Predominantly Occurring Phytoplankton in Ariyankuppam Coastal Waters, Southeast Coast of India

Total Page:16

File Type:pdf, Size:1020Kb

Predominantly Occurring Phytoplankton in Ariyankuppam Coastal Waters, Southeast Coast of India INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 03, MARCH 2020 ISSN 2277-8616 Predominantly Occurring Phytoplankton In Ariyankuppam Coastal Waters, Southeast Coast Of India M. Punithavalli, K. Sivakumar Abstract: The study were conducted for six months covering summer and pre monsoon seasons to analyze the seasonal variation on phytoplankton in relation with hydrological parameters in Ariyankuppam coastal waters, south east coast of India. The physico-chemical parameters such as atmospheric temperature from 32.16 to 34.23°C, water temperature from 31.13 to 33°C, pH from 8.0 to 8.3, salinity from 29.33 to 33.66‰, dissolved oxygen 3.7 to 4.06 mg/l and nitrate 0.06 to 0.095(mg/l). A total of 25 taxa were recorded dominated by Bacillariophyceae (19) followed by Dinophyceae (5) and Cyanophyceae (1). Further predominantly occurring marine phytoplankton were Coscinodiscus radiatus, Odontella mobiliensis, Navicula sp, Thalassiosira sp, Triceratium sp, Pluerosigma sp, Skeletonema sp, Ceratium furca, Ceratium sp, Dinophysis tripos and Protoperidinium depressum. Commonly occurred genera, Chaetoceros (Chaetocerotaceae), Coscinodiscus (Coscinodiscaceae) and Navicula (Naviculaceae), were subjected to Energy Dispersive Spectroscopic analysis (EDS). They were found to accumulate different, element such as Na, Mg, Si, Cl, K, Cu, Zn, Cr and Fe. Among these the member Chaetoceros contained Na, Mg, Si, Cl, K, Cu and Zn, Coscinodiscus Na, Mg, Si, Cl, Cu, Zn and Navicula Mg, Si, Cl, K, Cu, Zn, Cr and Fe. Thus these observations would determine the chemical dialogue between the cell structures and role of the elements. Further, it gives the clue about the phytoplankton growth requirements. Keywords: Ariyankuppam, Physico-chemical parameters, Phytoplankton, SEM-EDS ———————————————————— 1 INTRODUCTION The concept of employing plankton as indicator species and Phytoplankton act as important component of the marine species diversity is also the basis for functional compensation, ecosystem, liberate oxygen during photosynthesis and aid in which may leads to the effect of biodiversity on ecosystem exchange process [14] and are very sensitive to change in its functioning through compensatory dynamics. The species environment before it becomes visible on higher tropic levels and present in a community have functional roles, this may be excessive they live in any alteration in the environment leads to expected to increase total production and also include their the change in the plankton communities in terms of tolerance, abundance and biomass or growth (blooms) of algal species abundance, diversity and dominance in the habitat [6]. They play because of anthropogenic activities [1]. But still there are many a major role in global warming, by reducing the global corban such aquatic ecosystem that remains unexplored. The dioxide level [26]. The relationship between phytoplankton and Ariyankuppam seashore is one among them which has not nutrient is highly dynamics and always been the major focus received due attention. Hence, the present work is an attempt to among the explicate experimental ecology [8]. The various study the influence of physico-chemical parameters of water on anthropogenic activities are increased, which in turn to enhance phytoplankton population, species composition and community the nutrient concentration and the leads to high productivity in organization. The chemical composition of phytoplankton coastal environment [22]. The investigations of hydrological sample used for their calibration has been currently features are necessary for assessing the fertility and productivity determines by bulk analysis technique [5]. This leads to of any ecosystems [21]. The physico-chemical parameters estimation of elemental concentration for the whole samples quantity of nutrients studies of phytoplankton have been utilized without separation into separate constituents eg., algae, to assess the diversity, ecology and quantity of water of the detritus, small animal, etc., inevitably such data on natural plankton [20, 31]. Coastal ecosystem is highly vulnerable to bloom of various phytoplankton species could therefore pollution by anthropogenic activities. The human interventions, contain errors due to the presence of other species and or particularly increasing population, industrialization and tourism in detritus particles in the analyses samples. In the study, the the coastal areas are the major threats to the coastal marine elemental composition of phytoplankton is determines for environment. Such activities ultimately bring eutrophication in the individual species by X-ray micro analysis (XRMA), Thus marine environment and consequently into discrepancy of marine avoiding the above problems, XRMA has sufficient resolution ecosystem. Phytoplankton dynamics is effectively controlled by to analyze single phytoplankton cells with a mixed population few physical factors along with hydrographic properties and thus [9] and involves the simultaneous determination of a range of exhibit the seasonality pattern. elemental concentration for each cell-thus providing a comprehensive assessment of nutrient status. [27] This research represent first attempt to examine an microalgae with SEM-EDS. 2 MATERIALS AND METHODS ______________________________ • M. Punithavalli, Ph.D. Research Scholar, Department of Botany, Phytoplankton analysis Annamalai University, Annamalai Nagar - 608 002, India. E-mail: The water samples were collected from Ariyankuppam [email protected] [latitude 1188’05.08‖N, longitude 7982’59.87‖E] coastal waters • K. Sivakumar, Division of Algal Biotechnology, Department of at monthly intervals for a period of six months from April to Botany, Annamalai University, Annamalai Nagar - 608 002, India. E-mail: kshivam69@gmail. September 2018 for the estimation of temperature, pH, salinity, dissolved oxygen and nitrate. Phytoplankton samples 6560 IJSTR©2020 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 03, MARCH 2020 ISSN 2277-8616 were collected by plankton net (mesh size 20 μm) made up of The physico chemical factors and biological factors showed bolting silk cloth. The samples were collected in black variation between monthly during the six months study period. polythene bottles and immediately preserved with 4% formalin The physico-chemical parameters at Ariyankuppam coastal for quantitative and qualitative analysis. Some of the samples waters during the study period of April to September 2018 are were fixed in 3% glutaroldehyde in 0.1 M phosphate buffer (pH presented in Table.2. Among the physico-chemical 7.0) for scanning electron microscopic studies. Samples were parameters variations is temperature is one of the most then dehydrated through a graded series of alcohol 12-15 min important factors that have an influence on the distribution in interval at 4˚C. Then the dehydrated phytoplankton samples the marine ecosystems. In the present study the highest treated with critical point drier (CPD) were kept on a stub and the atmospheric temperature recorded during summer season samples were coated with gold palatium and examined in Joel 34.23˚C in the month of May and the lowest temperature JSM-56010 LV with SEM photomicrographs were taken 32.16˚C in the month of September Premonsoon season. selectively from the computer screen. Phytoplankton were Water temperature recorded during summer season 33˚C in identified using the previous works of [37, 36, 10, 32, 25, 2]. the month of May and lowest temperature 31.13˚C during Simultaneously selected portion of micrograph was subjected premonsoon season in the month of September. The to Scanning Electron Microscopy (SEM) and Energy observed high value of temperature in May was due to the Dispersive Spectroscopic analysis (EDS). This was conducted intensity of solar radiation and evaporation freshwater influx with an EDS 700 series interfaced with a data general NOVA2 and cooling and mix up with ebb and flow from adjoining computer and a Texas instrument silent 700 ASR. The EDS X- neritic waters [34]. The observed low temperature in the month ray spectrometer was interfaces with a scanning electron of September was due to strong land sea breeze and microscope (20 kv) stage. The area of different components precipitation [30]. Salinity is one of the great significant factors to such as cell wall and cellular inclusion was analyzed. To find marine life in general that regulates the quality of waters and out the fluxes of particular mineral, both the counts per second determines the extent of dissolution of gases and hydrogen ion (S-1 or CPS) value and the apparent relative atomic concentration. In the present study the highest salinity of 33.66 percentage of weight in different components of the cell wall (‰) was recorded in the month of May summer season which and cellular inclusion details were documented. can be attributed to low rainfall, decreased freshwater inflow, elevated atmospheric temperature and evaporation [23]. The lowest salinity of 29.33 (‰) was recorded in the month of September Premonsoon season may be due to heavy rainfall and large quantity of freshwater inflow as reported by [4, 33]. Salinity act as limiting factors in the distribution of living organisms and its variation caused by dilution and evaporation is most likely to influence the fauna in the coastal ecosystems [35]. The hydrogen ion concentration plays on important role in many of the life processes of aquatic organisms. In the present study minimum pH
Recommended publications
  • An Introduction to Phytoplanktons: Diversity and Ecology an Introduction to Phytoplanktons: Diversity and Ecology
    Ruma Pal · Avik Kumar Choudhury An Introduction to Phytoplanktons: Diversity and Ecology An Introduction to Phytoplanktons: Diversity and Ecology Ruma Pal • Avik Kumar Choudhury An Introduction to Phytoplanktons: Diversity and Ecology Ruma Pal Avik Kumar Choudhury Department of Botany University of Calcutta Kolkata , West Bengal , India ISBN 978-81-322-1837-1 ISBN 978-81-322-1838-8 (eBook) DOI 10.1007/978-81-322-1838-8 Springer New Delhi Heidelberg New York Dordrecht London Library of Congress Control Number: 2014939609 © Springer India 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Appendix B Wells Harbor Ecology (Materials from the Wells NERR)
    APPENDICES Appendix B Wells Harbor Ecology (materials from the Wells NERR) CHAPTER 8 Vegetation Caitlin Mullan Crain lants are primary producers that use photosynthesis ter). In this chapter, we will describe what these vegeta- to convert light energy into carbon. Plants thus form tive communities look like, special plant adaptations for Pthe base of all food webs and provide essential nutrition living in coastal habitats, and important services these to animals. In coastal “biogenic” habitats, the vegetation vegetative communities perform. We will then review also engineers the environment, and actually creates important research conducted in or affiliated with Wells the habitat on which other organisms depend. This is NERR on the various vegetative community types, giving particularly apparent in coastal marshes where the plants a unique view of what is known about coastal vegetative themselves, by trapping sediments and binding the communities of southern Maine. sediment with their roots, create the peat base and above- ground structure that defines the salt marsh. The plants OASTAL EGETATION thus function as foundation species, dominant C V organisms that modify the physical environ- Macroalgae ment and create habitat for numerous dependent Algae, commonly known as seaweeds, are a group of organisms. Other vegetation types in coastal non-vascular plants that depend on water for nutrient systems function in similar ways, particularly acquisition, physical support, and seagrass beds or dune plants. Vegetation is reproduction. Algae are therefore therefore important for numerous reasons restricted to living in environ- including transforming energy to food ments that are at least occasionally sources, increasing biodiversity, and inundated by water.
    [Show full text]
  • Planktonic Communities and Trophic Interactions in the North Equatorial Pacific Ocean
    Planktonic Communities and Trophic Interactions in the North Equatorial Pacific Ocean KJ Hoffman Stanford University ABSTRACT The complex relationships between marine planktonic trophic levels are not yet well understood, despite the importance of the plankton community in the global carbon cycle and its role as a food source for commercial fisheries. In this study, phytoplankton and zooplankton community samples were collected and identified along a transect from a Hawaiian cyclonic eddy, through the oligotrophic North Pacific gyre, to the high- nutrient equatorial ocean. Within the phytoplankton community, siliceous diatoms and dinoflagellates were found to respond differently to environmental fluctuations, with more significant correlations between nutrient availability and diatoms than dinoflagellates. Differential responses by different trophic communities were also found, with bottom-up forcings more important for phytoplankton communities and top-down influences primarily controlling zooplankton. Using the different productivities along this transect, planktonic biodiversity was correlated with resource availability. Phytoplankton, due to competitive exclusion, have higher diversity at lower productivities. Zooplankton, due to predation influences, have higher diversity at higher productivities. By tracking changes in planktonic biodiversity over time, both top-down effects from anthropogenic influences like overfishing and bottom-up forcings from nutrient runoff and ocean acidification may be revealed. INTRODUCTION While much scientific research in the Pacific Ocean has addressed the physical limitations of the environment on various taxonomic or functional groups in the marine ecosystem, there has been less of a focus on the interactions of multiple trophic levels in the complete ecological food web. In order to monitor the health of the entire marine system, it will be important to maintain a record of the species diversity that currently exists and begin to assess changes over time.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Phytoplankton Checklist.Pdf
    States/Authors Bulgaria: Snejana MONCHEVA, Natalya SLABAKOVA, Radka MAVRODIEVA Georgia: Romania: Laura BOICENCO, Oana CULCEA Russian Federation: Turkey: Fatih SAHIN Ukraine: Contact details: NAME ORGANIZATION E-MAIL ADDRESS Snejana MONCHEVA Institute of Oceanology, Varna, Bulgaria [email protected] Natalya SLABAKOVA Institute of Oceanology, Varna, Bulgaria [email protected] Radka MAVRODIEVA Institute of Oceanology, Varna, Bulgaria [email protected] Laura BOICENCO National Institute for Marine Research and Development, Constanta, Romania [email protected] Oana CULCEA National Institute for Marine Research and Development, Constanta, Romania [email protected] Fatih SAHIN Fisheries Faculty, Sinop University, Sinop, Turkey [email protected] Abbreviations used: Black Sea countries BG BULGARIA GE GEORGIA RO ROMANIA RU RUSSIAN FEDERATION TR TURKEY UA UKRAINE Acknowledgements: Special thanks are given to each of the author, for their participation in establishing the list of non-native phytoplnakton species for the Black Sea. 1 Contents Phytoplankton diversity: .............................................................................................................. 3 Black Sea phytobenthos check list ............................................................................................... 5 References ................................................................................................................................ 100 2 Phytoplankton diversity: Phytoplankton as the foundation of marine trophic chain is among the best
    [Show full text]
  • As a Novel Vector of Ciguatera Poisoning: Detection of Pacific Ciguatoxins in Toxic Samples from Nuku Hiva Island (French Polynesia)
    toxins Article Tectus niloticus (Tegulidae, Gastropod) as a Novel Vector of Ciguatera Poisoning: Detection of Pacific Ciguatoxins in Toxic Samples from Nuku Hiva Island (French Polynesia) Hélène Taiana Darius 1,*,† ID ,Mélanie Roué 2,† ID , Manoella Sibat 3 ID ,Jérôme Viallon 1, Clémence Mahana iti Gatti 1, Mark W. Vandersea 4, Patricia A. Tester 5, R. Wayne Litaker 4, Zouher Amzil 3 ID , Philipp Hess 3 ID and Mireille Chinain 1 1 Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae—UMR 241-EIO, P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; [email protected] (J.V.); [email protected] (C.M.i.G.); [email protected] (M.C.) 2 Institut de Recherche pour le Développement (IRD)—UMR 241-EIO, P.O. Box 529, 98713 Papeete, Tahiti, French Polynesia; [email protected] 3 IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France; [email protected] (M.S.); [email protected] (Z.A.); [email protected] (P.H.) 4 National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; [email protected] (M.W.V.); [email protected] (R.W.L.) 5 Ocean Tester, LLC, Beaufort, NC 28516, USA; [email protected] * Correspondence: [email protected]; Tel.: +689-40-416-484 † These authors contributed equally to this work. Received: 25 November 2017; Accepted: 18 December 2017; Published: 21 December 2017 Abstract: Ciguatera fish poisoning (CFP) is a foodborne disease caused by the consumption of seafood (fish and marine invertebrates) contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genus Gambierdiscus.
    [Show full text]
  • Changes in the Composition of Marine and Sea-Ice Diatoms Derived from Sedimentary Ancient DNA of the Eastern Fram Strait Over the Past 30,000 Years Heike H
    Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30,000 years Heike H. Zimmermann1, Kathleen R. Stoof-Leichsenring1, Stefan Kruse1, Juliane Müller2,3,4, Ruediger 5 Stein2,3,4, Ralf Tiedemann2, Ulrike Herzschuh1,5,6 1Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, 14473, Germany 2Marine Geology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany 3MARUM, University of Bremen, 28359 Bremen, Germany 10 4Faculty of Geosciences, University of Bremen, 28334 Bremen, Germany 5Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany 6Institute of Environmental Sciences and Geography, University of Potsdam, 14476 Potsdam, Germany Correspondence to: Heike H. Zimmermann ([email protected]) Abstract. The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, 15 and thus microfossil records are scarce, rarely exceed the Holocene and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2, resulted in 95.7 % of our sequences being assigned to diatoms across 18 different families with 38.6 % of them being resolved to species and 25.8 % to genus level. Independent replicates show high similarity of PCR products, especially in the oldest 20 samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late-Holocene samples.
    [Show full text]
  • The Ecology and Glycobiology of Prymnesium Parvum
    The Ecology and Glycobiology of Prymnesium parvum Ben Adam Wagstaff This thesis is submitted in fulfilment of the requirements of the degree of Doctor of Philosophy at the University of East Anglia Department of Biological Chemistry John Innes Centre Norwich September 2017 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Page | 1 Abstract Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms (HABs) globally, leading to large scale fish kills that have severe ecological and economic implications. A HAB on the Norfolk Broads, U.K, in 2015 caused the deaths of thousands of fish. Using optical microscopy and 16S rRNA gene sequencing of water samples, P. parvum was shown to dominate the microbial community during the fish-kill. Using liquid chromatography-mass spectrometry (LC-MS), the ladder-frame polyether prymnesin-B1 was detected in natural water samples for the first time. Furthermore, prymnesin-B1 was detected in the gill tissue of a deceased pike (Exos lucius) taken from the site of the bloom; clearing up literature doubt on the biologically relevant toxins and their targets. Using microscopy, natural P. parvum populations from Hickling Broad were shown to be infected by a virus during the fish-kill. A new species of lytic virus that infects P. parvum was subsequently isolated, Prymnesium parvum DNA virus (PpDNAV-BW1).
    [Show full text]
  • Phd Thesis the Taxa Are Listed Alphabetically Within the Bacteriastrum Genera and Each of the Chaetoceros Generic Subdivision (Subgenera)
    FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY INTERDISCIPLINARY DOCTORAL STUDY IN OCEANOLOGY Sunčica Bosak TAXONOMY AND ECOLOGY OF THE PLANKTONIC DIATOM FAMILY CHAETOCEROTACEAE (BACILLARIOPHYTA) FROM THE ADRIATIC SEA DOCTORAL THESIS Zagreb, 2013 PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK INTERDISCIPLINARNI DOKTORSKI STUDIJ IZ OCEANOLOGIJE Sunčica Bosak TAKSONOMIJA I EKOLOGIJA PLANKTONSKIH DIJATOMEJA IZ PORODICE CHAETOCEROTACEAE (BACILLARIOPHYTA) U JADRANSKOM MORU DOKTORSKI RAD Zagreb, 2013 FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY INTERDISCIPLINARY DOCTORAL STUDY IN OCEANOLOGY Sunčica Bosak TAXONOMY AND ECOLOGY OF THE PLANKTONIC DIATOM FAMILY CHAETOCEROTACEAE (BACILLARIOPHYTA) FROM THE ADRIATIC SEA DOCTORAL THESIS Supervisors: Dr. Diana Sarno Prof. Damir Viličić Zagreb, 2013 PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK INTERDISCIPLINARNI DOKTORSKI STUDIJ IZ OCEANOLOGIJE Sunčica Bosak TAKSONOMIJA I EKOLOGIJA PLANKTONSKIH DIJATOMEJA IZ PORODICE CHAETOCEROTACEAE (BACILLARIOPHYTA) U JADRANSKOM MORU DOKTORSKI RAD Mentori: Dr. Diana Sarno Prof. dr. sc. Damir Viličić Zagreb, 2013 This doctoral thesis was made in the Division of Biology, Faculty of Science, University of Zagreb under the supervision of Prof. Damir Viličić and in one part in Stazione Zoologica Anton Dohrn in Naples, Italy under the supervision of Diana Sarno. The doctoral thesis was made within the University interdisciplinary doctoral study in Oceanology at the Department of Geology, Faculty of Science, University of Zagreb. The presented research was mainly funded by the Ministry of Science, Education and Sport of the Republic of Croatia Project No. 119-1191189-1228 and partially by the two transnational access projects (BIOMARDI and NOTCH) funded by the European Community – Research Infrastructure Action under the FP7 ‘‘Capacities’’ Specific Programme (Ref. ASSEMBLE grant agreement no. 227799). ACKNOWLEDGEMENTS ... to my Croatian supervisor and my boss, Prof.
    [Show full text]
  • Centric Diatoms (Coscinodiscophyceae) of Fresh and Brackish Water Bodies of the Southern Part of the Russian Far East
    Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology Vol. XXXVIII, No.2 Institute of Oceanography (139-164) University of Gdańsk ISSN 1730-413X 2009 eISSN 1897-3191 Received: May 13, 2008 DOI 10.2478/v10009-009-0018-4 Review paper Accepted: May 13, 2009 Centric diatoms (Coscinodiscophyceae) of fresh and brackish water bodies of the southern part of the Russian Far East Lubov A. Medvedeva1∗, Tatyana V. Nikulina1, Sergey I. Genkal2 1Institute of Biology and Soil, Far East Branch Russian Academy of Sciences 100 Years of Vladivostok Ave., 159, Vladivostok-22, 690022, Russia 2I.D. Papanin Institute of Biology of Inland Waters Russian Academy of Sciences Borok, Yaroslavl, 152742, Russia Key words: centric diatoms, fresh water algae, brackish water algae, Russia Abstract Anotated list of centric diatoms (Coscinodiscophyceae) of fresh and brackish water bodies of the southern Russian Far East, based on the authors’ data, supplemented by the published literature, is given. It includes 143 algae species (including varieties and forms – 159 taxa) representing 38 genera, 22 families and 14 orders. ∗ Corresponding autor: [email protected] Copyright© by Institute of Oceanography, University of Gdańsk, Poland www.oandhs.org 140 L.A. Medvedeva, T.V. Nikulina, S.I. Genkal ABBREVIATIONS AR – Amur region; JAR – Jewish Autonomous region; KHR – Khabarovsky region; PR – Primorsky region; SR – Sakhalin region; NR- nature reserve; BR- biosphere reserve; NBR- nature biosphere reserve. INTRODUCTION Today there is a significant amount of data on modern diatoms of continental water bodies of the Russian Far East. The results of floristic investigations on diatoms in North-East Asia and the American sector of Beringia were summarized by Kharitonov (Kharitonov (Charitonov) 2001, 2005a-c).
    [Show full text]
  • Phytoplankton Identification Catalogue Saldanha Bay, South Africa
    Phytoplankton Global Ballast Water Management Programme Identification Catalogue GLOBALLAST MONOGRAPH SERIES NO.7 Phytoplankton Identification Catalogue Saldanha Bay, South Africa Saldanha Bay, APRIL 2001 Saldanha Bay, South Africa Lizeth Botes GLOBALLAST MONOGRAPH SERIES More Information? Programme Coordination Unit Global Ballast Water Management Programme International Maritime Organization 4 Albert Embankment London SE1 7SR United Kingdom Tel: +44 (0)20 7587 3247 or 3251 Fax: +44 (0)20 7587 3261 Web: http://globallast.imo.org NO.7 Marine and Coastal University of Management Cape Town A cooperative initiative of the Global Environment Facility, United Nations Development Programme and International Maritime Organization. Cover designed by Daniel West & Associates, London. Tel (+44) 020 7928 5888 www.dwa.uk.com (+44) 020 7928 5888 www.dwa.uk.com & Associates, London. Tel Cover designed by Daniel West GloBallast Monograph Series No. 7 Phytoplankton Identification Catalogue Saldanha Bay, South Africa April 2001 Botes, L.1 Marine and Coastal University of Management Cape Town 1 Marine and Coastal Management, Private Bag X2, Rogge Bay, Cape Town 8012, South Africa. [email protected] International Maritime Organization ISSN 1680-3078 Published in May 2003 by the Programme Coordination Unit Global Ballast Water Management Programme International Maritime Organization 4 Albert Embankment, London SE1 7SR, UK Tel +44 (0)20 7587 3251 Fax +44 (0)20 7587 3261 Email [email protected] Web http://globallast.imo.org The correct citation of this report is: Botes, L. 2003. Phytoplankton Identification Catalogue – Saldanha Bay, South Africa, April 2001. GloBallast Monograph Series No. 7. IMO London. The Global Ballast Water Management Programme (GloBallast) is a cooperative initiative of the Global Environment Facility (GEF), United Nations Development Programme (UNDP) and International Maritime Organization (IMO) to assist developing countries to reduce the transfer of harmful organisms in ships’ ballast water.
    [Show full text]