Identification of Novel Flavobacteria from Michigan and Assessment of Their Impacts on Fish Health

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Novel Flavobacteria from Michigan and Assessment of Their Impacts on Fish Health IDENTIFICATION OF NOVEL FLAVOBACTERIA FROM MICHIGAN AND ASSESSMENT OF THEIR IMPACTS ON FISH HEALTH By Thomas P. Loch A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Pathology 2012 1 ABSTRACT IDENTIFICATION OF NOVEL FLAVOBACTERIA FROM MICHIGAN AND ASSESSMENT OF THEIR IMPACTS ON FISH HEALTH By Thomas P. Loch Flavobacteriosis poses a serious threat to wild and propagated fish stocks alike, accounting for more fish mortality in the State of Michigan, USA, and its associated hatcheries than all other pathogens combined. Although this consortium of fish diseases has primarily been attributed to Flavobacterium psychrophilum, F. columnare, and F. branchiophilum, herein I describe a diverse assemblage of Flavobacterium spp. and Chryseobacterium spp. recovered from diseased, as well as apparently healthy wild, feral, and famed fishes of Michigan. Among 254 fish-associated flavobacterial isolates recovered from 21 fish species during 2003-2010, 211 of these isolates were Flavobacterium spp., and 43 were Chryseobacterium spp. according to ribosomal RNA partial gene sequencing and phylogenetic analysis. Both F. psychrophilum and F. columnare were indeed associated with multiple fish epizootics, but the majority of isolates were either most similar to recently described Flavobacterium and Chryseobacterium spp. that have not been reported within North America, or they did not cluster with any described species. Many of these previously uncharacterized flavobacteria were recovered from systemically infected fish that showed overt signs of disease and were highly proteolytic to multiple substrates in protease assays. Polyphasic characterization, which included extensive physiological, morphological, and biochemical analyses, fatty acid profiling, and phylogenetic analyses using Bayesian and neighbor-joining methodologies, confirmed that there were at least eight clusters of isolates that belonged to the genera Chryseobacterium and Flavobacterium, which represented eight novel species. Experimental challenge studies to fulfill Koch’s postulates for 16 representative Flavobacterium and Chryseobacterium spp. isolates in five 2 economically and ecologically important fishes of the Great Lakes demonstrated that the majority of these isolates caused pathological lesions in infected fish, and the bacteria spread to vital organs (i.e., brain, spleen, liver, and kidneys), which resulted in cumulative mortalities ≥ 80%. Gross pathological changes associated with experimental infection varied by isolate and host species, but were consistent with a bacterial septicemia. Median lethal dose experiments conducted with a Chryseobacterium sp. isolate that is proposed as a novel species, C. aahli sp. nov., suggested that this bacterium was only mildly pathogenic to fish under laboratory conditions. Similar experiments conducted with a Flavobacterium sp. also proposed as a novel species, F. spartani sp. nov., indicated that this bacterium was comparatively more pathogenic. Histopathological changes associated with experimental F. spartani sp. nov. infection in its original host, the Chinook salmon (Oncorhynchus tshawytscha), included severe proliferative branchitis, lymphocytic and histiocytic myositis, multifocal necrosis within the kidney and liver, lymphocytic hepatitis, renal tubular degeneration and necrosis, and multifocal edema within the granular cell layer of the cerebellar cortex and brainstem. The findings of this study underscore the complexity of etiologies associated with flavobacteriosis and suggest that negative impacts that multiple previously undescribed and/or novel flavobacteria and chryseobacteria can have on Michigan fish stocks. 3 ACKNOWLEDGEMENTS First, I express utmost gratitude to my Major Advisor, Dr. Mohamed Faisal. I will never forget our first meeting at the Foundation and with it, the sense that he would teach me great things. During the last 7 years, I have witnessed firsthand Dr. Faisal’s guidance, friendship, research prowess, and work ethic. Through his interminable energy, endless patience, willingness to listen, and tireless nights spent investing in me, he has produced a lifelong believer in hard work, diligence, and hunger for knowledge. Indeed, when I walked through his door, I knew very little about fish health and after 7 years of learning so much from him, I realize I know even less. I am ready for what my career will bring due to his diligence, care, and hard work. Next, I thank my Guidance Committee members, Dr. Rocco Cipriano, Dr. Scott Fitzgerald, Dr. Ken Cain, and Dr. Travis Brenden, each of whom made their expertise available to me and provided a much-needed balance and perspective. Without their contributions, I would never have been able to successfully complete this work. I am also thrilled that we have forged what I anticipate will be life-long friendships. Many thanks are also due to my friends at the Michigan Department of Natural Resources for their collaborations and assistance with fish and sample collections; especially to Jim Aho, Randy Espinoza, Matt Hughes, Dan Sampson, Aaron Switzer, Jon Jackoviak, Scott Heintzelman, Ed Eische, Jan VanAmberg, Martha Wolgamood, and Gary Whelan. I am also extremely grateful to the Great Lakes Fishery Trust (20101-1147) and USDA-APHIS (10-9100-1293) for their funding of this research. I would also like to thank past and present members of the Michigan State University - Aquatic Animal Health Laboratory for their friendship, countless memories, and support. It’s amazing iv how much time we spent together, making mountains of work turn into mountains of fun through laughter and good-times, but life eventually makes us go our separate ways. Nevertheless, Wei Xu, Carolyn Schulz, Robert Kim, Andrew Winters, Elena Millard, P. Gary Egrie, Michelle Gunn, and so many others, we will forever be like family until we are old, grey, and beyond! Last, but of course not least, I thank my family. To my sisters, Lisa and Christine, and my brother, Eric Chu; thanks for always being so supportive, even when it meant not seeing me for long periods of time. To my mother and father, Norma and Thomas, words cannot express how much I love you; you are the best parents a son could ever have! To my twins, Ethan and Hailee, and our newest addition, Penelope, you are the lights of my life and give me strength when I feel weak. I love you so much and am so proud of the people you are becoming; now let’s make up on some lost camping and fishing trips! And most of all, thanks to the love of my life, my forever sunshine when skies are grey, my wife Jamie, who I have leaned on more than anyone throughout this process. v TABLE OF CONTENTS LIST OF TABLES…………………………………………………………………………..……ix LIST OF FIGURES……………………………………………………………………………..xii GENERAL INTRODUCTION AND OVERVIEW……………………………………………...1 CHAPTER 1 REVIEW OF LITERATURE…………………………………………......................................4 I. History of Flavobacteriosis in Fish…………………………………………………..……....4 II. The Family Flavobacteriaceae…………………………..……………………………….....7 III. The Genus Flavobacterium…………………………………………………………………9 History of the genus…………………………………………………………................9 Characteristics of the genus Flavobacterium……………………………………….10 Culture and identification…………………………………………………….............10 Ecology………………………………………………………………………………….11 Flavobacterium spp. as pathogens………………………………………………….13 Flavobacteriosis in fish………………………………………………………………..13 “Other” Flavobacterium spp. associated with diseased fishes……………………14 IV. The Genus Chryseobacterium…………………………………………………………….17 History of the genus…………………………………………………………..............17 Characteristics of the genus Chryseobacterium...…………………………………17 Culture and identification…………………………………………………….............18 Ecology…………………………………………………………………………………18 Chryseobacterium spp. as pathogens…...………………………………………….20 Chryseobacterium infections in fish…..……………………………………………..21 Antimicrobial resistance in Chryseobacterium spp…………...…………………...23 V. The Challenges of Working with Members of the Family Flavobacteriaceae………...23 CHAPTER 2 DIVERSITY OF FISH-ASSOCIATED FLAVOBACTERIA OF MICHIGAN……...............26 I. Introduction…………………………………………………………………………………..26 II. Materials & Methods………………………………………………………………………...27 Fish and bacterial isolation…………………………………………………..............27 Characterization of recovered isolates………………………………………………28 16S rRNA gene amplification………………………………………………..............29 Phylogenetic analyses………………………………………………………..............29 III. Results……………………………………………………………………………...............30 IV. Discussion………………………………………………………………………………….43 V. Acknowledgements………………………………………………………………………....49 VI. Chapter 2 Appendix (A)……………………………………………………………………62 CHAPTER 3 EMERGENCE OF CHRYSEOBACTERIUM SPP. INFECTIONS IN MICHIGAN FISHES………………………………………………………………………………………..105 I. Introduction………………………………………………………………………………….105 II. Materials & Methods……………………………………………………………………….106 vi 16S rRNA gene amplification & phylogenetic analysis…………………………..106 Polyphasic characterization of 8 representative Chryseobacterium spp. isolates………………………………………………………………………..............106 Morphological, physiological, & biochemical characterization………….107 Antibiotic susceptibility testing……………………………………………..108 Fatty acid profiling…………………………………………………………...108 Phylogenetic analyses based on near complete 16S rDNA…………….108 Experimental challenge studies…………………………………………………….109 Fish……………………………………………………………………………109 Determination of growth kinetics…………………………………………..109
Recommended publications
  • Annelida, Lumbricidae) - Description Based on Morphological and Molecular Data
    A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n. (Annelida, Lumbricidae) - description based on morphological and molecular data The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Díaz Cosín, Darío J., Marta Novo, Rosa Fernández, Daniel Fernández Marchán, and Mónica Gutiérrez. 2014. “A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n. (Annelida, Lumbricidae) - description based on morphological and molecular data.” ZooKeys (399): 71-87. doi:10.3897/zookeys.399.7273. http:// dx.doi.org/10.3897/zookeys.399.7273. Published Version doi:10.3897/zookeys.399.7273 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406906 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A peer-reviewed open-access journal ZooKeys 399: A71–87 new (2014) earthworm species within a controversial genus: Eiseniona gerardoi sp. n... 71 doi: 10.3897/zookeys.399.7273 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n. (Annelida, Lumbricidae) - description based on morphological and molecular data Darío J. Díaz Cosín1,†, Marta Novo1,2,‡, Rosa Fernández1,3,§, Daniel Fernández Marchán1,|, Mónica Gutiérrez1,¶ 1
    [Show full text]
  • Taxonomic Assessment of Lumbricidae (Oligochaeta) Earthworm Genera Using DNA Barcodes
    European Journal of Soil Biology 48 (2012) 41e47 Contents lists available at SciVerse ScienceDirect European Journal of Soil Biology journal homepage: http://www.elsevier.com/locate/ejsobi Original article Taxonomic assessment of Lumbricidae (Oligochaeta) earthworm genera using DNA barcodes Marcos Pérez-Losada a,*, Rebecca Bloch b, Jesse W. Breinholt c, Markus Pfenninger b, Jorge Domínguez d a CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal b Biodiversity and Climate Research Centre, Lab Centre, Biocampus Siesmayerstraße, 60323 Frankfurt am Main, Germany c Department of Biology, Brigham Young University, Provo, UT 84602-5181, USA d Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, E-36310, Spain article info abstract Article history: The family Lumbricidae accounts for the most abundant earthworms in grasslands and agricultural Received 26 May 2011 ecosystems in the Paleartic region. Therefore, they are commonly used as model organisms in studies of Received in revised form soil ecology, biodiversity, biogeography, evolution, conservation, soil contamination and ecotoxicology. 14 October 2011 Despite their biological and economic importance, the taxonomic status and evolutionary relationships Accepted 14 October 2011 of several Lumbricidae genera are still under discussion. Previous studies have shown that cytochrome c Available online 30 October 2011 Handling editor: Stefan Schrader oxidase I (COI) barcode phylogenies are informative at the intrageneric level. Here we generated 19 new COI barcodes for selected Aporrectodea specimens in Pérez-Losada et al. [1] including nine species and 17 Keywords: populations, and combined them with all the COI sequences available in Genbank and Briones et al.
    [Show full text]
  • Polyphasic Study of Chryseobacterium Strains Isolated from Diseased Aquatic Animals Jean Francois Bernardet, M
    Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals Jean Francois Bernardet, M. Vancanneyt, O. Matte-Tailliez, L. Grisez, L. Grisez, Patrick Tailliez, Chantal Bizet, M. Nowakowski, Brigitte Kerouault, J. Swings To cite this version: Jean Francois Bernardet, M. Vancanneyt, O. Matte-Tailliez, L. Grisez, L. Grisez, et al.. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Systematic and Applied Microbiology, Elsevier, 2005, 28 (7), pp.640-660. 10.1016/j.syapm.2005.03.016. hal-02681942 HAL Id: hal-02681942 https://hal.inrae.fr/hal-02681942 Submitted on 1 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE IN PRESS Systematic and Applied Microbiology 28 (2005) 640–660 www.elsevier.de/syapm Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals J.-F. Bernardeta,Ã, M. Vancanneytb, O. Matte-Taillieza, L. Grisezc,1, P. Tailliezd, C. Bizete, M. Nowakowskie, B. Kerouaulta, J. Swingsb aInstitut National de la Recherche Agronomique, Unite´ de Virologie
    [Show full text]
  • Chryseobacterium Gleum Urinary Tract Infection
    Genes Review 2015 Vol.1, No.1, pp.1-5 DOI: 10.18488/journal.103/2015.1.1/103.1.1.5 © 2015 Asian Medical Journals. All Rights Reserved. CHRYSEOBACTERIUM GLEUM URINARY TRACT INFECTION † Ramya. T.G1 --- Sabitha Baby2 --- Pravin Das3 --- Geetha.R.K4 1,2,4Department of Microbiology, Karuna Medical College, Vilayodi, Chittur, Palakkad, India 3Department of Medicine, Karuna Medical College, Vilayodi, Chittur, Palakkad, India ABSTRACT Introduction: Chryseobacterium gleum is an uncommon pathogen in humans. It is a gram negative, nonfermenting bacterium distributed widely in soil and water. We present a case of urinary tract infection caused by Chryseobacterium gleum in a patient with right lower ureteric calculi. Case presentation: This case describes a 62- year-old male admitted for ureteric calculi to the Department of Urology in a tertiary care hospital in Kerala. A strain of Chryseobacterium gleum was isolated and confirmed by MALDI-TOF MS .The bacterium was sensitive to Piperacillin-Tazobactum (100/10µg ), Cefotaxime(30µg),Ceftazidime(30 µg ) and Ofloxacin(30 µg). It was resistant to Nitrofurantoin (300µg),Tobramycin(10µg),Gentamicin(30µg),Nalidixic acid(30µg) and Amikacin(30µg). Conclusion: Chryseobacterium gleum should be considered as a potential opportunistic and emerging pathogen. Resistance to a wide range of antibiotics such as aminoglycosides, penicillin, cephalosporins has been documented. In depth studies on Epidemiological, virulence and pathogenicity factors needs to be done for better diagnosis and management. Keywords: Chryseobacterium gleum, Calculi, Flexirubin pigment, MALDI-ToF MS, Non-fermenter, UTI. Contribution/ Originality This study documents the first case of Chryseobacterium gleum associated UTI in South India. 1. INTRODUCTION Chryseobacterium species are found ubiquitously in nature.
    [Show full text]
  • The Prevalence of Foodborne Pathogenic Bacteria on Cutting Boards and Their Ecological Correlation with Background Biota
    AIMS Microbiology, 2(2): 138-151. DOI: 10.3934/microbiol.2016.2.138 Received: 23 April 2016 Accepted: 19 May 2016 Published: 22 May 2016 http://www.aimspress.com/journal/microbiology Research article The prevalence of foodborne pathogenic bacteria on cutting boards and their ecological correlation with background biota Noor-Azira Abdul-Mutalib 1,2,3, Syafinaz Amin Nordin 2, Malina Osman 2, Ahmad Muhaimin Roslan 4, Natsumi Ishida 5, Kenji Sakai 5, Yukihiro Tashiro 5, Kosuke Tashiro 6, Toshinari Maeda 1, and Yoshihito Shirai 1,* 1 Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196, Japan 2 Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3 Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 5 Laboratory of Soil Microbiology, Faculty of Agriculture, Graduate School, Kyushu University, 6- 10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan 6 Laboratory of Molecular Gene Technique, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan * Correspondence: E-mail: [email protected]; Tel.: +6012-9196951; Fax: +603-89471182. Abstract: This study implemented the pyrosequencing technique and real-time quantitative PCR to determine the prevalence of foodborne pathogenic bacteria (FPB) and as well as the ecological correlations of background biota and FPB present on restaurant cutting boards (CBs) collected in Seri Kembangan, Malaysia.
    [Show full text]
  • High Quality Permanent Draft Genome Sequence of Chryseobacterium Bovis DSM 19482T, Isolated from Raw Cow Milk
    Lawrence Berkeley National Laboratory Recent Work Title High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482T, isolated from raw cow milk. Permalink https://escholarship.org/uc/item/4b48v7v8 Journal Standards in genomic sciences, 12(1) ISSN 1944-3277 Authors Laviad-Shitrit, Sivan Göker, Markus Huntemann, Marcel et al. Publication Date 2017 DOI 10.1186/s40793-017-0242-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Laviad-Shitrit et al. Standards in Genomic Sciences (2017) 12:31 DOI 10.1186/s40793-017-0242-6 SHORT GENOME REPORT Open Access High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482T, isolated from raw cow milk Sivan Laviad-Shitrit1, Markus Göker2, Marcel Huntemann3, Alicia Clum3, Manoj Pillay3, Krishnaveni Palaniappan3, Neha Varghese3, Natalia Mikhailova3, Dimitrios Stamatis3, T. B. K. Reddy3, Chris Daum3, Nicole Shapiro3, Victor Markowitz3, Natalia Ivanova3, Tanja Woyke3, Hans-Peter Klenk4, Nikos C. Kyrpides3 and Malka Halpern1,5* Abstract Chryseobacterium bovis DSM 19482T (Hantsis-Zacharov et al., Int J Syst Evol Microbiol 58:1024-1028, 2008) is a Gram-negative, rod shaped, non-motile, facultative anaerobe, chemoorganotroph bacterium. C. bovis is a member of the Flavobacteriaceae, a family within the phylum Bacteroidetes. It was isolated when psychrotolerant bacterial communities in raw milk and their proteolytic and lipolytic traits were studied. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA G + C content is 38.19%. The chromosome length is 3,346,045 bp. It encodes 3236 proteins and 105 RNA genes. The C. bovis genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
    Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively).
    [Show full text]
  • Structural Basis of Mammalian Mucin Processing by the Human Gut O
    ARTICLE https://doi.org/10.1038/s41467-020-18696-y OPEN Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila ✉ ✉ Beatriz Trastoy 1,4, Andreas Naegeli2,4, Itxaso Anso 1,4, Jonathan Sjögren 2 & Marcelo E. Guerin 1,3 Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness 1234567890():,; and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila,anO-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also con- tribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins. 1 Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. 2 Genovis AB, Box 790, 22007 Lund, Sweden. 3 IKERBASQUE, Basque Foundation for Science, 48013 ✉ Bilbao, Spain. 4These authors contributed equally: Beatriz Trastoy, Andreas Naegeli, Itxaso Anso.
    [Show full text]
  • University of Oklahoma Graduate College
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MICROBIOLOGY OF WATER AND WASTEWATER: DISCOVERY OF A NEW GENUS NUMERICALLY DOMINANT IN MUNICIPAL WASTEWATER AND ANTIMICROBIAL RESISTANCES IN NUMERICALLY DOMINANT BACTERIA FROM OKLAHOMA LAKES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By Toby D. Allen Norman, Oklahoma 2005 UMI Number: 3203299 UMI Microform 3203299 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 MICROBIOLOGY OF WATER AND WASTEWATER: DISCOVERY OF A NEW GENUS NUMERICALLY DOMINANT IN MUNICIPAL WASTEWATER AND ANTIMICROBIAL RESISTANCES IN NUMERICALLY DOMINANT BACTERIA FROM OKLAHOMA LAKES A DISSERTATION APPROVED FOR THE DEPARTMENT OF BOTANY AND MICROBIOLOGY BY ____________________________ Dr. Ralph S. Tanner ____________________________ Dr. Kathleen E. Duncan ____________________________ Dr. David P. Nagle ____________________________ Dr. Mark A. Nanny ____________________________ Dr. Marvin Whiteley Copyright by Toby D. Allen 2005 All Rights Reserved “Science advances through tentative answers to a series of more and more subtle questions which reach deeper and deeper into the essence of natural phenomena” – Louis Pasteur iv ACKNOWLEDGEMENTS I consider myself fortunate to have had the opportunity to work on the projects contained in this work. I am grateful to have had the support and guidance of Dr. Ralph Tanner, who gave me the opportunity conduct research in his laboratory and to the Department of Botany and Microbiology, which has supported me in the form of teaching and research assistantships.
    [Show full text]
  • What's Wrong with Worms?
    WHAT’S WRONG WITH WORMS? Clay Antieau MS PhC Botanist, Horticulturist Environmental Educator Seventh Western Native Plants Conference, December 2016 EARTHWORM DIGESTIVE SYSTEM (Horn, Schramm, and Drake 2003) • Live 4 to 15+ years • Eats their weight in soil/organic matter daily • Food is processed in intestine (alimentary canal) Muscular mixing with enzymes and microbes in gut (anoxic) to release amino acids, sugars, organic molecules, nitrogen…. Molecules absorbed through intestinal membranes • Waste Product: CASTINGS BENEFITS OF EARTHWORMS (OM/soil digestion and bioturbation) • Improve soil physical structure better drainage/infiltration and aeration reduced stormwater run-off improved root penetration • Decompose, Mineralize OM Concentrate carbon and nutrients Enhanced soil fertility and tilth for plant growth, seed germination, crop yield. NUTRIENT VALUE OF CASTINGS • Nitrogen 1.80–2.05% • Phosphorus 1.32–1.93% • Potassium 1.28–1.50% • Calcium 3.0–4.5% • Magnesium 0.4–0.7% • Iron 0.3–0.7% • Manganese traces–0.40% • Zinc 0.028–0.036% • Organic Carbon 20-30% • pH 6.0–7.0 Darwin Earthworms! “The plow is one of the most ancient and most valuable of Man’s inventions; but long before he existed, the land … was regularly ploughed, and still continues to be ploughed, by earthworms. It may be (doubtful) whether there are many other animals which have played so important a part in the history of the world as these lowly, organized creatures.” - Charles Darwin (Earthworms 1881) …his last book, published just six months before he died. Different earthworms… Different functions…. Compost Dwellers (Epigeic) Live in high organic matter environments Eisenia fetida (red wriggler; tiger worm) Soil Surface Dwellers (Epigeic) Feed on decaying roots, shoots, leaves, and dung and live on or near soil surface (0-15 cm depth) Lumbricus rubellus (European earthworm; red wriggler) Topsoil Dwellers (Endogeic) Live in the top 20-30 cm of soil.
    [Show full text]
  • | Hao Watatu Timur Alma Mult
    |HAO WATATU US010058101B2TIMUR ALMA MULT (12 ) United States Patent ( 10 ) Patent No. : US 10 ,058 , 101 B2 von Maltzahn et al. (45 ) Date of Patent: * Aug. 28 , 2018 ( 54 ) METHODS OF USE OF SEED -ORIGIN ( 52 ) U . S . CI. ENDOPHYTE POPULATIONS CPC . .. .. .. AOIN 63 /00 (2013 .01 ) ; A01C 1 / 06 ( 2013 .01 ) ; A01N 63 / 02 ( 2013 .01 ) ; GOIN (71 ) Applicant: Indigo Ag , Inc. , Boston , MA (US ) 33/ 5097 ( 2013 . 01 ) ; A01C 1 / 60 ( 2013. 01 ) ( 72 ) Inventors : Geoffrey von Maltzahn , Boston , MA (58 ) Field of Classification Search (US ) ; Richard Bailey Flavell , None Thousand Oaks , CA (US ) ; Gerardo V . See application file for complete search history . Toledo , Belmont, MA (US ) ; Slavica Djonovic , Malden , MA (US ) ; Luis Miguel Marquez , Belmont, MA ( US) ; (56 ) References Cited David Morris Johnston , Cambridge , MA (US ) ; Yves Alain Millet, U . S . PATENT DOCUMENTS Newtonville , MA (US ) ; Jeffrey Lyford , 4 , 940 , 834 A 7 / 1990 Hurley et al . Hollis , NH (US ) ; Alexander Naydich , 5 ,041 , 290 A 8 / 1991 Gindrat et al. Cambridge , MA (US ) ; Craig Sadowski, 5 , 113 ,619 A 5 / 1992 Leps et al . 5 , 229 , 291 A * 7 / 1993 Nielsen . .. .. .. .. C12N 15 /00 Somerville , MA (US ) 435 / 244 5 , 292, 507 A 3 / 1994 Charley ( 73 ) Assignee : Indigo Agriculture, Inc. , Boston , MA 5 ,415 ,672 A 5 / 1995 Fahey et al . (US ) 5 ,730 , 973 A 3 / 1998 Morales et al. 5 , 994 , 117 A 11/ 1999 Bacon et al . 6 ,072 , 107 A 6 / 2000 Latch et al. ( * ) Notice : Subject to any disclaimer, the term of this 6 , 077 , 505 A 6 / 2000 Parke et al.
    [Show full text]