhaden, anchovy, and silversides (Atherinidae) as forage fish. Atlantic menhaden, anchovy, and spot were identified a forage fish using quantitative metrics. Based on total consumption, Atlantic menhaden, anchovy, spot, and Atlantic croaker were the top forage fish species and represented 80% of the total fish consumed in Pamlico Sound. At current biomass levels, over 75% of forage fish production is removed annually through predation and fisheries. When predator biomasses were increased to management thresholds, 90% of forage fish production was removed and removals exceeded production for spot and Atlantic croaker. Blue crabs and shrimp saw smaller increases (8 and 2%, respectively) in the amount of production removed. Based on my estimates, the forage base in Pamlico Sound is not large enough to support all predators having biomasses at their management threshold. If found to hold though independent analyses, I recommend fisheries managers focus on tradeoffs between forage fish and non-forage fish fisheries. Trophic Dynamics and Ecosystem Modeling of Finfishes in Pamlico Sound, North Carolina by Samantha Michelle Binion-Rock A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Fisheries, Wildlife, and Conservation Biology Raleigh, North Carolina 2018 APPROVED BY: Dr. Jeffrey A. Buckel Dr. Robert R. Christian Committee Chair External Member Dr. David B. Eggleston Dr. Brian J. Reich Dr. Kyle W. Shertzer DEDICATION To my dad, Mike Binion. Thank you for teaching me the value of hard work and always believing in me. I love and miss you very much. ii BIOGRAPHY I was born in Ashland, KY. My family moved to Eglin AFB, FL when I was in the third grade, then to a suburb outside of Atlanta, GA in 5th grade. My love of nature and animals developed as a little kid catching crawdads in KY, playing at the beaches in FL, and exploring the woods along the Flint River. I received my B.S. in Biology from Emory University. As an undergrad, I interned at Mote Marine Laboratory, Sarasota, FL and Marine Biological Laboratory, Woods Hole, MA. As an intern at Mote, I assisted in projects evaluating the impacts of barotrauma on reef fishes in the Gulf of Mexico. At the Marine Biological Laboratory, I studied the effects of habitat type on the foraging behavior of juvenile toadfish. After graduating from Emory, I returned to Mote as a technician and was ultimately promoted to a Staff Biologist II. While at Mote, I was the project manager for multiple projects studying the impacts of power plant impingement and entrainment on zooplankton and fish communities in Tampa Bay. I left Mote to attend East Carolina University, Greenville, NC where I obtained a M.S. in Biology under the direction of Dr. Anthony Overton. My master’s research evaluated whether larval alosines in the lower Roanoke River and Albemarle Sound were food limited. After graduating from East Carolina, I entered the doctoral program at North Carolina State University under the direction of Dr. Jeff Buckel. I am married to Jason Rock and we have a beautiful daughter, Jocelyn. iii ACKNOWLEDGEMENTS I am indebted to many people who provided invaluable support during my dissertation. First, I would like to thank my advisor Dr. Jeffrey Buckel for providing mentorship and support throughout my doctoral program. I would also like to thank my committee members Drs. Bob Christian, David Eggleston, Brian Reich, and Kyle Shertzer for their advice, feedback, and willingness to answer my numerous questions along the way. The guidance provided by my entire committee strengthened the quality of my doctoral research and pushed me to become a better scientist. I am thankful to my technician Jeffery Merrell who stuck with me through the processing of ~ 17,000 predator stomachs. I could consistently rely on Jeffery to provide reliable, high-quality assistance throughout my project. I am also thankful to my interns Ben Kornegay, Cameron Luck, and Josie Daniel, and volunteer Tim Westbrook for spending their summers sorting through fish guts with me. This project would not have been possible without the assistance of numerous biologists and technicians at the North Carolina Division of Marine Fisheries (NCDMF). Katy West, Jason Rock, and Lee Paramore were instrumental in coordinating sample collection and providing the framework to link my food habits data with data collected by NCDMF. Ashley Grandy, Beth Egbert, Carol Etheridge, Casey Knight, Chris Braddy, Fred Jarrett, Garry Wright, Greg Judy, Holly White, Joe Cox, Katharine Jarrell, Kathleen Boylan, Lee Cannady, Lele Judy, Michael Brinkly, Mike Loeffler, Ray Mroch, Shane Staples, Stan Ward, Stephen Johnson, Tyler Averett, and William Schmidt collected the predators sampled for food habits and provided otolith samples for my reference collection. George Joyner designed and created the database for my program and Jim iv Fox provided me with access to the NCDMF biological database. Dan Zapf provided data from the predator surveys and assisted with correcting data mismatches. I would like to thank all of the scientists who generously shared data with me to support the development of my Ecopath model. From NCDMF, Alan Bianchi, Dr. Drew Cathey, and Chris Wilson provided data on commercial and recreational landings. Jacob Boyd and Kevin Brown provided data on fisheries discards. Dr. Vicky Thayer shared bottlenose dolphin data from the North Carolina Marine Mammal Strandings Program. Laura Lee provided biomasses estimates for spotted seatrout and was generous in sharing her expertise in modeling fisheries data. Dr. Hans Paerl (UNC-CH Institute of Marine Science) provided chl-a data from his monitoring programs in Neuse River and Pamlico Sound. Dr. Charles Bangley (Smithsonian Environmental Research Center) shared food habits data for multiple species of sharks in North Carolina. I want to thank Dr. Paul Rudershausen for always allowing me to bounce ideas off of him and sharing insights about life in general. Thank you to Marlu Bolton, Meredith Henry, Susan Marschalk, Freha Legoas, and Dawn Newkirk for providing administrative support. I would like to thank Linda Dunn for providing IT support at CMAST. I would also like to thank Lucas Jennings (University of Florida) and Jim Culter (Mote Marine
Recommended publications
  • HELCOM Red List
    SPECIES INFORMATION SHEET Corophium multisetosum English name: Scientific name: – Corophium multisetosum Taxonomical group: Species authority: Class: Malacostraca Stock, 1952 Order: Amphipoda Family: Corophiidae Subspecies, Variations, Synonyms: Generation length: 2 years? Trophonopsis truncata Strøm, 1768 Trophon truncatus Strøm, 1768 Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): Fishing (bottom trawling; codes): Fishing (bottom trawling; F02.02.01), F02.02.01), Eutrophication (H01.05) Eutrophication (H01.05) IUCN Criteria: HELCOM Red List NT B2b Category: Near Threatened Global / European IUCN Red List Category Habitats Directive: – – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/G (endangered by unknown extent), Latvia –/–, Lithuania –/–-, Poland –/–, Russia –/–, Sweden: –/– Distribution and status in the Baltic Sea region C. multisetosum is reported mainly from coastal waters (bays) along southern shores of the Baltic Sea and those in the Danish straits, including adjacent fjords, canals, lagoons, e.g. the Curonian Lagoon, which is the easternmost area. However, there are also records from more open sea, and thus more saline areas such as the Hevring Bay, Arhus Bay, Arkona Basin by Darss-Zingst Peninsula, and the outer Puck Bay. Declining population trends are reported from the Szczecin Lagoon (Wawrzyniak-Wydrowska, pers. comm.). ©HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Corophium multisetosum Distribution map The georeferenced records of species compiled from the Danish national database for marine data (MADS), Russian monitoring data (Elena Ezhova, pers. comm), and the database of the Leibniz Institute for Baltic Sea Research (IOW), where also the Polish literature and monitoring data for the species are stored.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Downloaded from Brill.Com10/03/2021 01:33:45PM Via Free Access 46 M
    Distribution and ecology of Gammarus tigrinus Sexton, 1939 and some other amphipod Crustacea near Beaufort (North Carolina, U.S.A.) by Marion J. van Maren Institute of Taxonomie Zoology, University of Amsterdam, The Netherlands & Duke University Marine Laboratory, Beaufort, North Carolina, U.S.A. Summary of North America, has at some time been intro- summer distribution of duced in During 1977 the and ecology am- western Europe and was first described phipod Crustacea in the coastal plain of north Carolina were from England by Sexton (1939). Gammarus ti- studied. Ecological data were collected in particular on has invaded all Gammarus tigrinus, a North American species, which has grinus rapidly nearly oligohaline been introduced in western Europe. The present gammarid, waters in the Netherlands, competing successfully able to endure high water and adapted to a temperatures with the indigenous gammarid species. Its range wide variety of salinities, is found in the more upstream still has been parts of the estuaries in North Carolina. More downstream, extension, proceeding, surveyed by at it is Gammarus Taxonomie higher salinities, replaced by palustris , members of the Institute of Zoology while low salinities fresh at very or in water Gammarus of the University of Amsterdam, resulting in a fasciatus is commonly met. series of some data are publications & Moreover, given on the distribution and (Nijssen Stock, 1966; of several other in the Beaufort ecology amphipod species Pinkster & Stock, 1967; Dennert et al., 1968; region. Gras, 1971; Smit, 1974; Pinkster, 1975; Dieleman Résumé & Pinkster, 1977). Pendant l'été 1977 la répartition écologique de Crustacés STUDY AREA AND METHODS amphipodes a été étudiée dans la plaine littorale de Caroline du Nord.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • (Crustacea : Amphipoda) of the Lower Chesapeake Estuaries
    W&M ScholarWorks Reports 1971 The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries James Feely Virginia Institute of Marine Science Marvin L. Wass Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Feely, J., & Wass, M. L. (1971) The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries. Special papers in marine science No.2. Virginia Institute of Marine Science, College of William and Mary. http://doi.org/10.21220/V5H01D This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 VIRGIN IA INSTITUTE OF MARINE SC IE NCE Gloucester Point, Virginia 23062 1971 THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER 1 CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 1971 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 This document is in part a thesis by James B. Feeley presented to the School of Marine Science of the College of William and Mary in Virginia in partial fulfillment of the requirements for the degree of Master of Arts.
    [Show full text]
  • To Down Load Appendix 1
    APPENDIX 1 Chapter 1 Pictures of dominant species ................................................................................................................................. 2 Species inventory of micro-invertebrate species found ....................................................................................... 16 Bathymetry Map of Pleasant Bay ........................................................................................................................ 18 Eelgrass Locations in Pleasant Bay ..................................................................................................................... 19 Sidescan Map of Pleasant Bay ............................................................................................................................. 20 Chapter 2 Species inventory of macro-invertebrate and fish species by gear type .............................................................. 21 Chapter 3 Prey otoliths and hard parts recovered during seal scat processing ..................................................................... 24 1 Pictures of dominant species Disclaimer: biological samples were treated with ethanol and Rose Bengal in the laboratory to preserve the samples. Rose Bengal is a stain commonly used in microscopy and stains cell tissue a bright pink. This is useful in the visual detection of microscopic animals in sediment samples. An overwhelming majority of micro invertebrate species do not have common names. The common names used here are listed in Pollock’s “A Practical Guide
    [Show full text]
  • Checklist of Marine Demersal Fishes Captured by the Pair Trawl Fisheries in Southern (RJ-SC) Brazil
    Biota Neotropica 19(1): e20170432, 2019 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory Checklist of marine demersal fishes captured by the pair trawl fisheries in Southern (RJ-SC) Brazil Matheus Marcos Rotundo1,2,3,4 , Evandro Severino-Rodrigues2, Walter Barrella4,5, Miguel Petrere Jun- ior3 & Milena Ramires4,5 1Universidade Santa Cecilia, Acervo Zoológico, R. Oswaldo Cruz, 266, CEP11045-907, Santos, SP, Brasil 2Instituto de Pesca, Programa de Pós-graduação em Aquicultura e Pesca, Santos, SP, Brasil 3Universidade Federal de São Carlos, Programa de Pós-Graduação em Planejamento e Uso de Recursos Renováveis, Rodovia João Leme dos Santos, Km 110, CEP 18052-780, Sorocaba, SP, Brasil 4Universidade Santa Cecília, Programa de Pós-Graduação de Auditoria Ambiental, R. Oswaldo Cruz, 266, CEP11045-907, Santos, SP, Brasil 5Universidade Santa Cecília, Programa de Pós-Graduação em Sustentabilidade de Ecossistemas Costeiros e Marinhos, R. Oswaldo Cruz, 266, CEP11045-907, Santos, SP, Brasil *Corresponding author: Matheus Marcos Rotundo: [email protected] ROTUNDO, M.M., SEVERINO-RODRIGUES, E., BARRELLA, W., PETRERE JUNIOR, M., RAMIRES, M. Checklist of marine demersal fishes captured by the pair trawl fisheries in Southern (RJ-SC) Brazil. Biota Neotropica. 19(1): e20170432. http://dx.doi.org/10.1590/1676-0611-BN-2017-0432 Abstract: Demersal fishery resources are abundant on continental shelves, on the tropical and subtropical coasts, making up a significant part of the marine environment. Marine demersal fishery resources are captured by various fishing methods, often unsustainably, which has led to the depletion of their stocks. In order to inventory the marine demersal ichthyofauna on the Southern Brazilian coast, as well as their conservation status and distribution, this study analyzed the composition and frequency of occurrence of fish captured by pair trawling in 117 fishery fleet landings based in the State of São Paulo between 2005 and 2012.
    [Show full text]
  • Spatio-Temporal Variability of Amphipod Assemblages Associated with Rhodolith Seabeds
    CSIRO PUBLISHING Marine and Freshwater Research, 2020, 71, 1–8 https://doi.org/10.1071/MF19360 Spatio-temporal variability of amphipod assemblages associated with rhodolith seabeds Sandra Navarro-MayoralA, Victoria Fernandez-GonzalezB, Francisco Otero-FerrerA and Fernando TuyaA AGrupo en Biodiversidad y Conservacio´n, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Marine Scientific and Technological Park, Courta. Taliarte s/n, E-35214 Telde, Spain. BDepartment of Marine Sciences and Applied Biology, University of Alicante, PO Box 99, E-03080 Alicante, Spain. CCorresponding author. Email: [email protected] Abstract. Rhodolith seabeds are habitats underpinned by free-living calcareous macroalgae. We partitioned the relevance of the scale of temporal (four seasons throughout two successive years) and spatial (three depth strata: 18, 25 and 40 m) variation on the diversity, structure and abundance of amphipod assemblages living in rhodolith seabeds from Gran Canaria Island. In total, 3996 individuals, belonging to 32 taxa, were identified. Multivariate analyses showed consistent differences in assemblage structure among seasons and depths; more diverse and abundant amphipod assemblages were often observed during spring at 18- and 25-m than at 40-m depth. Ovigerous females of Gammaropsis ostroumowi and Ampithoe ramondi were observed mainly at 18 and 25 m. Juveniles of both species were exclusively recorded at 18 and 25 m, so denoting a clear segregation in their population structure with depth. In summary, this study has demonstrated that the ecological pattern of amphipods associated with rhodolith seabeds can vary greatly across both time (seasons) and space (depth). Additional keywords: algal biomass, Atlantic Ocean, Canary Islands, crustaceans, maerl, population structure.
    [Show full text]
  • Extinction Rates in North American Freshwater Fishes, 1900–2010 Author(S): Noel M
    Extinction Rates in North American Freshwater Fishes, 1900–2010 Author(s): Noel M. Burkhead Source: BioScience, 62(9):798-808. 2012. Published By: American Institute of Biological Sciences URL: http://www.bioone.org/doi/full/10.1525/bio.2012.62.9.5 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Articles Extinction Rates in North American Freshwater Fishes, 1900–2010 NOEL M. BURKHEAD Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade).
    [Show full text]
  • ~;R:~
    WOODS HOLE I.ABrnATORY REFERENCE rx:x:UMENT NUMBER 84-36 FOOD OF WEAKFISH IN COASTAL WATERS BE'IWEEN CAPE COD AND CAPE FEAR William L. Michaels .,~;r:~ (APPJtOy;t4G OfftaAL) I 12 J ·~<f~~ {li4tel National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, Massachusetts 02543 USA Decanber 1984 JUL 29 7985 ABS'IRACT Stomach contents of 359 weakfish Cynoscion regalis were collected during Northeast Fisheries Center (NEFC) bottcm trawl surveys durirg' the sprirg, stnnmer, and auttnnn of 1978 through 1980. '!he study area included the coastal waters between Cape Fear am Cape Cod with bottom depths greater or equal than 6 meters. Weakfish fed primarily on schoolirg fish, except for juveniles (under 21 an FL) v.hich depended almost exclusively on mysid shrimp, namely Necmysis americana. Anchovies, especially bay anchovies, were the single most important fish prey of -weakfish. Although menhaden and other cl upeids were reported as a staple food of weakfish in nearshore and estuarine waters (ie. waters with depths less than 6 meters), these species were of little importance to weakfish in this stooy area. The results also sho-wed weakfisn to occassionally feed on decapod shrimp, crabs, squid, and rarely polychaete wonns. Dietary differences were evident according to the geographic area, season, and year. This variability seems related to fluctuations in distribution and abundance of both predator and prey. Weakfish fed primarily between dusk and dawn. Page 1 INTRODUCTION The weakfish@ Cynoscion regal is, also known as squeteague or gray seatrout, is a member of the drum family Sciaenidae (Fig. 1).
    [Show full text]