Poster # 233 [email protected] Purification of Flexirubin Pigments from Jordan Krebs,* Andrew Gale, Dr. Jeffrey Newman ‐ Biology Department, Lycoming College, 700 College Place, Williamsport, PA 17701

Abstract A B A B A B Results The of belonging to the Flavobacteriaceae, Cytophagaceae, and Chitinophagaceae families of the phylum A B has been widely debated and modified in the past few decades. The presence of flexirubins, a modestly studied class of pigments, has been used to differentiate related genera of the Bacteroidetes. The purification and structural determination of forty‐two flexirubins isolated from 5 bacterial species has already been accomplished. This project focuses on purifying flexirubins from multiple Chryseobacterium species and deducing their chemical structures. Initially, acetone extraction of pigments from Chryseobacterium oranimense was performed in methanol for separation of related flexirubin pigments utilizing high performance liquid chromatography (HPLC) at a preparative scale. After months of optimization, a longer column, a more extended solvent gradient, and the use of a low pH solvent system, baseline separation of the C. oranimense flexirubins was achieved. The collection of preparative fractions is currently underway so that structural analysis can be C D C D C D completed for the two major flexirubin peaks of C. oranimense. In addition, the variation of 25 flexirubin producing bacteria was investigated. The observed variation in the species chromatographs suggests substantial structural variation as expected. These unique structural variations will be studied in the future with the optimized method designed for this project.

Fl = Flavobacterium hibernum C = Chryseobacterium jejuense Ly = Lycomia zaccaria JJC a = Flavobacterium granuli h = Chryseobacterium joostei co = Lycomia vostokensis 3519-10 Background v = Flavobacterium hydatis r = Chryseobacterium luteum mia = Chryseobacterium haifense o = Flavobacterium sp. EED y = Chryseobacterium vrystaatense E F E F E F A B A key difference between the Flavobacteriaceae b = Flavobacterium sp. JRR s = Chryseobacterium shigense Epi = Epilithonimonas tenax genera is yellow‐orange pigmentation a = Flavobacterium sp. KMA e = Chryseobacterium angstadti lit = Epilithonimonas lactis c = Flavobacterium sp. HSP o = Chryseobacterium oranimense hon = Epilithonimonas diehli FH1 t = Flavobacterium sp. SEH b = Chryseobacterium greenlandense UMB34 e = Flavobacterium sp. R30-29 a = Chryseobacterium aquaticum KCTC Sejo = Sejongia jeonii DSM r = Flavobacterium sp. R30-53 c = Chryseobacterium soldanellicola ngia = Chryseobacterium solincola DSM I = Flavobacterium sp. KJJ t = Chryseobacterium soli u = Flavobacterium sp. ABG e = Chryseobacterium piperi CTM Kaistella = Kaistella koreensis CCUG G H G H G H m = Flavobacterium sp. AED r = Chryseobacterium sp. JM1 1 I = Chryseobacterium “gleum” NRRL R H, Cl, CH3 u = Chryseobacterium sp. BLS98 2 R H, Cl m = Chryseobacterium sp. FH2 R3 different length and Figure 9. Color of Colonies of Flavobacterium, Chryseobacterium, Lycomia, Epilithonimonas, Sejongia, and Kaistella species. A, Color of Colonies Before 40% KOH Treatment. B, Color of Colonies After 40% KOH Treatment. Colony or colonies of each species are each letter or sets of letters as R4 branching alkyl chains indicated below figures.

n6 to 8 polyenes 86 Epilithonimonas tenax EP105T(AF493696) I J I J I J 100 Epilithonimonas lactis H1T(EF204460) Figure 2. General chemical structure and variation of a flexirubin. A., General structure with R groups and table of determined Epilithonimonas sp. FH1 (JX293123) structural variations. Table, Flexirubin structural variation. 48 Chryseobacterium gleum ATCC 35910T(ACKQ01000057) 54 Chryseobacterium jejuense JS178T(EF591303) Purification and structural determination of flexirubins 57 Chryseobacterium joostei LMG 18212T(AJ271010) has only been completed for: 70 Chryseobacterium diehli BLS98 (FJ169958) • Chitinophaga filiformis Fx e1 97 Chryseobacterium oranimense H8T(EF204451) • Flavobacterium sp. strain C ½ 99 • Flavobacterium sp. strain Samoa 78 Chryseobacterium vrystaatense LMG 22846T(AJ871397) K L K L K L Chryseobacterium sp. JM1 (JX293122) Figure 1. Color of Colonies of Chryseobacterium, Lycomia, and Kaistella species. A., Color of • Flavobacterium johnsoniae Cy j1 Colonies Before 40% KOH Treatment. B., Color of Colonies After 40% KOH Treatment. • Sulfurospirillium delayianium 5175. 54 Chryseobacterium sp. KM (EU999734) Chryseobacterium shigense GUMKajiT(AB193101) 68 39 58 Chryseobacterium luteum P 456/04T(AM489609) A Methods 96 Chryseobacterium soldanellicola PSD14T(AY883415) Chryseobacterium piperi CTMT(EU999735) Extraction HPLC Purification Structural Analysis 50 Chryseobacterium soli JS66T(EF591302) Chryseobacterium greenlandense UMB34T(FJ932652) M N M N M N 47 100 Chryseobacterium aquaticum 1046T(AM748690) Chryseobacterium koreense Chj707T(AF344179) Before Lycomia haifense H38T(EF204450)

signal 59 96 Lycomia zaccaria JJC (EU523664) 70 B Lycomia vostokensis 3519-10 (NR 074543) ppm 69 Chryseobacterium jeonii AT1047T(AY553294) 92 Chryseobacterium solincola 1YBR12T(EU516352) O P O P 99 Flavobacterium sp. R30-53 O P Flavobacterium sp. R30-29 (KC119217) signal 100 Flavobacterium sp. KJJ (KC119215) Flavobacterium granuli Kw05T(AB180738) After 68 Flavobacterium hydatis DSM 2063T(AM230487) frequency cm-1 65 Figure 3. Cell Pellet and Solvent Before (A) 48 Flavobacterium hibernum ATCC 51468T(L39067) and After (B) Acetone Extraction. 51 Flavobacterium sp. JRR (KC119216) 0.02 92 Flavobacterium frigidimaris KUC1T(AB183888) Figure 5. Reverse‐phrase HPLC Chromatographs Method with solvent A as Figure 6. Time axis and 3D plots of Analytical HPLC Flexirubin Chromatographs .A& B, C. “gleum”. C & D, C. jejuense. E & F, C. joostei. Figure 7. Time axis and 3D plots of Analytical HPLC Flexirubin Chromatographs .A& B, C. shigense. C & D, C. luteum. E & F, C. Q R Figure 10. Neighbor‐joining 16s rRNA tree of species of which flexirubin variation was investigated and other related species. Made using MEGA5 . 50 mM phosphate buffer (pH 2.4) and solvent B as methanol with 0.1% G & H, C. diehli. I & J, C. oranimense. K & L, C. vrystaatense. M & N, C. novum JM1. O & P, C. angstadti KM. soldanellicola. G & H, C. piperi. I & J, C. soli. K & L, C. greenlandense. M & N, C. novum FH2. O & P, C. aquaticum. glacial acetic acid. A, Gradient and injected solvent as described for preparative runs. B, Gradient and injected solvent as described for analytical runs for variation study. Conclusion Future Work References A 1) Archenbach, H. (1987). The Pigments of the Flexirubin‐Type. A Novel Class of Natural Products. Chem. Org. Naturst. 52: 73‐111. Time (min) % MeOH • 10 μL 10% w/v 0-4 0 2) Collins, K., Krebs, J., Kirk, K., Smith, K., Duncan, T., Failor, K.C., and Newman, J. (2011). Characterization of Novel bacterial Species Identified by acetic acid • Analyze structures of C. oranimense purified fractions Undergraduate Students in a General Microbiology Course. Poster presented at the 2011 American Society for Microbiology (ASM) Annual Meeting, New 4-5 0-5 • 250 min run • Successful optimization of flexirubin preparative runs Orleans, LA. 5-60 5-75 o • 40 C column • Enough material in C. oranimense fractions to analyze • Choose other species to purify Figure 8. Time axis and 3D plots of Analytical HPLC Flexirubin Chromatographs .A& B, E. tenax. C & D, E. lactis. E & F, E. diehli FM1. G 3) McBride, M., Xie, G., Martens, E., Lapidus, A., Henrissat, B., Rhodes, R., Goltsman, E., Wang, W., Xu, J., Hunnicutt, D., Staroscik, A., Hoover, T., Cheng, Y., 60-65 75-87.5 temp. & H, F. novum R30‐53. I & J, F. novum KJJ. K & L, F. granuli. M & N, F. frigidimaris EED. O & P, F. frigidimaris JRR. Q & R, F. frigidimaris and Stein, J. (2009). Novel Features of the Polysaccharide‐Digesting Gliding Bacterium Flavobacterium johnsoniae as Revealed by Genome Sequence Analysis. App. and Env. Microbiol. 75(21): 6864‐6875. 65-230 87.5 • 25 cm column • Similar flexirubin profiles observed for similar species • F. granuli, E. diehli, E. tenax KMA. 230-230.5 87.5-100 4) Mojib, N., Philpott, R., Huang, J., Niederweis, M., and Bej, A. (2010). Antimycobacterial activity in vitro of pigment isolated from Antartic Bacteria. Antonie • C. luteum, C. piperi, C. soli, C. aquaticum van Leewenhoek 98: 531‐540. • Flexirubin variation may cluster by genera 5) Reichenbach, H., Kleinig, H., and Archenbach, H. (1974). The Pigments of Flexirubin elegans: Novel and Chemosystematically Useful Compunds. Arch. B Time (min) % MeOH • 40 μL 0.25% • Test Antioxidant Capacity of purified fractions Microbiol. 101: 131‐144. 0-4 0 w/v methanol* • The optimized method to collect flexirubin profiles will be a 5-60 5-75 • 141 min run useful technique for flexirubin‐producing bacteria • Investigate color shift o Acknowledgements Figure 4. Collection of Preparative Fractions from C. oranimenseFlexirubin Extract. 65 93 • 40 C column • Repeat variation experiments temp. The author (JEK) wishes to thank the NIH Undergraduate Scholarship Program (UGSP) 120.0-120.1 93-100 • 25 cm column • Publish structures for financial support of his education. JEK is supported by a Haberberger Fellowship at Lycoming College. HPLC Instrument was purchased with funding from NSF award DBI‐0960114 to JDN.