Parkinson's Disease in the United States

Total Page:16

File Type:pdf, Size:1020Kb

Parkinson's Disease in the United States Drugs used in Parkinson’s disease Parkinson’s disease – paralysis agitans, was first described by the British physician James Parkinson in 1817. 150 years later the neurobiochemical etiology of this disease was established. Parkinson’s disease is a degenerative disease which progressively destroys the nervous cells of the substantia nigra in the brain stem. These cells control the coordination of movements by releasing dopamine to the striatum. 1 Parkinson’s disease – symptoms and causes • While the neurons producing dopamine atrophy the deficiency of dopamine in the striatum causes the neurons producing ACh to become overactive and triggers a chain of defective signals which lead to movement impairment. • Dopamine deficiency is also accompanied by the increased activity of glutamate neurons. 2 Symptoms of Parkinson’s disease (1) The following symptoms are characteristic of Parkinson’s disease: • muscle tremor - rhythmical shaking in an arm or leg, especially when it is not being moved, in the initial stage of Parkinson’s disease • suppression of voluntary movements (hypokinesis) - slower movements – a sick person can freeze (monumental form) and his or her handwriting changes (the letters become smaller and smaller) • rigor – the stiffening of muscles - which causes posture disorders as a result of changes in the centre of gravity in the body, such as leaning forward (rarely backwards), walking with short steps and shuffling the feet, problems with balance and motor coordination, diminished command of the hands, reduced mimical facial movements and increasingly slurred speech to the point of incomprehensibility. 3 Symptoms of Parkinson’s disease (2) • Motor disorders are accompanied by functional disorders of the vegetative nervous system (increased salivation, hyperhidrosis) and of the CNS (depression gradually turning into dementia, the slowing of thinking processes). Nonmotor symptoms are results of the necrobiosis of other neurons in other areas of the brain. Initially most of the motor and nonmotor symptoms are slight but over time they intensify and, usually after 5-15 years, the patient is totally incapacitated. • The symptoms of Parkinson’s disease are observed when approx. 70% of the dopaminergic neurons of the substantia nigra are destroyed. 4 The causes of Parkinson’s disease (1) The cause of damage which leads to the atrophy of various types of neurons has not been explained. The hypothetical causes of the atrophy of neurons are: • oxidative stress (overproduction of free radicals in microglia such as nitrogen oxide and superoxide anionradical) • genetic factors; In some cases the cause of the disease can be the defect of chromosome 4, which contains the encoding section of DNA for -synuclein. -Synuclein occurs in the neuronal nuclei of presynaptic nerve endings. It is believed that this protein plays an important role in maintaining the plasticity of neurons. In families genetically predisposed to PD a punctual mutation of a gene has been observed. This mutation involves replacement of alanine with threonine and a change in the conformation of the protein. However, it isn’t known if this change leads to PD because, for example, rodents with threonine in the coding fragment do not develop PD. 5 The causes of Parkinson’s disease (2) • environmental factors – a history of virus infections, e.g. viral brain inflammation (inflammatory-induced parkinsonism) – the influence of toxic factors – manganese (Mn), copper (Cu), mercury (Hg), carbon disulphide, carbon oxide, methanol, MPP+ (the metabolite of MPTP = (N-methyl-4-propionoxy-4-phenylpiperidine) – drug-induced parkinsonism (certain neuroleptics) – others (brain tumors, apoplexy, serious head trauma). 6 The incidence of PD is between 0.1%-0.2% of the general population. It is a disease that affects people in the second half of their lives, and in the population above age 60 the incidence reaches 1%. A history of PD in families is observed in about 40% of patients. The risk of developing PD by lineal descendants (direct relatives) is known to be 3.5 times greater than by a control group of healthy individuals. 7 The treatment of PD To treat PD the following methods are used: • pharmacological treatment • non pharmacological treatment • operative treatment 8 Pharmacological treatment (1) • In 1867 it was observed that an extract from belladonna relieves PD symptoms. For over 100 years extracts containing hioscyjamine from belladonna, datura or henbane were the only drugs used in the treatment of PD. The mechanism of their action was understood 100 years later. At present it is known that these drugs block muscarinic receptors for ACh. They were effective in the treatment of PD but did not eliminate most symptoms and had many adverse effects such as blurred vision and impaired memory. • The degeneration of the nigrostrial tract and neurohormonal imbalance in the extrapyramidal system lead to diminished dopamine concentration and the functional dominance of the cholinergic and glutaminergic systems over the dopaminergic system. • The treatment of PD is only symptomatic. 9 Pharmacological treatment (2) At present the goal of treating PD is to restore neurohormonal balance in the extrapyramidal system. It is achieved in the following ways: • increasing dopamine concentration by using – levodopa (precursor for dopamine) – drugs inhibiting the metabolism of dopamine – drugs increasing the release of dopamine from synaptic granules • using dopamine receptor agonists • blocking striatal NMDA-receptors by amantadine • blocking cholinergic receptors in the extrapyramidal system by anticholinergic drugs 10 Drugs increasing dopamine concentration (2) COOH NH2 MAO-B MT HVA Because dopamine does not OCH3 OCH3 OH OH permeate through the blood- Selegiline COMT Tolcapone Tolcapone COMT Rasagiline brain barrier, its administration COOH does not increase dopamine MAO-B DOPAMINE DOPAC concentration in the brain. OH Central L-aromatic amino acid decarboxylase OH L-DOPA The drug levodopa (L-DOPA) Blood -brain barrier has been used in the treatment Stereoselective active transport Peripheral L-aromatic amino of PD for many years. COMT acid decarboxylase 3-Me-L-DOPA L-DOPA DOPAMINE (DA) H H NH COOH Entacapone COOH Benserazide 2 It can easily permeate through NH NH2 Tolcapone 2 Carbidopa the blood-brain barrier. OH OH OCH3 OH OH OH Inactive Stereoselective active transport from the intestines after oral administration Levodopa, L-DOPA, (-)-3-(3,4- Dihydroxyphenyl)-L- alanine 11 Drugs increasing dopamine concentration (1) In the peripheral and central nervous systems COOH NH2 levodopa is rapidly MAO-B MT HVA converted into dopamine OCH3 OCH3 OH OH under the influence of Selegiline COMT Tolcapone Tolcapone COMT Rasagiline L-aromatic amino acid COOH decarboxylase. MAO-B DOPAMINE DOPAC OH Central L-aromatic amino acid decarboxylase OH This is a desirable L-DOPA change in the CNS. Blood -brain barrier Stereoselective However, such a rapid active transport Peripheral L-aromatic amino change in the PNS is COMT acid decarboxylase 3-Me-L-DOPA L-DOPA DOPAMINE (DA) undesirable in PD H H NH COOH Entacapone COOH Benserazide 2 NH because it decreases by NH2 Tolcapone 2 Carbidopa OH about 90% the activity of OH OCH3 OH OH OH dopamine in the CNS Inactive Stereoselective active transport from the intestines after oral administration and causes many adverse effects in the PNS such as gastrointestinal and cardiovascular disorders.12 Drugs increasing dopamine concentration (3) COOH The transformation of NH 2 L-DOPA in the PNS can be MAO-B OCH MT HVA 3 OCH3 reduced by simultaneous OH OH Selegiline COMT Tolcapone administration of Tolcapone COMT Rasagiline COOH decarboxylase inhibitors MAO-B DOPAMINE DOPAC which do not permeate OH Central L-aromatic amino acid decarboxylase OH through the blood-brain L-DOPA barrier but act only Blood -brain barrier Stereoselective peripherally. active transport Peripheral L-aromatic amino Carbidopa and benserazide COMT acid decarboxylase 3-Me-L-DOPA L-DOPA DOPAMINE (DA) H H are peripheral decarboxylase NH COOH Entacapone COOH Benserazide 2 NH NH2 Tolcapone 2 Carbidopa inhibitors and demonstrate OH OH peripheral action. They are OCH3 OH OH OH Inactive Stereoselective active transport from the intestines used to treat PD together with after oral administration L-DOPA. 13 Drugs increasing dopamine concentration (4) The following preparations are used: • MADOPAR = levodopa + benserazide (4:1) • NAKOM = levodopa + S-Carbidopa (4:1) • POLDOMET = levodopa + S-Carbidopa (4:1 i 10:1) • PARDOPA = levodopa + S-Carbidopa (10:1) • SINEMET = levodopa + S-Carbidopa (10:1) CH3 O H COOH N N * OH NH NH2 H OH NH2 OH OH OH OH (S)-Carbidopa (R,S)-Benserazide 14 Drugs increasing dopamine concentration (5) In therapy only the levo COOH NH2 isomer of DOPA is used in MAO-B MT HVA spite of the fact that the OCH3 OCH3 OH OH product of decarboxylation Selegiline COMT Tolcapone Tolcapone COMT Rasagiline of the chiral pro-drug COOH L-DOPA is an achiral drug MAO-B DOPAMINE DOPAC OH – dopamine. Central L-aromatic amino acid decarboxylase OH L-DOPA Blood -brain barrier The exclusive use of Stereoselective L-DOPA is determined by active transport Peripheral L-aromatic amino COMT acid decarboxylase the pharmacodynamic and 3-Me-L-DOPA L-DOPA DOPAMINE (DA) H H NH toxic properties of COOH Entacapone COOH Benserazide 2 NH NH2 Tolcapone 2 Carbidopa enantiomers. OH OH OCH3 OH OH OH Inactive Stereoselective active transport from the intestines after oral administration 15 Drugs increasing dopamine concentration (5)
Recommended publications
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • Microneedle Device and Transdermal Administration Device Provided with Microneedles
    (19) & (11) EP 2 005 990 A9 (12) CORRECTED EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 A1) A61M 37/00 (2006.01) A61B 17/20 (2006.01) Corrections, see A61K 9/00 (2006.01) A61K 47/34 (2006.01) Search report Search Report replaced or added (86) International application number: PCT/JP2007/057737 (48) Corrigendum issued on: 29.07.2009 Bulletin 2009/31 (87) International publication number: WO 2007/116959 (18.10.2007 Gazette 2007/42) (43) Date of publication: 24.12.2008 Bulletin 2008/52 (21) Application number: 07741173.4 (22) Date of filing: 06.04.2007 (84) Designated Contracting States: • MATSUDO, Toshiyuki AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tsukuba-shi Ibaraki 305-0856 (JP) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • KUWAHARA, Tetsuji SI SK TR Tsukuba-shi Ibaraki 305-0856 (JP) (30) Priority: 07.04.2006 JP 2006106995 (74) Representative: Westendorp, Michael Oliver Splanemann Reitzner (71) Applicant: Hisamitsu Pharmaceutical Co., Inc. Baronetzky Westendorp Tosu-shi, Saga 841 (JP) Rumfordstrasse 7 D-80469 München (DE) (72) Inventors: • TOKUMOTO, Seiji Tsukuba-shi Ibaraki 305-0856 (JP) (54) MICRONEEDLE DEVICE AND TRANSDERMAL ADMINISTRATION DEVICE PROVIDED WITH MICRONEEDLES (57) The present invention provides a microneedle device having a coating, which is effective even with a low molecular weight active compound and can sustain the effect of the drug for a long period of time, and a transdermal drug administration apparatus with micro- needles.
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Acetylcholinesterase and Monoamine Oxidase-B Inhibitory Activities By
    www.nature.com/scientificreports OPEN Acetylcholinesterase and monoamine oxidase‑B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldii Jong Min Oh1, Hyun‑Jae Jang2, Myung‑Gyun Kang3, Soobin Song2, Doo‑Young Kim2, Jung‑Hee Kim2, Ji‑In Noh1, Jong Eun Park1, Daeui Park3, Sung‑Tae Yee1 & Hoon Kim1* Among 276 herbal extracts, a methanol extract of Castanopsis cuspidata var. sieboldii stems was selected as an experimental source for novel acetylcholinesterase (AChE) inhibitors. Five compounds were isolated from the extract by activity‑guided screening, and their inhibitory activities against butyrylcholinesterase (BChE), monoamine oxidases (MAOs), and β‑site amyloid precursor protein cleaving enzyme 1 (BACE‑1) were also evaluated. Of these compounds, 4′‑O‑(α‑l‑rhamnopyranosyl)‑ 3,3′,4‑tri‑O‑methylellagic acid (3) and 3,3′,4‑tri‑O‑methylellagic acid (4) efectively inhibited AChE with IC50 values of 10.1 and 10.7 µM, respectively. Ellagic acid (5) inhibited AChE (IC50 = 41.7 µM) less than 3 and 4. In addition, 3 efectively inhibited MAO‑B (IC50 = 7.27 µM) followed by 5 (IC50 = 9.21 µM). All fve compounds weakly inhibited BChE and BACE‑1. Compounds 3, 4, and 5 reversibly and competitively inhibited AChE, and were slightly or non‑toxic to MDCK cells. The binding energies of 3 and 4 (− 8.5 and − 9.2 kcal/mol, respectively) for AChE were greater than that of 5 (− 8.3 kcal/mol), and 3 and 4 formed a hydrogen bond with Tyr124 in AChE. These results suggest 3 is a dual‑targeting inhibitor of AChE and MAO‑B, and that these compounds should be viewed as potential therapeutics for the treatment of Alzheimer’s disease.
    [Show full text]
  • Affinity Profiles of Hexahydro-Sila-Difenidol Analogues at Muscarinic Receptor Subtypes
    European Journal of Pharmacology, 168 (1989) 71-80 71 Elsevier EJP 50940 Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes 1 Günter Lambrecht *,Roland Feifel, Monika Wagner-Röder, Carsten Strohmann , 1 1 2 2 Harald Zilch , Reinhold Tacke , Magali Waelbroeck , Jean Christophe , Hendrikus Boddeke 3 and Ernst Mutschier Department of Pharmacology, University of Frankfurt, D-6000 Frankfurt/ M, F.R.G., 1 Institute of Jnorganic Chemistry, University of Karlsruhe, D-7500 Karlsruhe, F.R.G., 1 Department of Biochemistry and Nutrition, Medica/ Schoo/, Free University of Brussels, B-1000 Brussels, Belgium, and 1 Preclinical Research, Sandoz Ltd., CH-4002 Basel, Switzerland Received 20 Apri11989, accepted 13 June 1989 In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1- (rabbit vas deferens), Mr (guinea-pig atria) and Mr (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the observed receptor selectivities were not associated with high affinity. The pyrrolidino and hexamethyleneimino analogues, compounds substituted in the phenylring with a methoxy group or a chlorine atom as weil as p-fluoro-hexahydro-difenidol displayed the same affinity profile as the parent compound, hexahydro-sila-difen­ idol: M1 =M 3 > M 2 • A different selectivity patternwas observed for p-fluoro-hexahydro-sila-difenidol: M3 > M1 > M 2 • This compound exhibited its highest affinity for M3-receptors in guinea-pig ileum (pA 2 = 7.84), intermediate affinity for M1-receptors in rabbit vas deferens (pA 2 = 6.68) and lowest affinity for the Mrreceptors in guinea-pig atria (pA 2 = 6.01).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0165511 A1 Lederman Et Al
    US 2013 O165511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0165511 A1 Lederman et al. (43) Pub. Date: Jun. 27, 2013 (54) TREATMENT FOR COCANE ADDICTION Publication Classification (75) Inventors: Seth Lederman, NEW York, NY (US); (51) Int. Cl. Herbert Harris, Chapel Hill, NC (US) A63/37 (2006.01) A63/6 (2006.01) (73) Assignee: TONIX Pharmaceuticals Holding (52) U.S. Cl. Corp, New York, NY (US) CPC ............... A61K 31/137 (2013.01); A61K3I/I6 (2013.01) (21) Appl. No.: 13/820,338 USPC ........................................... 514/491; 514/654 (22) PCT Fled: Aug. 31, 2011 (57) ABSTRACT (86) PCT NO.: PCT/US11/O1529 A novel pharmaceutical composition is provided for the con S371 (c)(1), trol of stimulant effects, in particular treatment of cocaine (2), (4) Date: Mar. 1, 2013 addiction, or further to treatment of both cocaine and alcohol dependency, including simultaneous therapeutic dose appli Related U.S. Application Data cation or a single dose of a combined therapeutically effective (60) Provisional application No. 61/379,095, filed on Sep. composition of disulfiram and selegiline compounds or phar 1, 2010. maceutically acceptable non-toxic salt thereof. US 2013/01655 11 A1 Jun. 27, 2013 TREATMENT FOR COCANE ADDCTION the United States in 2005. In the sense of this invention the term “addiction' may be defined as a compulsive drug taking CROSS-REFERENCE TO RELATED or abuse condition related to “reward’ system of the afflicted APPLICATIONS: patient. The treatment of cocaine addiction or dependency 0001. The present application which claims priority from has targeted a lowering of dopaminergic tone to help decrease U.S.
    [Show full text]
  • Deficits in Cholinergic Neurotransmission and Their Clinical
    www.nature.com/npjparkd All rights reserved 2373-8057/16 REVIEW ARTICLE OPEN Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease Santiago Perez-Lloret1 and Francisco J Barrantes2 In view of its ability to explain the most frequent motor symptoms of Parkinson’s Disease (PD), degeneration of dopaminergic neurons has been considered one of the disease’s main pathophysiological features. Several studies have shown that neurodegeneration also affects noradrenergic, serotoninergic, cholinergic and other monoaminergic neuronal populations. In this work, the characteristics of cholinergic deficits in PD and their clinical correlates are reviewed. Important neurophysiological processes at the root of several motor and cognitive functions remit to cholinergic neurotransmission at the synaptic, pathway, and circuital levels. The bulk of evidence highlights the link between cholinergic alterations and PD motor symptoms, gait dysfunction, levodopa-induced dyskinesias, cognitive deterioration, psychosis, sleep abnormalities, autonomic dysfunction, and altered olfactory function. The pathophysiology of these symptoms is related to alteration of the cholinergic tone in the striatum and/or to degeneration of cholinergic nuclei, most importantly the nucleus basalis magnocellularis and the pedunculopontine nucleus. Several results suggest the clinical usefulness of antimuscarinic drugs for treating PD motor symptoms and of inhibitors of the enzyme acetylcholinesterase for the treatment of dementia. Data also suggest that these inhibitors and pedunculopontine nucleus deep-brain stimulation might also be effective in preventing falls. Finally, several drugs acting on nicotinic receptors have proved efficacious for treating levodopa-induced dyskinesias and cognitive impairment and as neuroprotective agents in PD animal models. Results in human patients are still lacking.
    [Show full text]
  • Wo 2010/075090 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075090 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 409/14 (2006.01) A61K 31/7028 (2006.01) kind of national protection available): AE, AG, AL, AM, C07D 409/12 (2006.01) A61P 11/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/068073 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 15 December 2009 (15.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/122,478 15 December 2008 (15.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): AUS- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, PEX PHARMACEUTICALS, INC.
    [Show full text]
  • Fisiopatologia Dei Tremori
    FISIOPATOLOGIA DEI TREMORI Enrico Alfonsi Neurofisiopatologia IRCCS-Istituto Neurologico Nazionale «Casimiro Mondino» Pavia TREMOR A rhythmic involuntary movement of one or several regions of the body. It represents the most common neurological sign, as everyone has a ‘’physiological’’ tremor, which can only be measured with instrumental tools. 1 BACKGROUND Relation to Voluntary Movement Relation to Body Part Rest tremor Head tremor Parkinson’s disease Cerebellar disease Other parkinsonian syndromes Dystonia Tardive (drug-induced) parkinsonism Essential tremor (rarely when isolated) Vascular parkinsonism Chin tremor Hydrocephalus Parkinson’s disease Common Psychogenic (functional) tremor Hereditary geniospasm tremor Action tremor Jaw tremor disorders Postural tremor Parkinson’s disease classified Physiologic tremor and enhanced physiologic tremor Dystonia according Essential tremor Palatal tremor to two main Dystonic tremor Idiopathic (essential) criteria Parkinsonism Owing to brainstem lesions (secondary) Fragile X premutation (fragile X tremor–ataxia syndrome) Owing to degenerative disease (adult-onset Alexander’s disease) Neuropathies Arm tremor Tardive tremor Cerebellar disease Toxins (e.g., mercury) Dystonia Metabolic disorder (e.g., hyperthyroidism, hypoglycemia) Essential tremor Psychogenic (functional) tremor Parkinson’s disease Kinetic tremor Leg tremor Cerebellar disease Parkinson’s disease Holmes’ tremor Orthostatic tremor Wilson’s disease Psychogenic (functional) tremor 2 Essential tremor Features considered typical of the essential tremor syndrome Feature Description Tremor 4–12 Hz action tremor that occurs when patients voluntarily attempt • A resting tremor can appear only in advanced to maintain a steady posture stages. Other neurological signs (with the against gravity (postural tremor) or move (kinetic tremor) exception of cog-wheel phenomenon and Tremor may be suppressed by difficulties with tandem gait) are typically performing skilled manual tasks absent.
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • Drug-Induced Movement Disorders
    Medical Management of Early PD Samer D. Tabbal, M.D. May 2016 Associate Professor of Neurology Director of The Parkinson Disease & Other Movement Disorders Program Mobile: +961 70 65 89 85 email: [email protected] Conflict of Interest Statement No drug company pays me any money Outline So, you diagnosed Parkinson disease .Natural history of the disease .When to start drug therapy? .Which drug to use first for symptomatic treatment? ● Levodopa vs dopamine agonist vs MAOI Natural History of Parkinson Disease Before levodopa: Death within 10 years After levodopa: . “Honeymoon” period (~ 5-7 years) . Motor (ON/OFF) fluctuations & dyskinesias: ● Drug therapy effective initially ● Surgical intervention by 10-15 years - Deep brain stimulation (DBS) therapy Motor Response Dyskinesia 5-7 yrs >10 yrs Dyskinesia ON state ON state OFF state OFF state time time Several days Several hours 1-2 hour Natural History of Parkinson Disease Prominent gait impairment and autonomic symptoms by 20-25 years (Merola 2011) Behavioral changes before or with motor symptoms: . Sleep disorders . Depression . Anxiety . Hallucinations, paranoid delusions Dementia at anytime during the illness . When prominent or early: diffuse Lewy body disease Symptoms of Parkinson Disease Motor Symptoms Sensory Symptoms Mental Symptoms: . Cognitive and psychiatric Autonomic Symptoms Presenting Symptoms of Parkinson Disease Mood disorders: depression and lack of motivation Sleep disorders: “acting out dreams” and nightmares Early motor symptoms: Typically Unilateral . Rest tremor: chin, arms or legs or “inner tremor” . Bradykinesia: focal and generalized slowness . Rigidity: “muscle stiffness or ache” Also: (usually no early postural instability) . Facial masking with hypophonia: “does not smile anymore” or “looks unhappy all the time” .
    [Show full text]
  • PAPER Monoamine Oxidase Inhibition Is Unlikely to Be Relevant To
    International Journal of Obesity (2001) 25, 1454–1458 ß 2001 Nature Publishing Group All rights reserved 0307–0565/01 $15.00 www.nature.com/ijo PAPER Monoamine oxidase inhibition is unlikely to be relevant to the risks associated with phentermine and fenfluramine: a comparison with their abilities to evoke monoamine release{ IC Kilpatrick1*, M Traut2 and DJ Heal1 1Knoll Limited Research and Development, Nottingham, UK; and 2Knoll GmbH, 50 Knollstrasse, D-67061, Ludwigshafen, Germany OBJECTIVE AND DESIGN: It has been proposed that the anti-obesity agent, phentermine, may act in part via inhibition of monoamine oxidase (MAO). The ability of phentermine to inhibit both MAOA and MAOB in vitro has been examined along with that of the fenfluramine isomers, a range of selective serotonin reuptake inhibitors and sibutramine and its active metabolites. RESULTS: In rat brain, harmaline and lazabemide showed potent and selective inhibition of MAOA and MAOB, their respective target enzymes, with IC50 values of 2.3 and 18 nM. In contrast, all other drugs examined were only weak inhibitors of MAOA and MAOB with IC50 values for each enzyme in the moderate to high micromolar range. For MAOA, the IC50 for phentermine was estimated to be 143 mM, that for S( þ )-fenfluramine, 265 mM and that for sertraline, 31 mM. For MAOB, example IC50s were as follows: phentermine (285 mM), S( þ )-fenfluramine (800 mM) and paroxetine (16 mM). Sibutramine was unable to inhibit either enzyme, even at its limit of solubility. CONCLUSION: We therefore suggest that MAO inhibition is unlikely to play a role in the pharmacodynamic properties of any of the tested drugs, including phentermine.
    [Show full text]