WO 2015/072853 Al 21 May 2015 (21.05.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/072853 Al 21 May 2015 (21.05.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/072853 Al 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 45/06 (2006.01) A61K 31/5513 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/045 (2006.01) A61K 31/5517 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/522 (2006.01) A61P 31/22 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/551 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/NL20 14/050781 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 13 November 2014 (13.1 1.2014) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 61/903,433 13 November 2013 (13. 11.2013) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: RJG DEVELOPMENTS B.V. [NL/NL]; DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Keizerweg 25, NL-7548 PX Enschede (NL). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (72) Inventor: GAIJMANS, Reinoud Jaap; Keizerweg 25, GW, KM, ML, MR, NE, SN, TD, TG). NL-7548 PX Enschede (NL). Published: (74) Agent: JANSEN, CM.; V.O., Johan de Wittlaan 7, NL- 25 17 JR Den Haag (NL). — with international search report (Art. 21(3)) © o (54) Title: TREATMENT OF HERPES VIRUS INFECTION OUTBREAKS (57) Abstract: The invention provides means and methods for preventing or alleviating symptoms of a Herpes simplex virus infec - tion, using compounds that influence brain function and/or psychological state. Kits of parts against Herpes outbreaks are also here with provided. Title: Treatment of Herpes virus infection outbreaks The invention relates to the fields of medicine, pharmacy and biology. More particular, the invention relates to treatment and prevention of Herpes virus outbreaks. Herpes simplex infections are one of the most prevalent recurrent and chronic infections in humans. Herpes simplex is a member of the Herpesviridae. There are two types of Herpes simplex virus infection, called Herpes simplex virus type 1 (HSV-1) and Herpes simplex virus type 2 (HSV-2). The most common form of infection is oral herpes. Oral herpes, the visible symptoms of which are colloquially called cold sores or fever blisters, is an infection of the face or mouth. Most cold sores are caused by HSV-1. Herpes infection of the mouth is typically referred to as Herpes labialis. Genital herpes (Herpes genitalis) is often caused by HSV-2 but is also caused by HSV-1. It is the second most common form of herpes. Other disorders such as herpetic whitlow, herpes gladiatorum, ocular herpes, cerebral herpes infection encephalitis, Mollaret's meningitis, neonatal herpes, and possibly Bell's palsy are all caused by herpes simplex viruses. Herpes simplex infections are very common; rates of HSV infection are between 65% and 90% worldwide. In the US, 57.7% of the population is infected with HSV-1 and 16.2% is infected with HSV-2. Following an initial exposure to the Herpes simplex virus, the host develops antibodies which can maintain the virus in a latent state. A herpes infection thus typically remains dormant for some time, with no clinical signs. Such periods are alternated with episodes of clinical manifestations, which typically involve the occurrence of herpes lesions. The lesions initially appear as an area of irritation and edema, which develop into one or more small vesicles within a few hours. The vesicles ripe and subsequently rupture within one to three days to form shallow ulcerations, which grow in time to large ulcerations and may aggregate with neighboring ulcerations to one large ulcer. In the subsequent days (7-14) these ulcerations heal again. The rupturing vesicles release highly contagious fluid which may cause secondary infections and/or infect others. Currently a Herpes infection cannot be cured; once present, herpes virus cannot be eradicated from the body. Treatments aim at preventing or reducing clinical symptoms. For instance, antivirals can reduce the frequency, duration and severity of outbreaks. Well known antivirals prescribed against herpes include acyclovir, penciclovir, famciclovir and valaciclovir. Pain and fever can be suppressed with analgesics or anesthetics such as for instance ibuprofen, acetaminophen, prilocaine, lidocaine, benzocaine or tetracaine. Another kind of drug which is approved by the United States Food and Drug Administration (FDA) for herpes labialis is the saturated fatty alcohol docosanol. Further medications include lysine, zinc oxide or zinc sulfate. However, the effects of these medicaments on Herpes outbreaks are limited. If taken at a sufficient early stage, preferably before lesions become apparent, a reduction of the duration and severity of outbreaks can be achieved but this effect is often moderate. There remains, therefore, a need for further herpes therapies. It is an object of the present invention to provide additional means and methods for preventing or alleviating symptoms of Herpes simplex virus infections. It is a further object to provide alternative and/or improved medicaments against Herpes simplex virus. SUMMARY OF THE INVENTION The invention provides means and methods for preventing or alleviating symptoms of a Herpes simplex virus. In particular, methods are provided for preventing or alleviating symptoms of a Herpes simplex virus infection, the methods comprising administering to a subject in need thereof at least one compound that influences brain function and/or psychological state. Preferably, said at least one compound comprises at least one anxiolytic compound and/or at least one sedative -hypnotic compound. In a preferred embodiment, said at least one compound is administered prophylactically to the subject before Herpes lesions are present on said subject. Alternatively, said at least one compound is administered to the subject within 0- 24 hours, preferably within 0-4 hours, before the prodromal phase. In another alternative embodiment, said at least one compound is administered to the subject in the prodromal and/or inflammation phase. In yet another embodiment, said at least one compound is administered to the subject in the pre-sore or open lesion phase. In a preferred embodiment, the compound that influences brain function and/or psychological state is either administered as a single dose or as a multiple dose up to the open lesion phase, wherein the concentration of said compound in the multiple doses is preferably a factor 1.5-50, preferably 2-10, lower than the concentration of said compound in said single dose. In one aspect, a method according to the invention is provided wherein said subject is suffering from, or at risk of suffering from, a Herpes simplex outbreak as a result of ultraviolet ray exposure, heat exposure, fever, dehydration, local skin trauma, a hormonal change or menstruation. In another aspect, a method according to the invention is provided wherein said Herpes simplex virus is Herpes simplex labialis, preferably HSV-1. Further provided is a method according to the invention, comprising administering to the subject at least two compounds selected from anxiolytic compounds and sedative -hypnotic compounds. Hence, according to this embodiment said subject is provided with at least two anxiolytic compounds, or with at least two sedative-hypnotic compounds, or with at least one anxiolytic compound and at least one sedative -hypnotic compound. In one aspect, at least one compound according to the invention that influences brain function and/or psychological state is administered sublabially or sublingually, preferably sublabially, to the subject. Alternatively, said at least one compound is administered topically to the subject. In one embodiment, a method according to the invention is provided wherein the subject is additionally provided with at least one antiviral compound against Herpes simplex. Said at least one antiviral compound is preferably selected from the group consisting of acyclovir, penciclovir, famciclovir, valaciclovir, docosanol, benzylammonium chloride and any combination thereof. In one aspect, said subject is provided with at least one anxiolytic compound or sedative-hypnotic compound selected from the group consisting of benzodiazepine compounds, chloralhydrates, azapirones, buspirone, tandospirone, gepirone, hydroxyzines, meprobamates, monoamine oxidase inhibitors, barbiturates, pregabalin, venlafaxine, carbamates, pyrazolopyridines, α2δ VDCC Blockers, 5-HTl A Agonists, H I Antagonists, CRHl Antagonists, NK2 Antagonists, MCH1 antagonists, mGluR2/3 Agonists, mGluR5 NAMs, TSPO agonists, ol agonists and pharmaceutically acceptable salts, esters, hydrates, derivatives and solvates of any of these compounds. In a preferred embodiment, said subject is provided with at least one benzodiazepine compound selected from the group consisting of alprazolam, tofisopam, bromazepam, 2-keto compounds (chlorodiazepoxides, clorazepates, diazepam, flurazepam, halazepam, prazepam and others), 3-hydroxy compounds (lorazepam, lormetazepam, oxazepam, temazepam and others), 7-nitro compounds (clonazepam, flunitrazepam, nimetazepam, nitrazepam and others), triazolo compounds (adinazolam, estazolam, triazolam and others), imidazo compounds (climazolam, loprazolam, midazolam and others), clobazam, etizolam, brotizolam, Zolpidem, zopiclon and pharmaceutically acceptable salts, esters, hydrates, derivatives and solvates of any of these compounds.
Recommended publications
  • Présentation HJ
    Conflits d’intérêts Astra-Zeneca, Janssen, Abacus international, Laboratoire ETAP, Institut Pasteur. Dr Hervé JAVELOT Pharmacien PH Etablissement Public de Santé Alsace Nord Service Pharmacie 141 avenue de Strasbourg 67 170 BRUMATH Tél. : 03 88 64 61 70 Fax : 03 88 64 61 58 Mail : [email protected] Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Hervé JAVELOT Etablissement Public de Santé Alsace Nord Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Traitements des troubles anxio-dépressifs. Les perspectives. ◦ L’axe GABAergique…éternellement prometteur ? ◦ L’incontournable théorie « monoaminergique »… ◦ Des théories alternatives à suivre … Traitements des troubles anxio-dépressifs. Contexte : ◦ XXI ème siècle : Le « siècle de la dépression » s’installe ? (Hardeveld et al., 2010) L’« ère de l’angoisse » s’affirme ? (Auden, 1947) ◦ Prévalence au cours de la vie : 16 à 17% pour la dépression, 17 à 18% pour les troubles anxieux Co-morbidité des 2 troubles dans 20 à 40% des cas (Antony, 2011 ; Depping et al., 2010 ; Hardeveld et al., 2010 ; Huppert, 2009) Auden WH (1947). The Age of Anxiety: A Baroque Eclogue. Random House: New York. Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman AT. Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand. 2010;122(3):184-91. Antony MM. Recent advances in the treatment of anxiety disorders. Canadian Psychology 2011;52(1), 10-19. Depping AM, Komossa K, Kissling W, Leucht S. Second-generation antipsychotics for anxiety disorders. Cochrane Database Syst Rev. 2010;(12):CD008120. Huppert JD. Anxiety disorders and depression comorbidity.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn Et Al
    US 2004O224012A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn et al. (43) Pub. Date: Nov. 11, 2004 (54) TOPICAL APPLICATION AND METHODS Related U.S. Application Data FOR ADMINISTRATION OF ACTIVE AGENTS USING LIPOSOME MACRO-BEADS (63) Continuation-in-part of application No. 10/264,205, filed on Oct. 3, 2002. (76) Inventors: Pichit Suvanprakorn, Bangkok (TH); (60) Provisional application No. 60/327,643, filed on Oct. Tanusin Ploysangam, Bangkok (TH); 5, 2001. Lerson Tanasugarn, Bangkok (TH); Suwalee Chandrkrachang, Bangkok Publication Classification (TH); Nardo Zaias, Miami Beach, FL (US) (51) Int. CI.7. A61K 9/127; A61K 9/14 (52) U.S. Cl. ............................................ 424/450; 424/489 Correspondence Address: (57) ABSTRACT Eric G. Masamori 6520 Ridgewood Drive A topical application and methods for administration of Castro Valley, CA 94.552 (US) active agents encapsulated within non-permeable macro beads to enable a wider range of delivery vehicles, to provide longer product shelf-life, to allow multiple active (21) Appl. No.: 10/864,149 agents within the composition, to allow the controlled use of the active agents, to provide protected and designable release features and to provide visual inspection for damage (22) Filed: Jun. 9, 2004 and inconsistency. US 2004/0224012 A1 Nov. 11, 2004 TOPCAL APPLICATION AND METHODS FOR 0006 Various limitations on the shelf-life and use of ADMINISTRATION OF ACTIVE AGENTS USING liposome compounds exist due to the relatively fragile LPOSOME MACRO-BEADS nature of liposomes. Major problems encountered during liposome drug Storage in vesicular Suspension are the chemi CROSS REFERENCE TO OTHER cal alterations of the lipoSome compounds, Such as phos APPLICATIONS pholipids, cholesterols, ceramides, leading to potentially toxic degradation of the products, leakage of the drug from 0001) This application claims the benefit of U.S.
    [Show full text]
  • Understanding Benzodiazephine Use, Abuse, and Detection
    Siemens Healthcare Diagnostics, the leading clinical diagnostics company, is committed to providing clinicians with the vital information they need for the accurate diagnosis, treatment and monitoring of patients. Our comprehensive portfolio of performance-driven systems, unmatched menu offering and IT solutions, in conjunction with highly responsive service, is designed to streamline workflow, enhance operational efficiency and support improved patient care. Syva, EMIT, EMIT II, EMIT d.a.u., and all associated marks are trademarks of General Siemens Healthcare Diagnostics Inc. All Drugs other trademarks and brands are the Global Division property of their respective owners. of Abuse Siemens Healthcare Product availability may vary from Diagnostics Inc. country to country and is subject 1717 Deerfield Road to varying regulatory requirements. Deerfield, IL 60015-0778 Please contact your local USA representative for availability. www.siemens.com/diagnostics Siemens Global Headquarters Global Siemens Healthcare Headquarters Siemens AG Understanding Wittelsbacherplatz 2 Siemens AG 80333 Muenchen Healthcare Sector Germany Henkestrasse 127 Benzodiazephine Use, 91052 Erlangen Germany Abuse, and Detection Telephone: +49 9131 84 - 0 www.siemens.com/healthcare www.usa.siemens.com/diagnostics Answers for life. Order No. A91DX-0701526-UC1-4A00 | Printed in USA | © 2009 Siemens Healthcare Diagnostics Inc. Syva has been R1 R2 a leading developer N and manufacturer of AB R3 X N drugs-of-abuse tests R4 for more than 30 years. R2 C Now part of Siemens Healthcare ® Diagnostics, Syva boasts a long and Benzodiazepines have as their basic chemical structure successful track record in drugs-of-abuse a benzene ring fused to a seven-membered diazepine ring. testing, and leads the industry in the All important benzodiazepines contain a 5-aryl substituent ring (ring C) and a 1,4–diazepine ring.
    [Show full text]
  • Efficient Synthesis of Pyrazolopyridines Containing a Chromane Backbone Through Domino Reaction
    Efficient synthesis of pyrazolopyridines containing a chromane backbone through domino reaction Razieh Navari1, Saeed Balalaie*1,2, Saber Mehrparvar1, Fatemeh Darvish1, Frank Rominger3, Fatima Hamdan1 and Sattar Mirzaie1 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2019, 15, 874–880. 1Peptide Chemistry Research Center, K. N. Toosi University of doi:10.3762/bjoc.15.85 Technology, P. O. Box 15875-4416, Tehran, Iran, Tel: +98-21-23064226, Fax: +98-21-22889403, 2Medical Biology Received: 07 February 2019 Research Center, Kermanshah University of Medical Sciences, Accepted: 29 March 2019 Kermanshah, Iran and 3Organisch-Chemisches Institut der Published: 11 April 2019 Universitaet Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany Associate Editor: T. J. J. Müller Email: © 2019 Navari et al.; licensee Beilstein-Institut. Saeed Balalaie* - [email protected] License and terms: see end of document. * Corresponding author Keywords: chromane; domino reaction; fused heterocyclic skeletons; pyrazolopyridines Abstract An efficient approach for the synthesis of pyrazolopyridines containing the aminochromane motif through a base-catalyzed cycliza- tion reaction is reported. The synthesis was carried out through a three-component reaction of (arylhydrazono)methyl-4H-chromen- 4-one, malononitrile, primary amines in the presence of Et3N at room temperature. However, carrying out the reaction under the same conditions without base led to a fused chromanyl-cyanopyridine. High selectivity, high atom economy, and good to high yields in addition to mild reaction conditions are the advantages of this approach. Introduction The synthesis of new fused heterocyclic backbones has always Chromone derivatives have been found to exhibit a broad range been a major challenge in the field of organic synthesis [1-3].
    [Show full text]
  • Anaesthesia for Castration of Piglets: Comparison Between Intranasal and Intramuscular Application of Ketamine, Climazolam and Azaperone
    Originalarbeiten Anaesthesia for castration of piglets: Comparison between intranasal and intramuscular application of ketamine, climazolam and azaperone S. M. Axiak1, N. Jäggin1, S. Wenger1, M. G. Doherr2, U. Schatzmann1 1Division of Anaesthesiology and 2Division of Clinical Veterinary Research, Department of Clinical Veterinary Medicine, University of Bern Summary Kurznarkose zur Kastration von neugeborenen Ferkeln: Vergleich zwischen intranasaler und intramuskulärer Applikation von Ketamin, Climazolam und Azaperon The aim of this study was to compare the effect of Ziel dieser Studie war es, eine Kombination aus an anaesthetic combination given either intramus- Ketamin, Azaperon and Climazolam intranasal oder cularly (IM) or intranasally (IN) for castration of intramuskulär Kastrationsferkeln zur Narkoseein- piglets. Forty piglets aged 4 to 7 days were ran- leitung zu verabreichen und ihre Wirkung verglei- domly assigned to receive a mixture of ketamine 15 chen. 40 Ferkel im Alter zwischen 4–7 Tagen er- mg kg-1, climazolam 1.5 mg kg-1 and azaperone hielten 15 mg/kg KGW Ketamine, 1.5 mg/kg 1.0 mg kg-1, IN or IM, 10 minutes prior to castra- KGW Climazolam und 1 mg/kg KGW Azaperon tion. Physiological parameters were measured. Cas- intranasal (IN) oder intramuskulär (IM) zehn Mi- tration was videotaped for evaluation by 3 inde- nuten vor der Kastration. Physiologische Parameter pendent observers using a scoring system. Reaction wurden aufgezeichnet. and vocalization to the skin incision and cutting of Die Kastration wurde gefilmt und von drei unab- spermatic cord was evaluated and scored (0 = no hängigen Beobachtern mittels einem Punktesys- reaction, 16 = strong reaction). The IN group had tem (Kastrationsscore) beurteilt, wobei bei den a significantly higher (P < 0.01) castration score, Hautschnitten und der Durchtrennung der Samen- compared to the IM group.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Crystal Structure Analysis of Ethyl 6-(4-Methoxyphenyl)-1-Methyl-4-Methyl- Sulfanyl-3-Phenyl-1H-Pyrazolo[3,4-B]Pyridine-5-Carboxylate
    research communications Crystal structure analysis of ethyl 6-(4-methoxy- phenyl)-1-methyl-4-methylsulfanyl-3-phenyl-1H- pyrazolo[3,4-b]pyridine-5-carboxylate ISSN 2056-9890 H. Surya Prakash Rao,a,b* Ramalingam Gunasundarib and Jayaraman Muthukumaranc‡ Received 4 June 2020 aDepartment of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida Accepted 30 June 2020 201306, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and cDepartment of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, India. *Correspon- dence e-mail: [email protected] Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India In the title compound, C24H23N3O3S, the dihedral angle between the fused ‡ Additional correspondence author, e-mail: pyrazole and pyridine rings is 1.76 (7) . The benzene and methoxy phenyl rings [email protected]. make dihedral angles of 44.8 (5) and 63.86 (5) , respectively, with the pyrazolo[3,4-b] pyridine moiety. An intramolecular short SÁÁÁO contact Keywords: crystal structure; pyrazolopyridine; [3.215 (2) A˚ ] is observed. The crystal packing features C—HÁÁÁ interactions. pyrazolo[3,4-b]pyridine; C—HÁÁÁ interactions. CCDC reference: 2005976 Supporting information: this article has 1. Chemical context supporting information at journals.iucr.org/e Pyrazolopyridines, in which a group of three nitrogen atoms is incorporated into a bicyclic heterocycle, are privileged medicinal scaffolds, often utilized in drug design and discovery regimes (Kumar et al., 2019). Owing to the possibilities of the easy synthesis of a literally unlimited number of a combina- torial library of small organic molecules with a pyrazolo- pyridine scaffold, there has been enormous interest in these molecules among medicinal chemists (Kumar et al.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • The Impact of the Nonpeptide Corticotropin-Releasing Hormone Antagonist Antalarmin on Behavioral and Endocrine Responses to Stress*
    0013-7227/99/$03.00/0 Vol. 140, No. 1 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Impact of the Nonpeptide Corticotropin-Releasing Hormone Antagonist Antalarmin on Behavioral and Endocrine Responses to Stress* TERRENCE DEAK, KIEN T. NGUYEN, ANDREA L. EHRLICH, LINDA R. WATKINS, ROBERT L. SPENCER, STEVEN F. MAIER, JULIO LICINIO, MA-LI WONG, GEORGE P. CHROUSOS, ELIZABETH WEBSTER, AND PHILIP W. GOLD Department of Psychology (T.D., K.T.N., A.L.E., L.R.W., R.L.S., S.F.M.), University of Colorado, Boulder, Colorado 80309-0345; Clinical Neuroendocrinology Branch (J.L., M.-L.W., P.W.G.), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1284; and Developmental Neuroendocrinology Branch (G.P.C., E.W.), National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1284 ABSTRACT Furthermore, because rats previously exposed to inescapable shock The nonpeptide CRH antagonist antalarmin has been shown to (IS; 100 shocks, 1.6 mA, 5 sec each), demonstrate enhanced fear block both behavioral and endocrine responses to CRH. However, it’s conditioning, we investigated whether this effect would be blocked by potential activity in blunting behavioral and endocrine sequelae of antalarmin. Antalarmin (20 mg/kgz2 ml ip) impaired both the induc- stressor exposure has not been assessed. Because antagonism of cen- tion and expression of conditioned fear. In addition, antalarmin tral CRH by a-helical CRH attenuates conditioned fear responses, we blocked the enhancement of fear conditioning produced by prior ex- sought to test antalarmin in this regard.
    [Show full text]
  • Adverse Effects of Stress on Drug Addiction
    Making a bad thing worse: adverse effects of stress on drug addiction Jessica N. Cleck, Julie A. Blendy J Clin Invest. 2008;118(2):454-461. https://doi.org/10.1172/JCI33946. Review Series Sustained exposure to various psychological stressors can exacerbate neuropsychiatric disorders, including drug addiction. Addiction is a chronic brain disease in which individuals cannot control their need for drugs, despite negative health and social consequences. The brains of addicted individuals are altered and respond very differently to stress than those of individuals who are not addicted. In this Review, we highlight some of the common effects of stress and drugs of abuse throughout the addiction cycle. We also discuss both animal and human studies that suggest treating the stress- related aspects of drug addiction is likely to be an important contributing factor to a long-lasting recovery from this disorder. Find the latest version: https://jci.me/33946/pdf Review series Making a bad thing worse: adverse effects of stress on drug addiction Jessica N. Cleck and Julie A. Blendy Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA. Sustained exposure to various psychological stressors can exacerbate neuropsychiatric disorders, including drug addiction. Addiction is a chronic brain disease in which individuals cannot control their need for drugs, despite negative health and social consequences. The brains of addicted individuals are altered and respond very differently to stress than those of individuals who are not addicted. In this Review, we highlight some of the common effects of stress and drugs of abuse throughout the addiction cycle.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]