National Institute of Marine Biology, Ecology and Biotechnologies

Total Page:16

File Type:pdf, Size:1020Kb

National Institute of Marine Biology, Ecology and Biotechnologies Stazione Zoologica “Anton Dohrn” National Institute of Marine Biology, Ecology and Biotechnologies Activity Report 2019 1 EXECUTIVE SUMMARY .............................................................................................................................................. 4 2 EXTENDED SUMMARY .............................................................................................................................................. 5 3 RESEARCH ORGANIZATION ....................................................................................................................................... 9 3.1 THE RESEARCH @SZN WITHIN THE NATIONAL RESEARCH PROGRAMME 2015‐2020 ............................................. 10 3.2 SZN IN THE NATIONAL AND INTERNATIONAL SCIENTIFIC CONTEXT ...................................................................... 11 3.3 SUMMARY OF THE 10 YEAR VISION DOCUMENT OF RESEARCH OF THE INSTITUTE .............................................. 14 3.4 SCIENTIFIC AND TECHNOLOGICAL RESEARCH STRUCTURES................................................................................. 16 3.4.1 Department of Biology and Evolution of Marine Organisms............................................................................. 18 3.4.2 Department of Integrative Marine Ecology ....................................................................................................... 21 3.4.3 Marine Biotechnology Department ................................................................................................................... 27 3.4.4 Research Infrastructures for marine biological resources Department ............................................................. 31 3.4.5 Third Mission Area ............................................................................................................................................. 39 3.5 THE SZN SEATS ............................................................................................................................................................. 43 3.5.1 Seat in Villa Comunale ....................................................................................................................................... 43 3.5.2 Villa Dohrn – Ischia ............................................................................................................................................ 43 3.5.3 Headquarter of the Marine Biotechnology Department (Naples) ..................................................................... 44 3.5.4 The Portici Centre .............................................................................................................................................. 45 4 SCIENTIFIC ACTIVITIES ............................................................................................................................................. 46 4.1 RESEARCH RESULTS OF THE SZN IN 2019 ........................................................................................................... 47 4.2 HOT TOPICS AND RESEARCH HIGHLIGHTS 2019 ................................................................................................ 64 4.3 STRATEGIC GEOGRAPHICAL AREAS ...................................................................................................................... 78 4.4 SZN STRATEGIC VISION FOR THE THREE YEAR PERIOD 2020-2022 ................................................................... 82 4.5 SCIENTIFIC PROGRAMMING OF SZN FOR THE THREE YEARS 2020-2022 .............................................................. 83 4.5.1 Function, adaptation and evolution in marine organisms ................................................................................ 83 4.5.2 Multiscale approach to marine biodiversity ...................................................................................................... 89 4.5.3 Integrated approach to the study and management of the ecosystem ............................................................ 92 4.5.4 Sustainable Exploitation of Marine Biological Resources .................................................................................. 97 4.6 METRICS OF SCIENTIFIC PRODUCTIVITY ............................................................................................................... 103 5 INSTITUTIONAL RESEARCH ACTIVITIES................................................................................................................... 109 5.1 STRATEGIES FOR THE INSTITUTIONAL RESEARCH OF THE SZN ........................................................................... 110 5.2 MANAGEMENT OF THE EUROPEAN RESEARCH INFRASTRUCTURE - EMBRC ..................................................... 111 5.3 NETWORKING AND MANAGEMENT ACTIVITIES IN RESEARCH INFRASTRUCTURES .......................................... 113 5.4 CHARACTERIZATION AND RESTORATION OF CONTAMINATED SITES OF NATIONAL INTEREST ................................ 114 5.5 THE NAGOYA PROTOCOL ON THE ACCESS TO MARINE GENETIC RESOURCES ................................................... 115 5.6 SUPPORT TO CITES FOR MARINE PROTECTED SPECIES ....................................................................................... 117 5.7 RECOVERY AND REHABILITATION OF MARINE TURTLES .................................................................................... 118 5.8 DATABASE MANAGEMENT ................................................................................................................................. 119 6 THIRD MISSION ACTIVITIES .................................................................................................................................... 120 6.1 PURPOSE AND OBJECTIVES ................................................................................................................................. 121 6.2 SERVICES FOR RESEARCH AND THIRD PARTIES ................................................................................................... 125 6.3 MANAGEMENT OF INTELLECTUAL PROPERTY .................................................................................................... 127 6.4 PRIVATE COMPANIES PARTICIPATED BY SZN ..................................................................................................... 130 6.5 PARTNERSHIPS WITH SCIENTIFIC INSTITUTIONS AND RESEARCH INFRASTRUCTURES ..................................... 132 6.6 PUBLIC-PRIVATE PARTNERSHIPS ........................................................................................................................ 133 6.7 HIGHER EDUCATION ................................................................................................................................................... 134 7 RESEARCH INFRASTRUCTURES ............................................................................................................................... 139 7.1 DEVELOPMENT OF INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL MONITORING ................................. 140 7.2 MAINTENANCE/BREEDING OF MODEL ORGANISMS ......................................................................................... 142 7.3 NEW TECHNOLOGIES FOR MARINE RESEARCH ................................................................................................... 143 7.4 NEW BIO-IMAGING TECHNOLOGIES ................................................................................................................... 144 7.5 DATA INFRASTRUCTURE ..................................................................................................................................... 145 2 7.6 ADVANCED MARINE RESEARCH AND INFRASTRUCTURE CENTRE ...................................................................... 146 8 RESEARCH PROJECTS AND INNOVATION ............................................................................................................... 147 8.1 INTERNATIONAL RESEARCH PROJECTS ............................................................................................................... 148 8.2 EUROPEAN RESEARCH PROJECTS ........................................................................................................................ 155 8.3 NATIONAL RESEARCH PROJECTS ......................................................................................................................... 159 8.4 FINANCING FOR INFRASTRUCTURES .................................................................................................................. 165 8.6 MINISTRY UNIVERSITY AND RESEARCH FUNDED PROJECTS ............................................................................... 170 8.7 FLAGSHIP RESEARCH PROJECTS FUNDED BY SZN ............................................................................................... 173 8.8 REGIONAL PROJECTS ........................................................................................................................................... 174 8.9 PROJECTS FROM OTHER FINANCIAL SOURCES ................................................................................................... 178 8.10 RESEARCH PROJECTS IN NATIONAL CLUSTERS ................................................................................................... 180 8.11 PROJECT FINANCING FOR INFRASTRUCTURES ...................................................................................................... 182 8.12 PARTICIPATION IN INTERNATIONAL ORGANIZATION ........................................................................................ 184 8.13 S.W.O.T. ANALYSIS .............................................................................................................................................
Recommended publications
  • An Introduction to Phytoplanktons: Diversity and Ecology an Introduction to Phytoplanktons: Diversity and Ecology
    Ruma Pal · Avik Kumar Choudhury An Introduction to Phytoplanktons: Diversity and Ecology An Introduction to Phytoplanktons: Diversity and Ecology Ruma Pal • Avik Kumar Choudhury An Introduction to Phytoplanktons: Diversity and Ecology Ruma Pal Avik Kumar Choudhury Department of Botany University of Calcutta Kolkata , West Bengal , India ISBN 978-81-322-1837-1 ISBN 978-81-322-1838-8 (eBook) DOI 10.1007/978-81-322-1838-8 Springer New Delhi Heidelberg New York Dordrecht London Library of Congress Control Number: 2014939609 © Springer India 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Appendix B Wells Harbor Ecology (Materials from the Wells NERR)
    APPENDICES Appendix B Wells Harbor Ecology (materials from the Wells NERR) CHAPTER 8 Vegetation Caitlin Mullan Crain lants are primary producers that use photosynthesis ter). In this chapter, we will describe what these vegeta- to convert light energy into carbon. Plants thus form tive communities look like, special plant adaptations for Pthe base of all food webs and provide essential nutrition living in coastal habitats, and important services these to animals. In coastal “biogenic” habitats, the vegetation vegetative communities perform. We will then review also engineers the environment, and actually creates important research conducted in or affiliated with Wells the habitat on which other organisms depend. This is NERR on the various vegetative community types, giving particularly apparent in coastal marshes where the plants a unique view of what is known about coastal vegetative themselves, by trapping sediments and binding the communities of southern Maine. sediment with their roots, create the peat base and above- ground structure that defines the salt marsh. The plants OASTAL EGETATION thus function as foundation species, dominant C V organisms that modify the physical environ- Macroalgae ment and create habitat for numerous dependent Algae, commonly known as seaweeds, are a group of organisms. Other vegetation types in coastal non-vascular plants that depend on water for nutrient systems function in similar ways, particularly acquisition, physical support, and seagrass beds or dune plants. Vegetation is reproduction. Algae are therefore therefore important for numerous reasons restricted to living in environ- including transforming energy to food ments that are at least occasionally sources, increasing biodiversity, and inundated by water.
    [Show full text]
  • Planktonic Communities and Trophic Interactions in the North Equatorial Pacific Ocean
    Planktonic Communities and Trophic Interactions in the North Equatorial Pacific Ocean KJ Hoffman Stanford University ABSTRACT The complex relationships between marine planktonic trophic levels are not yet well understood, despite the importance of the plankton community in the global carbon cycle and its role as a food source for commercial fisheries. In this study, phytoplankton and zooplankton community samples were collected and identified along a transect from a Hawaiian cyclonic eddy, through the oligotrophic North Pacific gyre, to the high- nutrient equatorial ocean. Within the phytoplankton community, siliceous diatoms and dinoflagellates were found to respond differently to environmental fluctuations, with more significant correlations between nutrient availability and diatoms than dinoflagellates. Differential responses by different trophic communities were also found, with bottom-up forcings more important for phytoplankton communities and top-down influences primarily controlling zooplankton. Using the different productivities along this transect, planktonic biodiversity was correlated with resource availability. Phytoplankton, due to competitive exclusion, have higher diversity at lower productivities. Zooplankton, due to predation influences, have higher diversity at higher productivities. By tracking changes in planktonic biodiversity over time, both top-down effects from anthropogenic influences like overfishing and bottom-up forcings from nutrient runoff and ocean acidification may be revealed. INTRODUCTION While much scientific research in the Pacific Ocean has addressed the physical limitations of the environment on various taxonomic or functional groups in the marine ecosystem, there has been less of a focus on the interactions of multiple trophic levels in the complete ecological food web. In order to monitor the health of the entire marine system, it will be important to maintain a record of the species diversity that currently exists and begin to assess changes over time.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Phytoplankton Checklist.Pdf
    States/Authors Bulgaria: Snejana MONCHEVA, Natalya SLABAKOVA, Radka MAVRODIEVA Georgia: Romania: Laura BOICENCO, Oana CULCEA Russian Federation: Turkey: Fatih SAHIN Ukraine: Contact details: NAME ORGANIZATION E-MAIL ADDRESS Snejana MONCHEVA Institute of Oceanology, Varna, Bulgaria [email protected] Natalya SLABAKOVA Institute of Oceanology, Varna, Bulgaria [email protected] Radka MAVRODIEVA Institute of Oceanology, Varna, Bulgaria [email protected] Laura BOICENCO National Institute for Marine Research and Development, Constanta, Romania [email protected] Oana CULCEA National Institute for Marine Research and Development, Constanta, Romania [email protected] Fatih SAHIN Fisheries Faculty, Sinop University, Sinop, Turkey [email protected] Abbreviations used: Black Sea countries BG BULGARIA GE GEORGIA RO ROMANIA RU RUSSIAN FEDERATION TR TURKEY UA UKRAINE Acknowledgements: Special thanks are given to each of the author, for their participation in establishing the list of non-native phytoplnakton species for the Black Sea. 1 Contents Phytoplankton diversity: .............................................................................................................. 3 Black Sea phytobenthos check list ............................................................................................... 5 References ................................................................................................................................ 100 2 Phytoplankton diversity: Phytoplankton as the foundation of marine trophic chain is among the best
    [Show full text]
  • Predominantly Occurring Phytoplankton in Ariyankuppam Coastal Waters, Southeast Coast of India
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 03, MARCH 2020 ISSN 2277-8616 Predominantly Occurring Phytoplankton In Ariyankuppam Coastal Waters, Southeast Coast Of India M. Punithavalli, K. Sivakumar Abstract: The study were conducted for six months covering summer and pre monsoon seasons to analyze the seasonal variation on phytoplankton in relation with hydrological parameters in Ariyankuppam coastal waters, south east coast of India. The physico-chemical parameters such as atmospheric temperature from 32.16 to 34.23°C, water temperature from 31.13 to 33°C, pH from 8.0 to 8.3, salinity from 29.33 to 33.66‰, dissolved oxygen 3.7 to 4.06 mg/l and nitrate 0.06 to 0.095(mg/l). A total of 25 taxa were recorded dominated by Bacillariophyceae (19) followed by Dinophyceae (5) and Cyanophyceae (1). Further predominantly occurring marine phytoplankton were Coscinodiscus radiatus, Odontella mobiliensis, Navicula sp, Thalassiosira sp, Triceratium sp, Pluerosigma sp, Skeletonema sp, Ceratium furca, Ceratium sp, Dinophysis tripos and Protoperidinium depressum. Commonly occurred genera, Chaetoceros (Chaetocerotaceae), Coscinodiscus (Coscinodiscaceae) and Navicula (Naviculaceae), were subjected to Energy Dispersive Spectroscopic analysis (EDS). They were found to accumulate different, element such as Na, Mg, Si, Cl, K, Cu, Zn, Cr and Fe. Among these the member Chaetoceros contained Na, Mg, Si, Cl, K, Cu and Zn, Coscinodiscus Na, Mg, Si, Cl, Cu, Zn and Navicula Mg, Si, Cl, K, Cu, Zn, Cr and Fe. Thus these observations would determine the chemical dialogue between the cell structures and role of the elements. Further, it gives the clue about the phytoplankton growth requirements.
    [Show full text]
  • Review of the Western Atlantic Species of Bollmannia (Teleostei: Gobiidae: Gobiosomatini) with the Description of a New Allied Genus and Species
    aqua, International Journal of Ichthyology Review of the western Atlantic species of Bollmannia (Teleostei: Gobiidae: Gobiosomatini) with the description of a new allied genus and species James L. Van Tassell1*, Luke Tornabene2, Patrick L. Colin3 1) American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, U.S.A. *Corresponding author: [email protected] 2) Texas A&M University – Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, U.S.A. 3) Coral Reef Research Foundation P.O. Box 1765 Koror, Palau 96940 Received: 20 May 2011 – Accepted: 30 September 2011 Abstract Résumé Bollmannia Jordan is a poorly studied group of American Bollmannia Jordan est un groupe peu étudié de gobies seven-spined gobies with representatives in the tropical américains à sept épines avec des représentants dans l’Atlan- and subtropical western Atlantic and tropical eastern Pa - tique ouest tropical et subtropical et dans le Pacifique est cific oceans. We review the taxonomy of the western tropical. Nous faisons une révision de espèces de l’Atlantique Atlantic species and provide redescriptions for the four ouest et donnons la redescription des quatre espèces recon- valid species: B. boqueronensis, B. communis, B. eigenmanni nues : B. boqueronensis, B. communis, B. eigenmanni et B. and B. litura. Bollmannia jeannae is considered to be a litura. Bollmannia jeannae est considéré comme un syn- junior synonym of B. boqueronensis. We also describe a onyme plus récent de B. boqueronensis. Nous décrivons aussi new genus and species of deep-water goby and discuss its un nouveau genre et une nouvelle espèce de gobie des eaux affinities to Bollmannia and other genera of the Micro - profondes et en discutons les affinités avec Bollmannia et gobius group of the Gobiosomatini.
    [Show full text]
  • As a Novel Vector of Ciguatera Poisoning: Detection of Pacific Ciguatoxins in Toxic Samples from Nuku Hiva Island (French Polynesia)
    toxins Article Tectus niloticus (Tegulidae, Gastropod) as a Novel Vector of Ciguatera Poisoning: Detection of Pacific Ciguatoxins in Toxic Samples from Nuku Hiva Island (French Polynesia) Hélène Taiana Darius 1,*,† ID ,Mélanie Roué 2,† ID , Manoella Sibat 3 ID ,Jérôme Viallon 1, Clémence Mahana iti Gatti 1, Mark W. Vandersea 4, Patricia A. Tester 5, R. Wayne Litaker 4, Zouher Amzil 3 ID , Philipp Hess 3 ID and Mireille Chinain 1 1 Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae—UMR 241-EIO, P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; [email protected] (J.V.); [email protected] (C.M.i.G.); [email protected] (M.C.) 2 Institut de Recherche pour le Développement (IRD)—UMR 241-EIO, P.O. Box 529, 98713 Papeete, Tahiti, French Polynesia; [email protected] 3 IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France; [email protected] (M.S.); [email protected] (Z.A.); [email protected] (P.H.) 4 National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; [email protected] (M.W.V.); [email protected] (R.W.L.) 5 Ocean Tester, LLC, Beaufort, NC 28516, USA; [email protected] * Correspondence: [email protected]; Tel.: +689-40-416-484 † These authors contributed equally to this work. Received: 25 November 2017; Accepted: 18 December 2017; Published: 21 December 2017 Abstract: Ciguatera fish poisoning (CFP) is a foodborne disease caused by the consumption of seafood (fish and marine invertebrates) contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genus Gambierdiscus.
    [Show full text]
  • Changes in the Composition of Marine and Sea-Ice Diatoms Derived from Sedimentary Ancient DNA of the Eastern Fram Strait Over the Past 30,000 Years Heike H
    Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30,000 years Heike H. Zimmermann1, Kathleen R. Stoof-Leichsenring1, Stefan Kruse1, Juliane Müller2,3,4, Ruediger 5 Stein2,3,4, Ralf Tiedemann2, Ulrike Herzschuh1,5,6 1Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, 14473, Germany 2Marine Geology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany 3MARUM, University of Bremen, 28359 Bremen, Germany 10 4Faculty of Geosciences, University of Bremen, 28334 Bremen, Germany 5Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany 6Institute of Environmental Sciences and Geography, University of Potsdam, 14476 Potsdam, Germany Correspondence to: Heike H. Zimmermann ([email protected]) Abstract. The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, 15 and thus microfossil records are scarce, rarely exceed the Holocene and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2, resulted in 95.7 % of our sequences being assigned to diatoms across 18 different families with 38.6 % of them being resolved to species and 25.8 % to genus level. Independent replicates show high similarity of PCR products, especially in the oldest 20 samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late-Holocene samples.
    [Show full text]
  • The Ecology and Glycobiology of Prymnesium Parvum
    The Ecology and Glycobiology of Prymnesium parvum Ben Adam Wagstaff This thesis is submitted in fulfilment of the requirements of the degree of Doctor of Philosophy at the University of East Anglia Department of Biological Chemistry John Innes Centre Norwich September 2017 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Page | 1 Abstract Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms (HABs) globally, leading to large scale fish kills that have severe ecological and economic implications. A HAB on the Norfolk Broads, U.K, in 2015 caused the deaths of thousands of fish. Using optical microscopy and 16S rRNA gene sequencing of water samples, P. parvum was shown to dominate the microbial community during the fish-kill. Using liquid chromatography-mass spectrometry (LC-MS), the ladder-frame polyether prymnesin-B1 was detected in natural water samples for the first time. Furthermore, prymnesin-B1 was detected in the gill tissue of a deceased pike (Exos lucius) taken from the site of the bloom; clearing up literature doubt on the biologically relevant toxins and their targets. Using microscopy, natural P. parvum populations from Hickling Broad were shown to be infected by a virus during the fish-kill. A new species of lytic virus that infects P. parvum was subsequently isolated, Prymnesium parvum DNA virus (PpDNAV-BW1).
    [Show full text]