EGMS Specification and Implementation Plan

Total Page:16

File Type:pdf, Size:1020Kb

EGMS Specification and Implementation Plan COPERNICUS LAND MONITORING SERVICE <TITLE> Yngvar Larsen - NORCE Petar Marinkovic - PPO.labs John F. Dehls, Marie Bredal - Geological Survey of Norway Charlotte Bishop, Gudmundur Jøkulsson, Lars-Petter Gjøvik - Kongsberg Satellite Services (KSAT) Regula Frauenfelder, Sean E. Salazar, Malte Vöge - Norwegian Geotechnical Institute (NGI) Mario Costantini, Federico Minati, Francesco Trillo - e-GEOS S.p.A. Alessandro Ferretti, Renalt Capes, Marco Bianchi - TRE ALTAMIRA s.r.l. Alessandro Parizzi, Ramon Brcic - German Aerospace Center (DLR) Francesco Casu, Riccardo Lanari, Michele Manunta, Mariarosaria Manzo, Manuela Bonano, Claudio De Luca, Giovanni Onorato, Ivana Zinno - Istituto per il Rilevamento Elettromagnetico dell Ambiente (IREA-CNR) 1 EU-EEA DELEGATION AGREEMENT Copernicus Land Monitoring Service CONTRACT No 3436/R0-COPERNICUS/EEA.57646 Reporting information Report title: European Ground Motion Service: Service Implementation Plan and Product Specification Document Report website: https://land.copernicus.eu/user-corner/technical- library/european-ground-motion-service Report version: Version 1.01 Date of preparation: 28/01/2020 Beneficiary organisation: EC, DG GROW, Copernicus unit Project coordinator: Henrik Steen Andersen Project coordinator organisation: European Environment Agency Project coordinator telephone number: +45 3343 5986 Project coordinator email address: [email protected] Revision history Revision Date Modified by Comments 0.1 24.09.2019 Consortium First outline 0.5 01.11.2019 Consortium Mid-term version 0.8 18.11.2019 Consortium Final draft version 1.0 22.01.2020 Consortium Final complete version 1.01 28.01.2020 Consortium Minor edits 2 EU-EEA DELEGATION AGREEMENT Copernicus Land Monitoring Service CONTRACT No 3436/R0-COPERNICUS/EEA.57646 Contents Executive summary ......................................................................................................................... 17 1. Introduction ............................................................................................................................ 18 2. Background on technology ...................................................................................................... 20 Ground motion mapping with Spaceborne Radar ............................................................. 20 2.1.1. Synthetic Aperture Radar ......................................................................................... 20 2.1.2. Interferometric SAR (InSAR) ...................................................................................... 21 2.1.2.1. Mapping millimetric ground motion with InSAR ................................................ 22 2.1.2.2. Time-series InSAR: tool for reliable estimation of ground motion ...................... 22 2.1.2.3. InSAR based Ground Motion Products .............................................................. 24 2.1.2.4. Quality Standards & Validation ......................................................................... 25 2.1.3. Challenges, Limitations & Opportunities ................................................................... 25 2.1.3.1. Geolocalisation ................................................................................................. 25 2.1.3.2. Relative nature of the technique ....................................................................... 25 2.1.3.3. Opportunistic nature of the technique .............................................................. 25 2.1.3.4. One-dimensional motion estimates .................................................................. 26 Copernicus Program & Sentinel-1 Mission ........................................................................ 26 Large-scale Applications: Opportunities & Challenges ...................................................... 26 Summary.......................................................................................................................... 27 References ....................................................................................................................... 27 3. Service implementation plan (SIP)............................................................................................ 28 Introduction ..................................................................................................................... 28 End-user requirements..................................................................................................... 28 3.2.1. User types ................................................................................................................ 28 3.2.2. Benefits of EGMS and use cases................................................................................ 28 3.2.2.1. Civil engineering ............................................................................................... 29 3.2.2.2. Mining .............................................................................................................. 30 3.2.2.3. Energy sector .................................................................................................... 30 3.2.2.4. Motion of landforms ......................................................................................... 31 3.2.2.5. Seismic and tectonics ........................................................................................ 31 3.2.3. Use case categories .................................................................................................. 32 3.2.4. Technical requirements categories ........................................................................... 33 3.2.5. Requirements analysis .............................................................................................. 34 3.2.6. Deformation regimes ................................................................................................ 35 3.2.6.1. Discussion on linear and non-linear motion ...................................................... 39 3.2.6.2. References: ....................................................................................................... 40 3 EU-EEA DELEGATION AGREEMENT Copernicus Land Monitoring Service CONTRACT No 3436/R0-COPERNICUS/EEA.57646 3.2.7. Summary: Assessment of EGMS feasibility for use cases ........................................... 40 Geographical coverage ..................................................................................................... 42 Production system ........................................................................................................... 45 3.4.1. Introduction ............................................................................................................. 45 3.4.2. Production flow ........................................................................................................ 45 3.4.3. Capacity requirements ............................................................................................. 49 3.4.3.1. Input data volume considerations ..................................................................... 50 3.4.3.2. Bandwidth requirements .................................................................................. 50 3.4.3.3. System requirements for core processing system.............................................. 51 3.4.4. Production system deployment models .................................................................... 54 3.4.4.1. Centralised processing ...................................................................................... 55 3.4.4.2. Cloud processing ............................................................................................... 55 3.4.4.3. Hybrid alternatives ........................................................................................... 56 3.4.5. System monitoring and maintenance ....................................................................... 56 3.4.5.1. Monitoring ....................................................................................................... 56 3.4.5.2. Human interaction ............................................................................................ 56 3.4.5.3. Maintenance and operations ............................................................................ 56 3.4.6. Production plan and implementation timetable........................................................ 57 3.4.6.1. Initial phase: first production cycle.................................................................... 58 3.4.6.2. Subsequent production cycles .......................................................................... 59 Quality control ................................................................................................................. 60 3.5.1. Definitions ................................................................................................................ 60 3.5.1.1. Definition of “Internal QC” ................................................................................ 60 3.5.1.2. Definition of “External QC” ............................................................................... 60 3.5.2. Pointwise quality measures ...................................................................................... 60 3.5.2.1. Temporal coherence ......................................................................................... 60 3.5.2.2. Root-mean-square error ................................................................................... 61 3.5.3. Measurement point density ....................................................................................
Recommended publications
  • Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context
    United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications ....................................................................................................................
    [Show full text]
  • TINA Small Force-Controlled Robotic Arm for Exploration and Small Satellites
    DLR.de/en TINA Small force-controlled robotic arm for exploration and small satellites Brief description The robotic arm TINA is a four-axis space demonstrator to investigate autonomous operations during exploration missions on Earth. Aims The aim of the research project is to demonstrate the technology needed for a small, force-controlled robotic arm for use in space. By selecting specific components, it is possible to use TINA in Parties involved microgravity conditions as well as on Earth. DLR Institute of Robotics and Mechatronics Applications Facts and figures - Exploration, rover - Degrees of freedom: up to 7 - Controller: hard real time - Small satellites - Size: up to 2 m long - Radiation hardness: - Weight: 1.6 kg per joint various levels possible - Data transmission: - Tools: different end effectors can be Spacewire selected - Data rate: 3kHz - Supply voltage: +20V to +70V @DLR_en DLR.de/en TINA Small force-controlled robotic arm for exploration and small satellites The design of TINA follows the ‘qualifiable’ philosophy of DEXHAND [1], which uses industrial-grade compo- nents with a similar performance to their space equivalents and follows the ECSS guidelines closely, or uses the industrial-grade versions of radiation-hardened electronic components. This philosophy ensures that the transition to a fully qualified design can be achieved with a minimum number of changes. It also provides an almost perfect version for thermal and EMI modelling. Another big advantage is the low price compared to the fully qualified, radiation-hardened version, which allows the construction of multiple test arms for grasp- ing, object handling and many other applications. Each joint is made up of a brushless DC motor in combination with a resolver for commutation and position sensing, a harmonic drive gearbox, a brake for safety reasons and a torque sensor to give TINA the ability to ‘feel’.
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • The Orbital-Hub: Low Cost Platform for Human Spaceflight After ISS
    67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016. Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved. IAC-16, B3,1,9,x32622 The Orbital-Hub: Low Cost Platform for Human Spaceflight after ISS O. Romberga, D. Quantiusa, C. Philpota, S. Jahnkea, W. Seboldta, H. Dittusb, S. Baerwaldeb, H. Schlegelc, M. Goldd, G. Zamkad, R. da Costae, I. Retate, R. Wohlgemuthe, M. Langee a German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany, [email protected] b German Aerospace Center (DLR), Executive Board, Space Research and Technology, Cologne, Germany, c European Space Agency (ESA) Contractor, Johnson Space Center, Houston, USA, d Bigelow Aerospace, Las Vegas / Washington, USA, e Airbus DS, Bremen, Germany Abstract The International Space Station ISS demonstrates long-term international cooperation between many partner governments as well as significant engineering and programmatic achievement mostly as a compromise of budget, politics, administration and technological feasibility. A paradigm shift to use the ISS more as an Earth observation platform and to more innovation and risk acceptance can be observed in the development of new markets by shifting responsibilities to private entities and broadening research disciplines, demanding faster access by users and including new launcher and experiment facilitator companies. A review of worldwide activities shows that all spacefaring nations are developing their individual programmes for the time after ISS. All partners are basically still interested in LEO and human spaceflight as discussed by the ISECG. ISS follow-on activities should comprise clear scientific and technological objectives combined with the long term view on space exploration.
    [Show full text]
  • INPE) MCTI Çp ' Acordo Operação Técnica COPERNICUS Entre ESA,AEB E INPE (0026237) SEI 01350.001611/2018-03 / Pg
    ORIGINAL N° 1 Copernicus Space Component Technical Operating Arrangement ESA - Brazilian Space Agency and INPE (INPE) MCTI çp ' Acordo Operação Técnica COPERNICUS entre ESA,AEB E INPE (0026237) SEI 01350.001611/2018-03 / pg. 1 Table of Contents 1 INTRODUCTION....................................................................................... 4 1.1 Background....................................................................................................................... 4 1.2 Purpose and objectives ..................................................................................................... 4 1.3 Scope................................................................................................................................. 6 1.4 References......................................................................................................................... 6 2 EUROPEAN ACCESS TO BRAZILIAN EO MISSIONS AND CALIBRATION DATA AND PARTNER IN-SITU DATA ............................................................. 7 3 ARRANGEMENT OF TECHNICAL INTERFACES ....................................... 8 3.1 Technical Arrangement Types.......................................................................................... 8 4 INTERNATIONALARCHIVING AND DISSEMINATION CENTRES, MIRRORSITE ................................................................................................ 9 4.1 Invohred Entities............................................................................................................... 9 4.2 INPE Activity
    [Show full text]
  • SPACE EXPLORATION SYMPOSIUM (A3) Small Bodies Missions and Technologies (Part 1) (4A)
    68th International Astronautical Congress 2017 Paper ID: 39010 oral SPACE EXPLORATION SYMPOSIUM (A3) Small Bodies Missions and Technologies (Part 1) (4A) Author: Dr. Aur´elieMoussi Centre National d'Etudes Spatiales (CNES), France, [email protected] Mrs. Laurence Lorda Centre National d'Etudes Spatiales (CNES), France, [email protected] Mr. Clement Dudal Centre National d'Etudes Spatiales (CNES), France, [email protected] Mrs. Celine Cenac Centre National d'Etudes Spatiales (CNES), France, [email protected] Mr. David Granena Centre National d'Etudes Spatiales (CNES), France, [email protected] Mr. Thierry Martin Centre National d'Etudes Spatiales (CNES), France, [email protected] Dr. Elisabet Canalias CNES, France, [email protected] Mrs. Muriel Deleuze Centre National d'Etudes Spatiales (CNES), France, [email protected] Dr. Tra Mi Ho DLR (German Aerospace Center), Germany, [email protected] Mr. Christian Ziach Deutsches Zentrum f¨urLuft- und Raumfahrt e.V. (DLR), Germany, [email protected] Dr. Stephan Ulamec Deutsches Zentrum f¨urLuft- und Raumfahrt e.V. (DLR), Germany, [email protected] Dr. Jens Biele Deutsches Zentrum f¨urLuft- und Raumfahrt e.V. (DLR), Germany, [email protected] Mrs. Caroline Lange Deutsches Zentrum f¨urLuft- und Raumfahrt e.V. (DLR), Germany, [email protected] Mr. Jan Thimo Grundmann DLR (German Aerospace Center), Germany, [email protected] Ms. Nawarat Termtanasombat Lule˚aTechnical University, Germany, [email protected] Mr. Christian Krause Deutsches Zentrum f¨urLuft- und Raumfahrt e.V. (DLR), Germany, [email protected] Mrs. Cinzia Fantinati Deutsches Zentrum f¨urLuft- und Raumfahrt e.V.
    [Show full text]
  • Results Brochure
    Initiated by: #FarmingbySatellite Sponsored by: www.farmingbysatellite.eu Results Brochure Initiated by: Sponsored by: Table of Contents Introduction 03 The participant journey 04 Using European satellite technologies to improve agriculture Meet the start-ups 06 and reduce environmental impact European Prizes The 2020 edition of the Farming by Satellite Prize has GNSS is a key enabler of precision agriculture, allowing officially come to an end. This year, we celebrate the farmers to operate machinery along parallel lines, avoid Graniot – Winner 07 fifth edition and looking back at the numerous ideas overlaps and gaps in field cultivation, and reduce their submitted, we see a thriving entrepreneurial ecosystem fatigue thanks to satellite-enabled autopilot. GNSS also Genuine – 2nd place 08 building around satellite technology enabled solutions helps to reduce agriculture’s ecological footprint. In for sustainable agriculture in both Europe and Africa. particular, the satellite programmes play a crucial role rd Ai4ocean farming – 3 place 09 in the Common Agricultural Policy, delivering significant Innovation is crucial for the growth and sustainability added value for farmers, the institutions involved and Harvesting Prizes – grand finalist 10 of the agricultural sector and enables the response society at large. Leveraging this innovation potential for RVRI – grand finalist 11 to emerging global challenges such as the rise of the society and encouraging this type of strong innovative global population and the impact of climate change. thinking from the next generation are key motivators for The Farming by Satellite Prize is designed to encourage setting up this competition. Special Africa Prize young professionals, farmers, and students in Europe to create new, sustainable, and environmentally friendly The competition is a joint initiative by the European GeoM&E – Winner Special 12 solutions using Copernicus, EGNOS and Galileo.
    [Show full text]
  • Securing the Copernicus Programme Why EU Earth Observation Matters
    Briefing April 2017 Securing the Copernicus programme Why EU earth observation matters SUMMARY The Copernicus programme is a user-driven programme which provides six free-of- charge operational services (atmosphere monitoring, marine environment monitoring, land monitoring, climate change, emergency management and security) to EU, national, and regional institutions, as well as to the private sector. The programme builds on the initiative on global monitoring for environment and security launched in 2001. It aims at filling the gaps in European earth observation capacities. Data is provided from space infrastructures, particularly the sentinel missions developed under the programme, and in situ infrastructure supported by the Member States. Copernicus services are mainly operated by European Union (EU) agencies. Copernicus requires a high level of continuity in data and service provision. A strong political commitment at EU level is required to provide adequate funding for the development of the operational earth observation missions and services. The EU – under the framework programme for research and operational programmes – and the European Space Agency (ESA) have invested more than €7 billion in Copernicus since 2002. By the end of 2017, four of the six sentinel missions should be fully deployed and the last of the six services should become fully operational. As Copernicus reaches its full operational stage, the focus of the programme is shifting towards the uptake of the services and the development of a downstream sector that would provide additional commercial services to the users. This aspect is a key priority of the space strategy adopted by the European Commission in October 2016. The development of the downstream sector is dependent on the long-term continuity of service, to be ensured by improved governance of the programme and renewed long- term political and financial commitments for the next EU budgetary period.
    [Show full text]
  • Exomars Flush Air Data System: Experimental and Numerical
    ExoMars Flush Air Data System: Experimental and Numerical Investigation Thorn Schleutker a and Ali Gülhan b DLR, German Aerospace Center, 51147 Cologne, Germany Bart Van Hove c and Özgür Karatekin d Royal Observatory of Belgium, 1180 Brussel, Belgium The atmospheric reconstruction based on a ush air data system requires knowl- edge of the surface pressure distribution, which depends on various factors such as the Mach number, angle of attack and aeroshell geometry of the entry vehicle. The purpose of this work is to provide this information for the post-ight analysis of the Entry, Descent and Landing Module of ExoMars 2016, called Schiaparelli. Because the ow around the capsule cannot be duplicated exactly in ground testing facilities, and to account for the uncertainties in physical modelling by numerical simulation, a hybrid approach is chosen for the study. First, the atmospheric entry is simulated experimentally and these experiments are then simulated numerically. The experimen- tal and numerical results are compared and discussed. The almost perfect agreement validates the numerical tool, which afterwards is applied to the analysis of the entry ight of Schiaparelli. A focus lies on the understanding of experimental uncertainties and on the impact of necessary numerical simplications. a Research Scientist, Supersonic and Hypersonic Technology Department, Institute of Aerodynamics and Flow Tech- nologies, Linder Höhe. b Head of Department and PI of the ExoMars 2016 instrumentation COMARS+, Supersonic and Hypersonic Tech- nologies Department, Institute of Aerodynamics and Flow Technology, Linder Höhe. c Assistant Researcher, Department of Reference Systems and Planetology, Ringlaan 3. d Senior Scientist, Department of Reference Systems and Planetology, Ringlaan 3.
    [Show full text]
  • Sentinel-1A – Start of a New Era in Earth Observation
    Sentinel-1A – start of a new era in Earth observation 03 April 2014 Mapping flood events, observing oil slicks in the oceans, detecting ice distribution in the sea and measuring ground movements with millimetric precision – just some of the tasks of Sentinel-1A, the new flagship in European Earth observation. The roughly 2.3-ton, four-metre-high, two-and- a-half-metre-wide satellite was launched from the European Spaceport in French Guiana at 23:02 CEST (18:02 local time) on 3 April 2014. The launch of Sentinel-1A also marks the start of the European Union (EU) and European Space Agency (ESA) Earth observation programme called Copernicus. The DLR Space Administration is financing one third of the ESA element of the programme with funds provided by the German Federal Government. The satellite will undergo a three-month-long commissioning phase before making its first routine data delivery in mid-year. "The radar system on the new European Earth observation satellite is one of the most powerful ever used in Earth orbit for civilian purposes. Using this instrument, which was developed and built in Germany on the basis of decades of experience, Sentinel-1A will be able to observe land and water surfaces day and night, regardless of the weather conditions. This is the start of a new era in remote sensing – consistent data collection is essential for the scientific analysis of global change," emphasised Johann-Dietrich Wörner, Chairman of the DLR Executive Board. Flying over every point on Earth in 12 days "With the launch of Sentinel-1A, Copernicus, the Earth observation programme of the European Union and the European Space Agency has begun.
    [Show full text]
  • Dr. Thomas Krueger European Space Agency (ESA), the Netherlands, [email protected]
    Paper ID: 58165 IAC CyberSpace Edition 2020 oral IAF SPACE SYSTEMS SYMPOSIUM (D1) Cooperative and Robotic Space Systems (6) Author: Dr. Thomas Krueger European Space Agency (ESA), The Netherlands, [email protected] Mr. Edmundo Ferreira European Space Agency (ESA), The Netherlands, [email protected] Mr. Andrei Gherghescu ESA - European Space Agency, The Netherlands, [email protected] Mr. Lukas Hann ESA - European Space Agency, The Netherlands, [email protected] Mr. Emiel den Exter ESA - European Space Agency, The Netherlands, [email protected] Mr. Frank van der Hulst ESA - European Space Agency, The Netherlands, [email protected] Mr. Levin Gerdes European Space Agency (ESA), The Netherlands, [email protected] Mr. Leonardo Cencetti ESA - European Space Agency, The Netherlands, [email protected] Dr. Aaron Pereira DLR (German Aerospace Center), Germany, [email protected] Dr. Harsimran Singh DLR (German Aerospace Center), Germany, [email protected] Mr. Michael Panzirsch German Aerospace Center (DLR), Germany, [email protected] Dr. Thomas Hulin DLR (German Aerospace Center), Germany, [email protected] Mr. Ribin Balachandran German Aerospace Center (DLR), Germany, [email protected] Dr. Bernhard Weber German Aerospace Center (DLR), Germany, [email protected] Dr. Neal Lii German Aerospace Center (DLR), Germany, [email protected] DESIGNING AND TESTING A ROBOTIC AVATAR FOR SPACE-TO-GROUND TELEOPERATION: THE DEVELOPERS' INSIGHTS Abstract In late 2019 astronaut Luca Parmitano remotely controlled a rover equipped with a robotic manip- ulator, performing geology tasks on a moon-analog site from the ISS. 7 months later, in July 2020, he controls the same rover in a more realistic moon-analog environment: a field of volcanic rock and regolith on mount Etna, Italy.
    [Show full text]
  • Supporting the Sustainable Development Goals
    UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Cover photo: ©ESA/ATG medialab. Adapted by the European GNSS Agency, contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Vienna, 2018 ST/SPACE/71 © United Nations, January 2018. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concern- ing the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Information on uniform resource locators and links to Internet sites contained in the present pub- lication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Foreword by the Director of the Office for Outer Space Affairs The 2030 Agenda for Sustainable Development came into effect on 1 January 2016. The Agenda is anchored around 17 Sustainable Development Goals (SDGs), which set the targets to be fulfilled by all governments by 2030.
    [Show full text]