Exploiting the Indole Scaffold to Design Compounds Binding

Total Page:16

File Type:pdf, Size:1020Kb

Exploiting the Indole Scaffold to Design Compounds Binding molecules Review Exploiting the Indole Scaffold to Design Compounds y Binding to Different Pharmacological Targets Sabrina Taliani 1,* , Federico Da Settimo 1, Claudia Martini 1 , Sonia Laneri 2, Ettore Novellino 2 and Giovanni Greco 2,* 1 Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; [email protected] (F.D.S.); [email protected] (C.M.) 2 Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy; [email protected] (S.L.); [email protected] (E.N.) * Correspondence: [email protected] (S.T.); [email protected] (G.G.); Tel.: +39-050-2219547 (S.T.); +39-081-678645 (G.G.) The authors wish to dedicate this review to the memory of Professor Barbara Cosimelli, our dear friend and y colleague, who was a key participant in the research discussed herein. Academic Editors: Marco Catto and Cosimo Damiano Altomare Received: 20 April 2020; Accepted: 15 May 2020; Published: 16 May 2020 Abstract: Several indole derivatives have been disclosed by our research groups that have been collaborating for nearly 25 years. The results of our investigations led to a variety of molecules binding selectively to different pharmacological targets, specifically the type A γ-aminobutyric acid (GABAA) chloride channel, the translocator protein (TSPO), the murine double minute 2 (MDM2) protein, the A2B adenosine receptor (A2B AR) and the Kelch-like ECH-associated protein 1 (Keap1). Herein, we describe how these works were conceived and carried out thanks to the versatility of indole nucleus to be exploited in the design and synthesis of drug-like molecules. Keywords: type A γ-aminobutyric acid (GABAA) chloride channel; translocator protein (TSPO); murine double Minute 2 (MDM2) protein; A2B adenosine receptor (A2B AR); Kelch-like ECH-associated protein 1 (Keap1) 1. Introduction During the last 25 years our research groups have been engaged in preparing and testing several indole derivatives as ligands for some pharmacologically relevant targets: namely, the type A γ-aminobutyric acid chloride channel, the translocator protein, the murine double minute 2 protein, the A2B adenosine receptor and the Kelch-like ECH-associated protein 1. We chose indole as a privileged scaffold owing to its recognized ability of being exploited to obtain drug-like molecules [1]. In virtue of its chemical reactivity, this heterocycle is amenable to be readily modified in order to introduce multiple decorations, so to obtain a multitude of indole-based compounds. Indole is widely distributed among biologically active molecules, either natural (many alkaloids, tryptophan, plant hormones) and synthetic, acting on a huge number of therapeutic targets [1]. The present review summarizes our studies taking indole as the polar star of our medicinal chemistry strategies. 2. Indole Derivatives as Ligands of the Benzodiazepine Receptor Many drugs structurally related to diazepam bind to a site known for a long time as the benzodiazepine receptor (BzR). Although this term was changed in 1998 to “benzodiazepine binding site” [2] the acronym BzR has been widely used for decades and it is still usually employed by the scientific community. This binding site is located within the transmembrane type A γ-aminobutyric acid (GABAA) chloride channel, one of the most important members of the family of pentameric Molecules 2020, 25, 2331; doi:10.3390/molecules25102331 www.mdpi.com/journal/molecules Molecules 2020,, 2525,, 2331x FOR PEER REVIEW 22 of of 2726 acid (GABAA) chloride channel, one of the most important members of the family of pentameric ligand-gatedligand-gated ionion channels channels [2]. When[2]. When this channel this ischannel activated is byactivated interaction by with interaction the neurotransmitter with the GABA,neurotransmitter the flow of GABA, chloride the into flow the of cell chloride increases into and the produces cell increases hyperpolarisation. and produces Mammals hyperpolarisation. express a numberMammals of GABAexpressA aisoforms number localized of GABA inAthe isoforms CNS which localized are composed in the CNS by which five subunits: are composed two β3 ,by one fiveγ2 andsubunits: two α twoamong β3,six one types γ2 and (α1, αtwo2, α 3α, αamong4, α5, α 6six). Such types a pentameric(α1, α2, α3, organization α4, α5, α6). (FigureSuch a1 )pentameric originates theorganization following (Figure six GABA 1) Aorigsubtypes:inates theα1 followingβ3γ2, α2β 3sixγ2 ,GABAα3β3γA2, subtypes:α4β3γ2, α 5αβ1β3γ3γ22,and α2β3αγ62β, α3γ3β23[γ32–, 5α].4β The3γ2, aboveα5β3γ2 subtypesand α6β3γ can2 [3–5]. be also The named above bysubtypes specifying can thebe alsoα subunit named which by specifying imparts specific the α subunit physiological which andimparts pharmacological specific physiological properties and to thepharmacological GABAA complex properties [6–10]. to The theα 1GABAsubtype,A complex the dominant [6–10]. one,The isα1 presentsubtype, in the both dominant the cortex one, and is present cerebellum in both and the mediates cortex and sedation; cerebellum the α and2 and mediatesα3 subtypes sedation; are foundthe α2 mainlyand α3 subtypes in the cortex are andfound the mainly hippocampus in the cortex andare and involved the hippocampus in anxiolytic and and are myorelaxant involved in eanxiolyticffects; the andα5 subtypemyorelaxant is largely effects; expressed the α5 subtype in the hippocampusis largely expressed and is in associated the hippocampus with cognition and is processesassociated likewith learning cognition and processes memorising; like thelearningα4 and andα6 memorising;subtypes, less the investigated, α4 and α6 subtypes, are known less as benzodiazepine-insensitiveinvestigated, are known as binding benzodiazepine-insensi sites because theytive do binding not bind sites diazepam because but they recognize do not several bind non-benzodiazepinediazepam but recognize ligands. several non-benzodiazepine ligands. β 3 γ α 2 GABA site n Cl- BzR β 3 αn Figure 1.1. SchematicSchematic representation representation of of the the organization organization of theof fivethe five protein protein subunits subunits composing composing the major the GABAmajor AGABAcomplexA complex isoforms. isoforms. There areThere two areβ3 subunits,two β3 subunits, one γ2 subunitsone γ2 subunits and two and among two six amongα subunits six α (wheresubunits n varies(where from n varies 1 to 6).from The 1 circleto 6). in The bold circle corresponds in bold corresponds to the chloride to channel.the chloride The channel. binding sitesThe ofbinding the neurotransmitter sites of the neurotransmitter GABA and of theGABA BzR and ligands of the are BzR evidenced ligands by are filled evidenced circles and, by filled respectively, circles aand, square. respectively, a square. Following the introduction in the clinical usage of chlordiazepoxide in 1960, a huge number of chemically heterogeneous classes of compounds have been reported in literature as BzR ligands [11]. [11]. This bindingbinding site site is is located located at theat theα/γ αsubunits’/γ subunits’ interface, interface, distinct distinct from thefrom GABA the bindingGABA binding sites situated sites atsituatedα/β interfaces at α/β interfaces (Figure1 ).(Figure 1). The pharmacologicalpharmacological actions actions of BzRof BzR ligands ligands range range from fullfrom agonism full agonism (associated (associated with anxiolytic, with anticonvulsant,anxiolytic, anticonvulsant, sedative-hypnotic, sedative-hypnotic, and myorelaxant and myorelaxant effects) to effects) antagonism to antagonism (implying (implying the ability the to reverseability to sedation reverse caused sedation by caused agonists) by and agonists) to inverse and agonismto inverse (characterized agonism (characterized by anxiogenic, by anxiogenic, somnolytic andsomnolytic proconvulsant and proconvulsant effects) [12,13 effects)]. [12,13]. In 19871987 SchofieldSchofield andand coworkerscoworkers reportedreported thethe sequencesequence and the functionalfunctional expression of the GABAA channel [14]. [14]. Subsequently Subsequently to to this pioneeri pioneeringng work, further knowledge about the subunitssubunits composing the GABAGABAAA isoformsisoforms was was achieved [15–17]. [15–17]. Since 2000, molecular geneticsgenetics experimentsexperiments and measurements of binding and eefficacyfficacy ofof BzRBzR ligandsligands atat eacheach ofof thethe GABAGABAAA isoformsisoforms [[18–21]18–21] paved thethe wayway forfor the the search search of of compounds compounds provided provided by by affi affinity-nity- and and/or/or effi efficacy-basedcacy-based selectivity selectivity for αfor1, α12,/ α32/,αα35, αBzR5 BzR subtypes subtypes [22 [22].]. Currently, thethe manymany BzR ligands available as drugs are agonists endowed with the above- mentioned depressantdepressant e ffeffectsects (ascribed (ascribed to their to their action action on the αon1 subtype)the α1 subtype) and the antagonist and the flumazenil,antagonist employedflumazenil, as employed antidote as to antidote treat benzodiazepine to treat benzod overdose.iazepine overdose. Given the Given therapeutic the therapeutic potential potential of BzR ligands,of BzR ligands, this class this of compoundsclass of compounds has been has one been of the one most of intriguingthe most intriguing and challenging and challenging field of medicinal field of chemistrymedicinal research.chemistry research. Our studies of indole derivatives as BzR ligands began in 1985 with the synthesissynthesis and the evaluation of the binding
Recommended publications
  • Présentation HJ
    Conflits d’intérêts Astra-Zeneca, Janssen, Abacus international, Laboratoire ETAP, Institut Pasteur. Dr Hervé JAVELOT Pharmacien PH Etablissement Public de Santé Alsace Nord Service Pharmacie 141 avenue de Strasbourg 67 170 BRUMATH Tél. : 03 88 64 61 70 Fax : 03 88 64 61 58 Mail : [email protected] Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Hervé JAVELOT Etablissement Public de Santé Alsace Nord Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Traitements des troubles anxio-dépressifs. Les perspectives. ◦ L’axe GABAergique…éternellement prometteur ? ◦ L’incontournable théorie « monoaminergique »… ◦ Des théories alternatives à suivre … Traitements des troubles anxio-dépressifs. Contexte : ◦ XXI ème siècle : Le « siècle de la dépression » s’installe ? (Hardeveld et al., 2010) L’« ère de l’angoisse » s’affirme ? (Auden, 1947) ◦ Prévalence au cours de la vie : 16 à 17% pour la dépression, 17 à 18% pour les troubles anxieux Co-morbidité des 2 troubles dans 20 à 40% des cas (Antony, 2011 ; Depping et al., 2010 ; Hardeveld et al., 2010 ; Huppert, 2009) Auden WH (1947). The Age of Anxiety: A Baroque Eclogue. Random House: New York. Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman AT. Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand. 2010;122(3):184-91. Antony MM. Recent advances in the treatment of anxiety disorders. Canadian Psychology 2011;52(1), 10-19. Depping AM, Komossa K, Kissling W, Leucht S. Second-generation antipsychotics for anxiety disorders. Cochrane Database Syst Rev. 2010;(12):CD008120. Huppert JD. Anxiety disorders and depression comorbidity.
    [Show full text]
  • WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 36/84 (2006.01) A61K 31/5513 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/045 (2006.01) A61P 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/522 (2006.01) A61K 45/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/NL20 14/050780 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 13 November 2014 (13.1 1.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/903,430 13 November 2013 (13. 11.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: RJG DEVELOPMENTS B.V.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Translocator Protein (TSPO): the New Story of the Old Protein in Neuroinflammation
    BMB Rep. 2020; 53(1): 20-27 BMB www.bmbreports.org Reports Invited Mini Review Translocator protein (TSPO): the new story of the old protein in neuroinflammation Younghwan Lee1, Youngjin Park1, Hyeri Nam1, Ji-Won Lee1 & Seong-Woon Yu1.2,* 1Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, 2Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea Translocator protein (TSPO), also known as peripheral Mitochondrial membrane proteins are the important regulators benzodiazepine receptor, is a transmembrane protein located of mitochondrial homeostasis, such as ion transport, ATP/ADP on the outer mitochondria membrane (OMM) and mainly transport, and mitochondria fusion/fission. Therefore, defects expressed in glial cells in the brain. Because of the close in these proteins are associated with numerous diseases (4). correlation of its expression level with neuropathology and For this reason, mitochondrial membrane proteins are therapeutic efficacies of several TSPO binding ligands under considered to be promising targets for development of diagnostic many neurological conditions, TSPO has been regarded as tools and therapeutic strategies. TSPO is the mitochondrial both biomarker and therapeutic target, and the biological transmembrane protein that was discovered as the binding site functions of TSPO have been a major research focus. of benzodiazepine in 1977 (5). Studies using TSPO-binding However, recent genetic studies with animal and cellular ligands have revealed that this protein participates in a variety models revealed unexpected results contrary to the anticipated of cellular functions, including cholesterol transport and biological importance of TSPO and cast doubt on the action steroid hormone synthesis, mitochondrial permeability transition modes of the TSPO-binding drugs.
    [Show full text]
  • WO 2015/072853 Al 21 May 2015 (21.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/072853 Al 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 45/06 (2006.01) A61K 31/5513 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/045 (2006.01) A61K 31/5517 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/522 (2006.01) A61P 31/22 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/551 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/NL20 14/050781 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 13 November 2014 (13.1 1.2014) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 61/903,433 13 November 2013 (13.
    [Show full text]
  • TSPO) Ligands and Benzodiazepines
    Original Paper Phpsy/2014-08-0369/3.2.2015/MPS Enhancing Neurosteroid Synthesis – Relationship to the Pharmacology of Translocator Protein (18 kDa) (TSPO) Ligands and Benzodiazepines Authors L. Wolf1, A. Bauer1, D. Melchner1, H. Hallof-Buestrich1, P. Stoertebecker1, E. Haen1, 2, M. Kreutz3, N. Sarubin1, V. M. Milenkovic1, C. H. Wetzel1, R. Rupprecht1, C. Nothdurfter1 Affiliations 1 Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany 2 Institute of Pharmacy, University of Regensburg, Regensburg, Germany 3 Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany Key words Abstract Results: In BV-2 microglia and C6 glioma cells ●▶ TSPO ligands ▼ all compounds significantly enhanced TSPO ●▶ benzodiazepines Introduction: The treatment of anxiety dis- protein expression. Radioligand binding assays ●▶ pregnenolone orders is still a challenge; novel pharmacologi- revealed the highest binding affinity to TSPO ●▶ neurosteroids cal approaches that combine rapid anxiolytic for XBD173, followed by diazepam and etifox- ●▶ anxiolytic efficacy with fewer side effects are needed. A ine. Pregnenolone synthesis was most potently promising target for such compounds is the mito- enhanced by etifoxine. chondrial translocator protein (18 kDa) (TSPO). Discussion: Etifoxine turned out to be the TSPO plays an important role for the synthesis of most potent enhancer of neurosteroidogenesis, neurosteroids, known to modulate GABAA recep- although its binding affinity to TSPO was lowest. tors, thereby exerting anxiolytic effects. These results indicate that the efficacy of TSPO Methods: We investigated the pharmacological ligands to stimulate neurosteroid synthesis, profile of 2 well established TSPO ligands (XBD173 thereby leading to anxiolytic effects cannot be and etifoxine) compared to the benzodiazepine concluded from their binding affinity to TSPO.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION AC-5216 Item No. 18522 CAS Registry No.: 226954-04-7 Formal Name: N-ethyl-7,8-dihydro-7-methyl-8- N oxo-2-phenyl-N-(phenylmethyl)- N 9H-purine-9-acetamide Synonyms: Emapunil, XBD-173 N O N MF: C23H23N5O2 401.5 FW: O Purity: ≥98% Stability: ≥2 years at -20°C N Supplied as: A crystalline solid UV/Vis.: λmax: 292 nm Laboratory Procedures For long term storage, we suggest that AC-5216 be stored as supplied at -20°C. It should be stable for at least two years. AC-5216 is supplied as a crystalline solid. A stock solution may be made by dissolving the AC-5216 in the solvent of choice. AC-5216 is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of AC-5216 in these solvents is approximately 5 and 30 mg/ml, respectively. AC-5216 is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, AC-5216 should first be dissolved in DMF and then diluted with the aqueous buffer of choice. AC-5216 has a solubility of approximately 0.05 mg/ml in a 1:20 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description AC-5216 is a high affinity agonist of the 18 kDa translocator protein (TSPO, previously called the peripheral benzodiazepine receptor) that exhibits a Ki value of 0.297 nM in rat whole brain and IC50 values of 2.73 and 3.04 nM, respectively, against human and rat glial TSPO.1 AC-5216 produces anxiolytic and antidepressant effects in various animal models, without inducing benzodiazepine-like adverse effects.1,2 References 1.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • Research Article
    Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 9, Issue, 6(E), pp. 27560-27565, June, 2018 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article BIOSYNTHESIS OF NEUROSTEROID AND PHARMACOLOGYCAL ACTION Vandna Dewangan*., Trilochan Satapthy and Ram Sahu Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur-493111(C.G.) India DOI: http://dx.doi.org/10.24327/ijrsr.2018.0906.2285 ARTICLE INFO ABSTRACT Article History: Over the past decade, it has become clear that the brain, like the gonad, adrenal and placenta, is a steroid genic organ. Neurosteroids are synthetized in the central and the peripheral nervous system, Received 20th March, 2018 in glial cells, and also in neurons, from cholesterol or steroidal precursors imported from peripheral Received in revised form 27th sources. However, unlike classic steroid genic tissues, the synthesis of steroids in the nervous April, 2018 system requires the coordinate expression and regulation of the genes encoding the steroid genic Accepted 5th May, 2018 enzymes in several different cell types (neurons and glia) at different locations in the nervous Published online 28th June, 2018 system, and at distances from the cell bodies. The steroids synthesized by the brain and nervous system, given the name neurosteroids Progesterone itself is also a neurosteroid, and a progesterone Key Words: receptor has been detected in peripheral and central glial cells. At different sites in the brain, Neurosteroid, Steroid hormones, neurosteroid concentrations vary according to environmental and behavioural circumstances, such as Progesterone, Glial Cell, Nuclear receptor, stress, sex recognition, or aggressiveness.
    [Show full text]
  • Characterization of Tspo 18 Kda
    CHARACTERIZATION OF TSPO 18 KDA IN NEUROSTEROID SYNTHESIS AND MITOCHONDRIAL METABOLISM CHARAKTERISIERUNG VON TSPO 18 KDA IN DER NEUROSTEROIDSYNTHESE UND DEM MITOCHONDRIALEN STOFFWECHSEL DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER NATURWISSENSCHAFTLICHEN FAKULTÄT IV CHEMIE UND PHARMAZIE DER UNIVERSITÄT REGENSBURG vorgelegt von Luisa Scheck, geb. Wolf aus Schmalkalden im Februar 2017 Promotionsgesuch eingereicht am: 24. Februar 2017 Die Arbeit wurde angeleitet von: Prof. Dr. med. Dr. rer. nat. Ekkehard Haen Table of contents ACKNOWLEDGEMENTS .................................................................................................. 1 ABSTRACT ................................................................................................................... 2 TRANSLATION OF THE ABSTRACT (GERMAN) .................................................................. 4 1 TSPO 18KDA - A CONTROVERSIAL PROTEIN OF THE OMM ....................................... 6 1.1 Expression of TSPO ...................................................................................... 6 1.2 TSPO structure and resulting functions ......................................................... 7 1.3 Recent TSPO structure ................................................................................. 8 1.4 TSPO ligands ................................................................................................ 9 2 NEW PERSPECTIVES FOR TSPO ..........................................................................
    [Show full text]
  • The Agonistic TSPO Ligand XBD173 Attenuates the Glial Response
    Mages et al. Journal of Neuroinflammation (2019) 16:43 https://doi.org/10.1186/s12974-019-1424-5 RESEARCH Open Access The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia Kristin Mages1, Felix Grassmann1,2, Herbert Jägle3, Rainer Rupprecht4, Bernhard H. F. Weber1, Stefanie M. Hauck5 and Antje Grosche1,6* Abstract Background: Ligand-driven modulation of the mitochondrial translocator protein 18 kDa (TSPO) was recently described to dampen the neuroinflammatory response of microglia in a retinal light damage model resulting in protective effects on photoreceptors. We characterized the effects of the TSPO ligand XBD173 in the postischemic retina focusing on changes in the response pattern of the major glial cell types of the retina—microglia and Müller cells. Methods: Retinal ischemia was induced by increasing the intraocular pressure for 60 min followed by reperfusion of the tissue in mice. On retinal cell types enriched via immunomagnetic separation expression analysis of TSPO, its ligand diazepam-binding inhibitor (DBI) and markers of glial activation were performed at transcript and protein level using RNA sequencing, qRT-PCR, lipid chromatography-mass spectrometry, and immunofluorescent labeling. Data on cell morphology and numbers were assessed in retinal slice and flatmount preparations. The retinal functional integrity was determined by electroretinogram recordings. Results: We demonstrate that TSPO is expressed by Müller cells, microglia, vascular cells, retinal pigment epithelium (RPE) of the healthy and postischemic retina, but only at low levels in retinal neurons. While an alleviated neurodegeneration upon XBD173 treatment was found in postischemic retinae as compared to vehicle controls, this neuroprotective effect of XBD173 is mediated putatively by its action on retinal glia.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,980,887 B2 Yang Et Al
    US00898O887B2 (12) United States Patent (10) Patent No.: US 8,980,887 B2 Yang et al. (45) Date of Patent: Mar. 17, 2015 (54) 2-ARYL Trapanietal, J. Med. Chem. 2005, 48,292-305.* IMIDAZO 1.2-APYRIDINE-3-ACETAMIDE Supplementary European Search Report dated Oct. 23, 2013 PCT/ DERIVATIVES, PREPARATION METHODS CN2011075500 in corresponding application. AND USES THEREOF S. Paul, et al., "Zinc Medicated Friedel-Crafts Acylation in Solvent Free Conditions Under Microwave Irradiation' Synthesis 2003, No. 18, pp. 2877-2881. (75) Inventors: Rifang Yang, Beijing (CN); Yunfeng Li, G. Trapani, et al., Structure-Activity Relationships and Effects on Beijing (CN); Yongzhen Li, Beijing Neuroactive Steroid Synthesis in a Series of 2-Phenylimidazo[1,2-C. (CN); Nan Zhao, Beijing (CN); Pyridineacetamide Peripheral Benzodiazepine Receptors Ligands, Liuhong Yun, Beijing (CN), Juanjuan Journal of Medicinal Chemistry, 2005, vol. 48, No. 1. Published Dec. Qin, Beijing (CN); Zhongyao Feng, 13, 2004, pp. 292-305. Beijing (CN); Youzhi Zhang, Beijing Papadopoulos V. et al., “Translocator protein (18kDa): new nomen (CN) clature for the peripheral-type benzodiazepine receptor based on its structure and molecular function.” Trends in Pharmacological Sci (73) Assignees: Institute of Pharmacology, Beijing ence, vol. 27, No. 8, p. 402-409 (2006). (CN); Toxicology Academy of Military Scarf A.M. et al., “The translocator protein (18 kDa): central nervous Medical Sciences P.L.A., China, system disease and drug design.” Journal of Medicinal Chemistry, Beijing (CN) vol. 52, No. 3, p. 581-592 (2009). Li Y. et al., Synthesis and anxiolytic effects of 2-aryl imidazo[1,2-a (*) Notice: Subject to any disclaimer, the term of this pyridine-3-acetamide derivatives, Journal of International Pharma patent is extended or adjusted under 35 ceutical Research, vol.
    [Show full text]