A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION NBS MONOGRAPH 25~SECTION 9

\

Standard X-ray Diffraction Powder Patterns

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards1 was established by an act of Congress March 3, 1901. The Bureau©s overall goal is to strengthen and advance the Nation©s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation©s physical measure ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation©s scien tific community, industry, and commerce. The Institute consists of a Center for Radia tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics Electricity Heat Mechanics Optical Physics Linac Radiation2 Nuclear Radiation2 Applied Radiation2 Quantum Electronics3 Electromagnetics3 Time and Frequency3 Laboratory Astrophysics3 Cryo genics3. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research lead ing to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute con sists of the Office of Standard Reference Materials and the following divisions: Analytical Chemistry Polymers Metallurgy Inorganic Materials Reactor Radiation Physical Chemistry. THE INSmTUTE FOR APPLIED TECHNOLOGY provides technical services to pro mote the use of available technology and to facilitate technological innovation in indus try and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of the following technical divisions and offices: Engineering Standards Services Weights and Measures Flammable Fabrics Invention and Innovation Vehicle Systems Research Product Evaluation Technology Building Research Electronic Technology Technical Analysis Measurement Engineering. THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts re search and provides technical services designed to aid Government agencies in improv ing cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the prin cipal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions: Information Processing Standards Computer Information Computer Services Systems Development Information Processing Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units: Office of Standard Reference Data Office of Technical Information and Publications Library Office of Public Information Office of International Relations. 1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washing ton, D.C. 20234. * Part of the Center for Radiation Research. * Located at Boulder, Colorado 80302. UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary NATIONAL BUREAU OF STANDARDS Lewis M. Bran8comb, Director

Standard X-ray Diffraction Powder Patterns

Section 9 Data for 63 Substances

Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris Eloise H. Evans, and Boris Paretzkin Assisted by Johan H. DeGroot and Simon J. Carmel

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

X ML \ * \ _

National Bureau of Standards Monograph 25 Section 9

Nat. Bur. Stand. (U.S.), Monogr. 25 Section 9, 128 pages (Dec. 1971) CODEN: NBSMA

Issued December 1971

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.44;25/Sec. 9), Price $1.25. Library of Congress Catalog Card Number: 53-61386 CONTENTS

Page Page Introduction ...... 1 Sodium Chromium Oxide Hydrate, Reference intensity values ...... 4 Na 2Cr04 ©4H 20 50 Experimental patterns: Sodium Hydrogen Sulfate Hydrate, Ammonium Aluminum Fluoride, (NH 4 )3AIF6 ...... 5 NaHS0 4 -H 2 0...... 52 Ammonium Aluminum Selenate Hydrate, Sodium Iron Fluoride, Na 3 FeF 6 ...... 54 NH4AI(Se0 4 )2 -12H 20...... 6 Sodium Selenate, Na 2Se0 4 ...... 55 Ammonium Copper Chloride Hydrate, Tin Sulfide (berndtite), beta, SnS 2 ...... 57 (NH 4 )2CuCI 4 ©2H 20...... 8 Vanadium, V...... 58 Ammonium Iron Fluoride, (NH 4 )3 FeF 6 ...... 9 Zinc Chromium Oxide, ZnCr 2 0 4 ...... 59 Barium Calcium Tungsten Oxide, Zinc Iron Oxide (franklinite), ZnFe 2 0 4 ...... 60 Ba2 CaW06 ...... 10 Calculated patterns: Barium Chloride, BaCI 2 , (orthorhombic)...... 11 Aluminum Chloride, AIC1 3 ...... 61 Barium Chloride, BaCI 2 , (cubic)...... 13 Barium Oxide, BaO ...... 63 Barium Titanium Silicate (fresnoite), Beryllium, alpha, Be...... 64 Ba2TiSi 2 Og ...... 14 Beryllium Lanthanum Oxide, Be 2 La 2 0 5 ...... 65 Cadmium Iron Oxide, CdFe 2 0 4 ...... 16 Calcium, Ca ...... 68 Calcium Titanium Oxide (perovskite), Cesium Beryllium Fluoride, CsBeF 3 ...... 69 CaTi03 ...... 17 Hydrogen Berate, beta, HB0 2 ...... 71 Calcium Tungsten Oxide, Ca 3W06 ...... 19 Magnesium Phosphate, alpha, Mg p o ...... 73 Chromium Oxide, CoCr 2 04 ...... 21 Manganese Vanadium Oxide, Mn 2 V 2 0 7 ...... 75 Cobalt Iron Oxide, CoFe 20 4 ...... 22 Methanesulfonanilide, C 6 H 5-NH-S0 2CH 3 ...... 78 Lithium Sodium Aluminum Fluoride, Nickel Chloride, NiCI 2 ...... 81 cryolithionite, Li 3 Na3 AI 2 F 12 ...... 23 Nickel Phosphide, Ni 12 P 5 ...... 83 Magnesium Aluminum Oxide (spinel), Phosphorus Oxide (stable form I), MgAI 2 0 4 (revised)...... 25 P 205 , (orthorhombic)...... 86 Magnesium Sulfite Hydrate, Phosphorus Oxide (stable form II), MgS03 -6H 2 0...... 26 P 2 05 , (orthorhombic)...... 88 Phosphorus Manganese Chloride Hydrate, MnCI 2 ©4H 2 0 ...... 28 Oxide (metastable form), Manganese Cobalt Oxide, MnCo 2 0 4 ...... 30 P4 0 10 , (rhombohedral)...... 91 Potassium Aluminum Sulfate, KAI(S0 4)2 ...... 31 Potassium Hydrogen Diformate, Potassium Barium Nickel Nitrite, KH(HCOO)2 ...... 93 K 2 BaNi(N0 2 )6 ...... 32 Potassium Oxalate Perhydrate, Potassium Calcium Nickel Nitrite, K 2C 20 4 -H 2 0 2 , 96 K 2CaNi(N0 2 )6 ...... 33 Potassium Sulfate, K2S 2 07 ...... 99 Potassium Copper Chloride Hydrate Rubidium Oxalate Perhydrate, (mitscherlichite), K2 CuCI 4 ©2H 2 0...... 34 Rb 2C 2 0 4 ©H 2 0 2 Potassium iron Cyanide, K 3 Fe(CN)6 ...... 35 , 102 Sodium, Na ...... Potassium Iron Fluoride, K 3 FeF 6 ...... 37 105 Sodium Calcium Carbonate Potassium Nitrite, KN0 2 ...... 38 Hydrate, Potassium Oxalate Hydrate, K2C 20 4 ©H 2 0...... 39 pirssonite, Na 2Ca(CQ 3 )2 ©2H 2 0 ...... 106 Potassium Selenate, K 2Se0 4 ...... 41 Sodium Molybdenum Oxide, Na 2Mo20 7 ...... 110 Potassium Sodium Aluminum Fluoride Trimethylammomum Chloride, (elpasolite), K 2 NaAIF 6 ...... 43 (CH 3 )3 NHCI...... 113 Rubidium Selenate, Rb2Se04 ...... 44 Cumulative index to Circular 539, Silver Cyanide, AgCN...... 46 Volumes 1 through 10, and Monagraph 25, Silver Oxalate, Ag«C 2 0 4 ...... 47 Sections 1 through 9 ...... 115 Sodium Chromium Oxiae, Na 2 Cr04 ...... 48 Cumulative mineral index...... 125

iii Errata Monograph 25 Section 8, pg. 12; N should be 1.486 P Section 8, pgs. 36, 37, 46, 47, 58, 76. Data in the table headings should read: a=3.16516 and A=l.54056

Section 8, pg. 68; N should be 1.6217 and N should be 1.6330 and N =1.6435aas given by Tutton p

Section 8, pg. 129; both tables are for hexagonal NaN 3 and should appear on page 130.

Section 8, pgs. 130-131; both tables are for monoclinic NaN 3 and should appear on page 129

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

NBS Monograph 25, Sections 1, 2, 3 and NBS Circular 539, Volumes 1 thru 10 may be obtained from Mr. Howard E. Swanson, Room A221, Materials Building, National Bureau of Standards.

The following five volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402, as follows:

NBS Monograph 25, Section 4, 55 cents; Section 5, 55 cents; Section 6, 60 cents; Section 7, $1.50; Section 8, $1.50.

(Order by SD Catalog No. C 13.44:25/Sec.—)

Send orders with remittance for the above five Monographs to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage. Those wishing to be notified of future issues should send mailing address to the Government Printing Office. STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Howard E. Swanson, Howard F. McMurdie, 1 Marlene C. Morris, 2 Eloise H. Evans, 2 and Boris Paretzkin2 Assisted by Johan H. deGroot2 and Simon J. C arm el

Standard x-ray diffraction patterns are presented for 63 substances. Forty of these patterns represent experimental data and 23 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computer interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION Optical data, color. A microscopic inspection for phase purity was also made on the non-opaque materials during the refractive index determination. The latter was done by The Powder Diffraction File is a compilation of diffraction grain-immersion methods in white light, with oils standardized patterns, gathered from many sources, produced, and published in sodium light, in the refractive index range 1.40 to 2.1. by the Joint Committee on Powder Diffraction Standards. 3 The [Hartshorne and Stuart, I960]. File is used for identification of crystalline materials by The names of the sample colors were selected from the matching d-spacings and diffraction intensity measurements. ISCC-NBS Centroid Color Charts. Under the partial sponsorship of the Joint Committee, our program at the National Bureau of Standards contributes new Structure, lattice constants. The space groups data to this File. Our work also aids in the evaluation and are listed with short Hermann-Mauguin symbols as well as the revision of published x-ray data and in the development of space group numbers given in the International Tables for diffraction techniques. This report presents information for 63 X-ray Crystallography Vol. I [1952]. compounds (40 experimental and 23 calculated patterns), and Orthorhombic cell dimensions were arranged according to is the nineteenth of the series of "Standard X-ray Diffraction the Dana convention b>a>c [Palache et al., 1944], Powder Patterns11.4 A computer program [Evans et aL, 1963] assigned hkfi©s and refined the lattice constants. Cell refinement was based EXPERIMENTAL POWDER PATTERNS only upon 2o values which could De indexed without ambi guity. In indexing cubic patterns, multiple hk£©s were not Sample. The samples used to make NBS patterns were reported; instead, we chose the single appropriate index obtained from a variety of sources or were prepared in small having the largest h. The number of significant figures reported quantities in our laboratory. Appropriate annealing, recrystal- for d-values varied with the symmetry and crystallinity of each lizing, or heating in hydro! her ma I bombs improved the quality sample. Unit cell constants and their standard errors were of most of the patterns. A check of phase purity was usually based on least-squares refinement of the variance-covariance provided by indexing the x-ray pattern. matrix derived from the unweighted M residuals.

Densities. These were calculated from the NBS lattice constants, the Avogadro number (6.06252 x 1023), and atomic lf2 Consultant and Research Associates, respectively, of the Joint Committee on weights based on carbon 12 [International Union, 1961]. Powder Diffraction Standards Associateship at the National Bureau of Standards. Interpianar spacings. For spacing determinations, a Joint Committee on Powder Diffraction Standards, 1601 Park Lane ,Swarthmore, shallow holder was packed with Pa. 19081. This Pennsylvania non-profit corporation functions in cooperation a sample mixed with an with the American Society for Testing and Materials, the American Crystallo- internal standard (approximately 5 wt. percent tungsten graphic Association, The Institute of Physics, the National Association of powder). When tungsten lines were found to interfere, approxi Corrosion Engineers, the American Ceramic Society, the Mmeralogical Society mately 25 wt. percent powdered silver was used in place of of America, and the Canadian Mmeralogical Society. tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid See previous page for listing of other published volumes. aberrations at the very top of the peak, the reading of 2e was taken at a position about 20 percent of the way down from the top, and in the center of the peak width. The internal standard powder did not flow readily, or was prone to orient ex correction appropriate to each region was then applied to the cessively, approximately 50 volume percent of finely ground measured value of 20. We have reported all data as Kal peaks silica-gel was added as a diluent. The intensities of the Decause the internal standard corrections for all regions were diffraction lines were measured as peak heights above back established in terms of the Kttl wavelength. The lattice ground and were expressed in percentages of the intensity of constants used for the internal standards at 25 C are given in the strongest line. At least three patterns for intensity the table below. The following angles for high purity (four 9©s) measurements were prepared for each sample to check repro- tungsten, silver, and cadmium oxide were computed using cell ducibility. dimensions uncorrected for index of refraction. All of our spacing determinations were recorded at Reference intensity. For reference intensity 25 1 C on a diffractometer equipped with a curved lithium measurements, aA!2 03 (corundum) was chosen as an internal fluoride crystal monochromator located between the sample standard to be mixed 1:1 by weight with the sample. This and the Geiger counter. Copper radiation was used and the mixture of two components was mounted in our regular in wavelength K<* was assumed to be 1.54056 A [Bearden, tensity sample holder (see Figs. 1 and 2), and the pattern was 1964]. taken. The reference intensity was then calculated as the direct ratio of the strongest line of the sample to the strongest Calculated 20 Angles line of corundum (hexagonal 113 reflection). In a few instances, the strongest line of one of the components coin 1.54056A cided with a line of the other. In that case, the second strongest line was measured, and the value for the strongest W AE CdO o line was then calculated. like a = 3.16516A a = 4.08641 A a = 4.69576A .00004 .00002 +.00002 CALCULATED POWDER PATTERNS

110 40.262 Since some substances are not readily available for ex 111 38.112 33.013 perimental work, powder patterns were calculated from 200 58.251 44.295 38.304 published crystal structure data. The FORTRAN program used 211 73.184 for the computations was developed by Smith [1967] ana 220 86.996 64.437 55.287 modified somewhat at NBS. 310 100.632 311 77.390 65.920 Lattice parameters. Before the computations of the III 114.923 81.533 69.255 patterns, corrections were made as necessary in the published 321 131.171 parameters to make them consistent with the revised value of 400 153.535 97.875 82.014 the copper wavelength o [Bearden, 1964]; specifically, the 331 110.499 91.290 published parameter in A was multiplied by 1.00004. Both the 420 114.914 94.378 published value are given. 422 134.871 106.954 altered parameter and the original 511 156.737 116.939 440 136.230 Scattering factors. Whenever possible, the same 531 152.077 scattering factors were used which the author of the reference 600 159.618 article specified. Otherwise, the factors were taken directly from the International Tables for X-ray Crystallography Vol. Ill [1962] on pages 202 (Table #3.3 01A), 210 (#3.3.IB), 213 Intensity measurements. It was found that samples (#3.3.2A), and 214 (#3.3.2B). Corrections were made for dis which gave satisfactory intensity patterns usually had an persions if the authors had done so. average particle size smaller than 10 ^m, as recommended by [Alexander et al. 1948]. In order to avoid the orientation Thermal parameters. The computer program uses the isotropic B©s and effects which occur when powdered samples are packed or thermal parameter data of two forms, pressed, a sample holder was made that had in its top face a anisotropic p..©s. The isotropic parameters were used rectangular cavity which extended to one end of the holder. To directly, if given by the structure reference. Initially, in a few prepare the sample, a glass slide was clamped over the top of our patterns, anisotropic parameters were also used directly face to form a temporary cavity wall (see Fig. 1), and the as given by the structure reference. In later work, in place of powdered sample was allowed to drift into the end opening using given anisotropic parameters, we used approximately while the holder was held in a vertical position. With the equivalent isotropic parameters, calculated from the equation: sample holder returned to a horizontal position, the glass r a . a . Q ~i B=4 slide was carefully removed so that the sample could be a* 2 b* 2 c* 2 exposed to the x-ray beam (as shown in Fig. 2). If the sample Integrated intensities. Intensity calculations were assigned the hkfi of the reflection having the greatest inte based on the copper Kai wavelength, 1.54056 A, determined by grated intensity; a plus sign (+) was used to indicate ad- Bearden [1964]. The integrated intensities were computed additional hke©s. from formula (1): REFERENCES (1) I = F 2 (Lp) (FAC) Alexander, L, H.P. Klug, and E. Kummer (1948). Statistical where F is the standard structure factor factors affecting the intensity of x-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-753. FAC is the powder multiplicity Bearden, J.S. (1964). X-ray Wavelengths, U. S. At. Energy Comm. NYO-10586. and Lp = l+2cos 220 Evans, H.T. Jr., D.E. Appleman, and D.S. Handwerker (1963). sin 20cos0 The lease-square refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method, (ads.) Am. Cryst. Assoc. Annual The intensities were scaled to the strongest line which Meeting, Cambridge, Mass. Program, 42-43. was assigned a value of 100. Reflections were not reported Hartshorne, N.H. and A. Stuart (1960). Crystals and the Polar which had scaled intensities of 0.7 or less. izing Microscope (Edward Arnold and Co., London, 3rd Ed). Scale factor. For each compound, this factor multi International Tables for X-ray Crystallography, I (1952). (The plied by the reported integrated intensities will reproduce the Kynoch Press, Birmingham, England) Ibid III (1962). Pgs. unsealed intensities which had been derived using formula (1). 202,210,213,214. International Union of Pure and Applied Chemistry, (1961). Peak intensities. The integrated intensities can be Chem. Eng. News 39 (4), Nov. 20, 42. transformed to a Cauchy profile with an appropriate variable ISCC-NBS Centroid Color Charts, SRM 2106, obtained from the half-width designated to simulate a diffractometer tracing Office of Standard Reference Materials, Room B328, [Smith, 1967]. The value of the half-width was chosen as Chemistry Building, National Bureau of Standards, as 0.075 at 40 (20, CuK^), Then the intensities were Washington, D.C. 20234. $5.00 per set. summed for the overlapping peak profiles, and the resulting Palache, C., H. Berman, and C. Frondel (1944). Dana©s System new peak intensities were scaled to the strongest peak height of Mineralogy (John Wiley & Sons, New York, 7th Ed.), I, which was assigned a value of 100. Reflections were not 6. reported which had scaled peak heights of 0.7 or less. Smith, O.K. (1967). A Revised Program for Calculating Powder Adjacent peaks with nearly equal 20 values usually cannot be Diffraction Patterns, UCRL 50264, University of experimentally resolved; therefore one composite peak was California, Lawrence Radiation Laboratory Livermore, calculated in such instances. The 20 angle of this peak was Calif. 94551.

Figure 1 Figure 2 I/I , Values for Some Previously Reported Powder Patterns corundum

Aluminum oxide, a-AI 2 0 3 (hexagonal)...... 1.0 Bismuth tellunde (tellurobtsmuthite), Bi 2 Te3 (hexagonal)...... 6.3 Calcium carbonate, CaC0 3 (hexagonal)...... 2.0 Calcium hydroxide (portlandite), Ca(OH)2 (hexagonal)...... 1.4 Magnesium, Mg (hexagonal)...... 2.0 Magnesium hydroxide, Mg (OH)? (hexagonal)...... 1.6 Nickel aluminum oxide, NiAI 2 0 4 (cubic)...... 1.6 Nickel sulfate hydrate (retgersite) NiS0 4 ©6H 2 0 (tetragonal)...... 3.6 Potassiun, sulfate (arcanite), K2S0 4 (orthorhombic)..... 1.8 Rubidium bromide, RbBr (cubic)...... 7.4 Rubidium chloride, RbCI (cubic)...... 7.6 Silicon oxide, Si0 2 (hexagonal)...... 3.6 SiIver, Ag (cubic)...... 5.2 Silver chlorate, AgCI0 3 (tetragonal)...... 2.9 Silver iodide, y-Agl (cubic)...... 2.6 Silver nitrite, AgN0 2 (orthorhombic)...... 2.5 Silver selenate, Ag2Se0 4 (orthorhombic)...... 3.1 Silver sulfate, Ag2S04 (orthorhombic)...... 2.1 Sodium bromide, NaBr (cubic)...... 0 ...... 6.8 Sodium iodide, Nal (cubic)...... 1.2 Tungsten, W (cubic)...... 18.0 Zinc, Zn (hexagonaI)...... 3.8 Ammonium Aluminum Fluoride, (NH4)3AIF6

Sample 0 The sample was prepared by adding HF to Internal standard Ag, a = 4.08641 A a solution of AlCla and NI^OH, then fil tering and washing the precipitate. CuKa! X= 1.54056 A; temp. 25 °C d (A) I hkl 20(°) Color 5.15 100 111 17.19 Colorless 4.46 55 200 19.88 3.157 45 220 28.24 Optical data 2.579 20 222 34.75 Isotropic, N=l.410 2.233 30 400 40.35 2.049 4 331 44.16 1.998 3 420 45.35 Structure 1.824 6 422 49.96 Cubic, F23 (196) or F43m (216), Z=4, 1.720 11 511 53.21 structure determined by Pauling [1924]. 1.579 5 440 58.38 Except for hydrogen positions,the struc ture also satisfies the conditions for 1.510 4 531 61.34 Fm3m (225). The compound is isostructur- 1.489 2 600 62.31 al with (NH4 ) 3 FeF6 and many other hexa- 1.412 4 620 66.10 fluorides. 1.363 2 533 68.83 1.347 1 622 69.73

1.2900 2 444 73.33 1.2514 2 711 75.98 Lattice constants 1.2389 1 640 76.89 1.1941 3 642 80.34 a(A) 1.1634 1 731 82.92 <1 NBS, sample at 25 °C —————————— 1.1170 800 87.20 8.934 1.0833 1 820 90.64 ±.001 1.0528 1 822 94.05 1.0314 1 751 96.63 0.9988 <1 840 100 . 92

.9806 <1 911 103.54 .9524 1 664 107.96 .9366 1 931 110 . 66 Density .9118 <1 844 115.29 (calculated) 1-817 g/cm 3 at 25° C. .8978 1 933 118.17

Reference intensity .8933 1 10-0-0 119.14 .8761 1 10 • 2 * 0 123.09 I/I corundum = 1.5 .8637 1 951 126.22 .8597 <1 10 • 2 • 2 127.27 .8332 1 953 135.18

Polymorphism .8296 1 10-4-0 136.42 Steward and Rooksby [1953] found that .8155 1 10-4-2 141.65 (NH*)aAlF6 has tetragonal or possibly .8056 2 11-1-1 145.95 lower symmetry at -180 °C.

Additional patterns References 1. PDF card 3-0122 [Dow Chemical Co.] Pauling, L. (1924). J. Am. Chem. Soc. 46, Midland, Mich. 2738. Steward, E.G.,andH.P. Rooksby (1953).Acta Cryst. 6, 49. Ammonium Aluminum Selenate Hydrate, NH 4AI(Se0 4) 2 ©12H 20

Sample 0 The sample was made by slow evaporation Internal standard W, a = 3.16516 A of a 1:1 aqueous solution of (NELt ) s CuKcij A = 1.54056 A; temp. 25 °C and Alg (SeO4 ) 3 at room temperature. d (A) / hkl 2v (°) Color Colorless 7.17 20 111 12.33 6.22 25 200 14.22 5.56 70 210 15.93 Optical data 5.08 30 211 17.44 Isotropic, N=1.486 4.41 90 220 20.13

Structure 4.15 80 221 21.41 Cubic, Pa3 (205),Z=4, NH4 A1 (SeO4 ) 2 *12HsO 3.75 20 311 23.71 is isostructural with other a-alums such 3.59 3 222 24.80 as KA1(SO4 ) 2 -12HsO [Haussiihl, 1961], 3.452 6 320 25.79 3.327 100 321 26.77

3.110 20 400 28.68 3.017 40 410 29.58 2.931 2 411 30.47 Lattice constants 2.856 25 331 31.29 2.783 10 420 32.14 0 a(A) 2.714 19 421 32.98 16 332 33.73 NBS, sample at 25 °C 12.4432 2.655 ±.0004 2.540 3 422 35.31 2.487 2 430 36.09 2.440 20 431 36.81

2.311 2 250 38.94 Density 2.272 14 521 39.63 (calculated) 1.886 g/cm 3 at 25° C. 2.199 1 440 41.00 2.167 2 522 41.64 Reference intensity 2.105 10 531 42.94 ' corundum ~ J- • O 2.074 8 600 43.61 2.046 12 610 44.24 2.019 11 611 44.86 1.967 4 620 46.11 References 1.943 2 621 46.70 Haussiihl, S. (1961). Z. Krist* 116, 371. 1.919 10 541 47.33 1.898 14 533 47.89 1.877 2 622 48.47 1.856 4 630 49.05 1.835 11 631 49.65

1.760 5 543 51.92 Io743 4 711 52.46 1.725 2 640 53.05 1.710 6 270 53.56 1.693 4 721 54.11 Ammonium Aluminum Selenate Hydrate, NH 4AI(Se04) 2 > 12H 20 - continued

d (A) 7 fcfeZ 2t>(°)

1.663 2 642 55.19 1.648 6 722 55.72 1.620 7 731 56.79 1.593 1 650 57.82 1.581 7 732 58.33

1.543 2 810 59.88 Io532 4 811 60.39 1.521 2 733 60.86 1.509 7 820 61.39 1.498 4 821 61.88

1.487 <1 653 62.41 1.4663 3 822 63.38 1.4560 1 830 63.88 1.4459 4 831 64.38 1.4368 3 751 64.84

1.4181 2 832 65.80 1.4092 1 752 66.27 1.3829 6 841 67.70 1.3655 1 911 68.68 1.3498 3 670 69.59

1.3418 2 921 70.07 1.3260 1 664 71.02 1.3186 4 922 71.49 1.3116 3 851 71.93 1.2833 2 932 73.77

1.2571 1 941 75.57 1.2506 2 933 76.04 1.2439 1 10-0*0 76.52 1.2379 4 10-1-0 76.96 1.2204 4 10.2-0 78.27 Ammonium Copper Chloride Hydrate, (NH4)2CuCI 4 ©2H 20

Sample o The sample was prepared by slow evapora Internal standard W, a = 3.16516 A tion at room temperature of a 2:1 aque CuKfll A = 1.54056 A; temp. 25 °C ous solution of NH4 Cl and CuCl2 - d(A) / hkl 20C) Major impurities 0.001-0.01% each: Al and Mg. 5.49 100 101 16.12 5.37 50 110 16.48 3.982 5 002 22.31 Color 3.395 20 210 26.23 Brilliant greenish blue 3.200 25 112 27.86

Optical data 3.124 30 211 28.55 Uniaxial (-), NQ=1.668, Ne=1.640 2.745 70 202 32.59 2.684 90 220 33.35 Structure 2.584 17 212 34.68 Tetragonal, P42 /mnm (136), Z=2 [Hen- 2.506 12 103 35.80 dricks and Dickinson, 1927]. The struc ture was refined by Chrobak [1934] 2.411 8 301 37.26 2.408 8 310 37.38 2.228 20 222 40.46 2.093 9 213 43.18 2.058 6 312 43.97

2.036 12 321 44.45 Lattice constants 1.992 20 004 45.50 1.899 14 400 47.85 0 0 1.867 9 114 48.74 a (A) c(A) 1.843 8 410 49.42

NBS, sample at 25 °C 7.594 7.967 1.793 8 411 50.87 + .001 ±.001 1.790 7 330 50.99 1.718 5 214 53.27 1.713 8 402 53.43 1.672 8 412 54.87

1.650 4 323 55.67 1.632 5 332 56.32 Density 1.599 18 224 57.60 (calculated) 2.005 g/cm 3 at 25° C. 1.560 5 105 59.18 Reference intensity

References Chrobak, L. (1934). 2. Krist. 88, 35. Greenberg, A.L. and G.H. Walden Jr. (1940) Jour. Chem. Phys. 8, 645. Additional patterns Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1. PDF card 1-211 [Hanawalt et al.,1938] (1938). Ind. Eng. Chem. Anal.Ed. 10, 457. 2. Greenberg and Walden [1940] Hendricks, S.B. and R.G. Dickinson (1927). 3. Chrobak [1934] J. Am. Chem. Soc. 49, 2149. Ammonium Iron FUioride, (NH4)3FeF6

Sample 0 The sample was prepared by adding an a- Internal standard W, a = 3.16516 A , gueous solution of FeCla to a solution CuKaj * = 1.54056 A; temp. 25 °C of NH*F in HF. d(A) 7 hkl &<(«) Color Colorless 5.25 100 111 16.88 4.558 55 200 19.46 Optical data 3.221 50 220 27.67 Is ot ropic, N=1.440 2.744 8 311 32.61 2.629 4 222 34.08

Structure 2.277 25 400 39.54 Cubic, F23 (196) or F43m (216), Z=4, 2.089 1 331 43.28 structure determined by Pauling [1924]. 2.038 9 420 44.42 Except for the hydrogen positions, the 1.858 12 422 48.98 structure also satisfies the conditions 1.753 12 511 52.13 for Fm3m (225). The compound is iso- structural with (NH^JaAlFe and many oth 1.6099 7 440 57.17 er hexafluorides. 1.5394 8 531 60.05 1.5179 4 600 60.99 1.4399 4 620 64.68 Lattice constants 1.3894 2 533 67.34 1.3732 1 622 68.24 a(A) 1 . 3 144 1 444 71.75 1.2756 2 711 74.29 NBS, sample at 25 °C ————————— 9.1066 1.2627 1 640 75.18 ±.0003 1.2168 3 642 78.55

1.1857 1 731 81.03 1.1383 <1 800 85.17 Density 1.1126 <1 733 87.63 (calculated) 1.970 g/cm 3 at 25° C. 1.1044 1 820 88.45 Reference intensity 1.0734 1 822 91.71 I/I A _ 2.1 ' corundum ~" 1.0516 1 751 94.19 1.0448 <1 662 95.00 Polymorphism 1.0182 <1 840 98.31 Steward and Rooksby [1953] found that 0.9995 1 911 100.82 .9936 <1 842 (NHt JsFeFe was distorted to a tetragonal 101.65 cell at -180 °c. .9707 <1 664 105.04 .9548 1 931 107.56 Additional patterns .9292 <1 844 111.98 1. PDF card 5-0223 [Rice et al.,1952] .9151 1 933 114.65 .9106 <1 10-0-0 115.54 References Pauling, L. (1924). J. Am. Chem. Soc. 46, .8931 1 10-2-0 119.19 2738. .8804 1 951 122.06 Rice, H. M., R. C. Turner and J. E. Brydon .8762 1 10-2-2 123.07 (1952). Nature 169, 749. Steward, E.G.,andH.P. Rooksby (1953).Acta Cryst. 6, 49. Barium Calcium Tungsten Oxide, Ba2CaW0 6

Sample o The sample was prepared by heating CaCOa Internal standard Ag, a = 4.08641 A and HsWO4 -H2 O at 700 °C, then adding CuKa a A= 1.54056 A; temp. 25 °C BaCO3 and heating at 1200 °C for half an hour. d (A) I hkl ze(°)

4.85 25 111 18.29 Color 4.19 1 200 21.17 Yellow gray 2.97 100 220 30.11 2.528 10 311 35.48 Structure 2.421 4 222 37.11 Cubic, Fm3m (225), Z=4, isostructural with (NH4 ) 3 FeF6 [Steward and Rooksby, 2.096 30 400 43.13 1951]. The structure of (NH4 )3FeF6 was 1.923 4 331 47.22 determined by Pauling [1924]. 1.875 1 420 48.50 1.711 40 422 53.51 1.614 5 511 57.03

Lattice constants 1.482 15 440 62.63 1.417 4 531 65.88 1.3256 15 620 71.05 a(A) 1.2783 2 533 74.11 1.2636 1 622 75.12 NBS , sample at 25 °C ——— - —————— 8.384 ±.001 1.2100 5 444 79.08 1.1739 2 711 82.02 1.1205 14 642 86.86 1.0915 2 731 89.77 Density 1.0481 2 800 94.60 (calculated) 6.701 g/cm 3 at 25° C. 1.0245 <1 733 97.52 Reference intensity .9882 6 822 102.43 I/I , - 8.8 ' corundum — .9682 1 751 105.42 .9373 4 840 110.54 Additional patterns .9204 2 911 113.62 1. PDF card 6-400 [Steward and Rooksby, 1951] .8939 4 664 119.01 2. PDF card 20-210 [Chang et al.,1966] .8789 1 931 122.42 .8557 3 844 128.37 .8426 1 933 132.19 References Chang, L.L.Y., M.G.Scroger, and B.Phillips .8222 7 10-2-0 139.06 (1966). J. Am. Ceram. Soc. 49, 385. .8106 1 951 143.72 Pauling, L. (1924). J.Am.Chem.Soc.46,2738. Steward, E.G.,andH.P. Rooksby (1951).Acta Cryst. 4, 503.

10 Barium Chloride, BaCL, (orthorhombtc)

Sample 0 The sample was obtained from Fisher Sci Internal standard W, a = 3.16516 A , entific Co. Fair Lawn, N. J. and was CuKaj A = 1.54056 A; temp. 25 °C heated overnight at 875 °C. d (A) / hkl 2*0 Oil 21.01 Major impurities 4.225 45 4.046 85 120 21.95 0.001-0.01% each: Sr 3.935 45 200 22.58 3.723 70 111 23.88 0.01 -0.1 % each: Ca 3.072 20 121 29.04

3.028 ^ < 201 29.47 3.020 f 1 220 29.56 Color 2.916 10 130 30.63 Colorless 2.879 100 211 31.04 2.617 55 031 34.24

Optical data 2.546 3 221 35.22 Biaxial, Na=1.730, Ng=l,736, Ny=1.741, 2.529 6 310 35.46 2V is very large. 2.482 40 131 36.16 2.456 4 230 36.56 Structure 2.366 45 002 38.00 Orthorhombic, Pnam (62), Z=4, isostruc- tural with PbCl2 [Doll and Klemm, 1939] . 2.355 45 040 38.18 The structure was refined by Brackett et 2.292 45 320 39.28 al. [1963] and Sahl [1963]. 2.231 35 311 40.40 2.178 35 231 41.42 2.042 I / 122 44.32 2.037 ' I 141 44.44 2.028 25 202 44.64 Lattice constants 2.023 25 240 44.77 1.969 10 400 46.07 o o o a(A) b(A) c(A) 1.863 4 222 48.85 1.854 8 331 49.11

1.838 4 132 49.55 NBS, sample at 25 °C - - - - 4.7322 1.833 4 150 49.71 7.872 9.425 51.15 ±.001 ±.001 ±.0003 1.784 6 411 1.728 3 312 52.96 1.710 13 151 53.56

Density 1.705 8 232 53.72 (calculated) 3.939g/cm 3 at 25° C. 1.6958 2 421 54.03 1.6696 13 042 54.95 Reference intensity 1.6461 30 322 55.80 1.5997 8 251 57.57 ' corundum - •*- • 3 1.5732 6 431 58.63 1.5556 3 013 59.36 1.5401 11 160 60.02 1.5364 16 242 60.18 1.5263 5 113 60.62

11 Barium Chloride, BaCL, (orthorhombic) - continued

Polymorphism d (A) 1 WfeZ 2BW BaCla is stable in a cubic (fluorite) form above 925 °C. A monoclinic form is 1.5134 L - < 402 61.19 mentioned but no stability range defined 1.5107 |f J \ 440 61.31 [Vainshtein, 1948]. 1.4934 8 412,520 62.10 1,4753 17 511 62.95 1.4648 2 161,203 63.45

1.4593 } 14 \ 260 63.72 1,4564 351 63,86 1.4469 10 213 64.33 1.4099 6 033 66.23 1.3879 5 133 67.42 Additional patterns I 1. PDF card 1-948*[Hanawalt et al.,1938] 531 69.61 2. PDF card 1-1177[Dow Chemical Co..Mid 1.3478 i 9 360 69.71 land, Mich.] 1.3383 1 6 313 70.28 3. PDF card 2-794 [D511 and Klemm, 1939] 1.3269 6 233,170 70.97 4. Brackett et al. [1963] 1.3116 3 600 71.93 5. Solans-Huguet and Font-Altaba [1968] * appears to be misnamed "high form" 1.3084 5 062,451 72.13 1.2960 6 361 72.93 1.2913 11 162 73.24 References 1.2779 4 171 74.14 1.2733 8 442 74.45 Brackett, E. B., T. E. Brackett, and R. L. Sass (1963). J. Phys. Chem. 67, 2132. i 1.2637 8 \ 601,620 75.11 Dc-11, W. and W. Klemm (1939). Z. anorg. u. 1.2617 > 541 75.25 allgem. Chem. 241, 239. 1.2530 4 611 75.87 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.2417 2 262,333 76.68 (1938). Ind. Eng. Chem. Anal.Ed*10, 457. 1.2302 4 271 77.53 Sahl, K. (1963). Beitr. Mineral. Petrog. 9, 111. 1.2203 1 413 78.28 Solans-Huguet, J. and M. Font-Altaba (1968). 1.1958 2 153 80.20 Anales Real Soc. Espan. Fis. Quim.Madrid 1.1830 2 004 81.25 64, 425. 1.1709 9 362,551 82.27 Vainshtein, B.K. (1948). Dokl. Akad. Nauk, 1.1561 2 253 83.56 USSR, 60, 1169. 1.1461 6 640,433 84.46 1.1354 2 124 85.44

12 Barium Chloride, BaCI2, (cubic)

Sample o The sample was prepared by heating Internal standard Ag, a = 4.08641 A ^HeO at 70 °C overnight in vacuum. CuKaj A= 1.54056 A; temp. 25 °C This is the method described by Brackett et al. [1963]. Cubic BaCla is stable a- d(A) 7 hkl 2Bf) bove 925 °C [Brackett et al. [1963]. It -persists at room temperature for several 4.23 70 111 20.99 hours however, before reverting to the 3.66 9 200 24.30 orthorhombic form. 2.586 100 220 34.66 2.205 50 311 40.90 2.110 6 222 42.83 Major impurities 0.001-0.01% each: S r 1.8274 16 400 49.86 1.6769 25 331 54.69 0.01 -0.1 % each: Ca 1.6348 9 420 56.22 1.4921 40 422 62.16 1.4071 19 511 66.38

Color 1.2924 11 440 73.17 Colorless 1.2357 16 531 77.12

Structure Cubic, Fm3m (225), Z=4, isostructural with CaF2 [Vainshtein, 1948]. Additional patterns 1. Solans-Huguet and Font-Altaba [1968*] *intensities based on CaFa 2. PDF card 1-948 is mislabeled "high- Lattice constants form 11 but is essentially orthorhombic

o Polymorphism Below 925 °C the stable form of is orthorhombic NBS, sample at 25°C 7.311 [Gemsky, 1913]. ±.001 References Brackett, E. B., T. E. Brackett and R. L. Sass (1963). J. Phys. Chem. 67, 2132. Gemsky, H. (1913). Neues Jahr. Mineral. Geol. 36, 513. Density Solans-Huguet, J.and M. Font-Altaba(1968) 0 (calculated) 3.539 g/cm 3 at 25° C. Anales De Quimica 64, 425. Vainshtein, B.K. (1948). Dokl. Akad. Nauk SSSR 60, 1169.

13 Barium Titanium Silicate (fresnoite), Ba2TiSi 20 8

Sample 0 The sample was prepared at NBS by C. R. Internal standard Ag, a = 4.08641 A Robbins [1970] . CuKai A= 1.54056 A; temp. 25 °C

d(A) / hkl 20(*) Color Colorless 6.03 5 110 14.67 5.22 14 001 16.98 Optical data 4.267 8 200 20.80 Uniaxial(-) N -1.775, N =1.765, [Robbins, 3.947 12 111 22.51 1970] ° 3.816 20 210 23.29 3.301 45 201 26.99 Structure 3.077 100 211 28.99 Tetragonal, P4bm (100), Z=2 [Masse, 3.017 10 220 29.58 Grenier and Durif, 1967] and [Moore and 2.697 25 310 33.19 Louisnathan, 1967] 2.607 20 221,002 34.37

2.395 8 311 37.52 2.364 2 320 38.03 2.223 6 202 40.54 Lattice constants 2.151 20 212 41.97 2.133 4 400 42.34 a(A) c(A) 2.069 16 410 43.72 NBS, sample at 25 °C ———— 8.5291 5.2110 2.009 10 330 45.08 1.971 ±.0004 ±.0003 6 222 46.00 1.922 15 411 47.25 1.907 6 420 47.65

1.874 20 312 48.55 Density 1.752 2 322 52.17 (calculated) 4.439 g/cm 3 at 25° C. 1.738 3 003 52.63 1.668 1 113 55.00 Reference intensity 1.650 2 402 55.65 I/I . - 4.2 ' corundum ~~ 1.620 9 412 56.78 1.609 5 203 57.20 1.5913 11 332 57.90 1.5804 11 213 58.34 1.5387 2 422 60.08

1.5154 6 521 61.10 Additional patterns 1.5074 5 440 61.46 1. PDF card 11-150* [Rase and Roy, 1955] 1.4624 3 530 63.57 2. PDF card 18-197 [Alfors et al., 1965] 1.4218 3 600 65.61 1.4081 3 531,512 66.33 * given as BaTiSiO5 however, according to Robbins [1970], 11-150 is the same 1.4019 2 610 66.66 as fresnoite. 1.3718 2 601 68 0 32 1.3536 2 611,522 69.37 1.3305 5 413 70.75 1.3144 3 333 71.75

u Barium Titanium Silicate (fresnoite), Ba2TiSi 20 8 - continued

d(A) 7 fcfeZ 26>(*)

1.3050 4 621,442 72.35 References 1.3030 4 004 72.48 Alfors, J.T. M.C. Stinson, R. A. Ma thews, 1.2907 4 541 73.28 and A Pabst(1965). Am. Mineralogist 50, 1.2754 3 532 74.31 314. 1.2475 3 602 76.26 Masse,R , J.C. Grenier,and A. Durif(1967). Bull. Soc. Franc. Mineral.Grist. 90, 20. 1.2456 3 204 76.40 Moore,P.B. and J. Louisnathan (1967). Sci 1.2327 2 214 77.34 ence 156, 1361. 1.2049 2 513 79.48 Rase,D.E. and R. Roy (1955). J. Am. Ceram. 1.1981 2 622 80.02 Soc. 38, 389. 1.1959 1 224 80.20 Robbins, C. R. (1970). J. Res. Natl. Bur. Std. A 74A, No. 2, 229. 1.1863 2 542 80.98 1.1729 4 314 82.10 1.1703 5 523 82.32 1.1532 1 641 83.82 1.1428 2 721,632 84.76

1.1191 2 533 86.99 1.1117 1 404 87.71 1.1023 2 414 88.66 1.0998 2 603 88.91 1.0934 2 334 89.58

1.0756 1 424 91.47 1.0688 3 651,722 92.22 1.0651 2 623 92.64 1.0570 3 543 93.56 1 . 0444 1 801 95.04

1.0422 1 005 95.30 1.0368 3 741 95.96 1.0342 2 820 96.28 1.0271 1 115 97.17 1.0125 1 205 99.07

1.0060 2 524 99.93

15 Cadmium Iron Oxide, CdFe204

Sample Internal standard W, a = 3.16516 A The sample was prepared by co-precipita tion of the hydroxides by addition of CuKGi A = 1.54056 A; temp. 25 °C NaOH to a solution of FeCl3 and CdCl2 . The product was then washed, heated at d(A) / hkl 2&C) 500 °C for three days, ground,and heated for two minutes at 850 °C. 3.075 60 220 29.01 2.623 100 311 34.15 2.514 8 222 35.69 Color 2.175 5 400 41.48 Strong brown 1.997 3 331 45.38

Optical data 1.776 20 422 51.41 511 54.78 Isotropic, N = 2.39 [Roberts and Merwin, 1.674 35 1931] 1.538 35 440 60.12 1.376 7 620 68.10 1.327 9 533 70.96 Structure 71.92 Cubic, Fd3M (227), Z = 8, spinel type 1.3117 3 622 [Posnjak, 1930]. 1.2182 1 711 78.45 1.1624 8 642 83.01 1.1323 13 731 85.73 1.0874 4 800 90.20

1.0629 1 733 92.89 1.0252 4 822 97.41 Lattice constants 1 . 0044 6 751 100.15 .9980 2 662 101.03 a(A) .9550 <1 911 107.53

NBS, sample at 25 °C ———————— .9274 1 664 112.31 8.6996 931 115.28 ±.0002 .9119 4 .8873 7 844 120.36 .8744 1 933 123.51 .8531 6 10-2-0 129.09

.8410 6 951 132.67 Density 10-2-2 (calculated) 5.812 g/cm 3 at 25° C. .8372 3 133.87 Reference intensity I/I A _ 1.9 © corundum — References Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938).Ind. Eng. Chem. Anal,Ed. 10, 457. Additional patterns Posnjak, E. (1930). Am. Jour. Sci. 19, 67. 1. PDF card 1-1083[Hanawalt et al.,1938] Roberts, J. and H. E. Merwin (1931). Am. 2. Posnjak [1930] Jour. Sci. 21, 145.

16 Calcium Titanium Oxide (perovskite), CaTi0 3

Sample 0 The sample was prepared by Coughanour et Internal standard W, a = 3.16516 A al. [1955] by mixing equimolar amounts CuKaj A = 1.54056 A; temp. 25 °C of CaO and TiO2 and pelletizing at 5000 lb/in2 . The pellets were then heated to d(A) / hkl 2'Y°> 1000 to 1200 °C for four hours in an ox idizing atmosphere. 3.824 14 101,020 23.24 3.423 3 111 26.01 Color 2.719 40 200 32.92 Yellowish white 2.701 100 121,002 33.14 2.563 1 210 34.98

Optical data 2.428 1 201 37.00 Almost isotropic, N = 2.4 2.413 2 102 37.23 2.313 4 211 38.91 2.303 7 031 39.08 Structure 2.217 6 220 40.67 Orthorhombic, Pnma (62), Z=4, distorted perovskite [Kay and Bailey, 1957] . 2.201 4 022 40.97 2.121 2 131 42.59 2.050 2 221 44.14 2.040 1 122 44.36 1.911 50 040 47.53

Lattice constants 1.860 2 230 48.93 1.856 3 212 49.04 a(A) b(A) C(A) 1.757 1 231 51.99 1.752 1 132 52.15 NBS , sample 1.746 1 013 52.35 -»+- *>C °p — j5 * 4.4-05**** \j j 7.6436 5 *3 D 1 O ±.0002 ±.0005 ±.0003 1.719 2 301 53.26 1.710 3 222,141 53.53 1.703 2 103 53.77 1.676 3 311 54.71 1.663 1 113 55.17 Density (calculated) 4.036 g/cm 3 at 25° C. 1.567 14 321 58.89 1.563 16 240 59.04 Reference intensity 1.557 25 042 59.30 I/I corundum. -~ 2.6 1.529 <1 232 60.50 1.4978 <1 142,203 61.90

1.4702 1 051,213 63.19 1.4663 <1 033 63.38 Additional patterns 1.4246 1 331 65.46 1. PDF card 8-91 [Murdock, 1951]. 1.3603 3 400 68.98 2. PDF card 9-365 [Padurow and Schust- 1.3522 11 242 69.45 erius, 1955]. 3. Coughanour et al. [1955]. 1.3455 5 004 69.85 1.3393 2 410 70.23 1.3190 <1 401 71.46 1.3056 <1 104 72.31 1.2938 1 251 73.08

17 Calcium Titanium Oxide (perovskite), CaTiCL - continued

d(A) I hkl ^Y°>

1.2913 1 152,233 73.24 References 1.2780 1 341 74.13 Coughanour, L.W. , R.S. Roth, S. Marzullo, <1 1.2578 313 75.53 and F. E. Sennett (1955). J. Res. Natl. 1.2356 <1 124 77.13 Bur. Std. 54, 149. 1.2138 2 402 78.78 Kay, H. F. and P. C. Bailey (1957). Acta Cryst. 23, 219. 1.2088 7 161 79.17 Murdock, J. (1951). Am. Mineralogist 36, 1.1995 1 430 79.91 513. 1.1942 <1 252 80.33 Padurow, N. N. and C. Schusterius (1955). 1.1913 <1 214 80.57 Ber. Deut. Keram. Ges. 32/ 292. 1.1622 <1 134 83.02

1.1421 1 351 84.82 1.1399 1 333 85.02 1.1378 1 153 85.22 1.1080 2 440 88.09 1.1000 2 044 88.90

1.0958 1 432 89.33 1.0702 <1 071,314 92.07 1.0668 1 501 92.45 1.0565 1 511 93.62 1.0425 <1 423 95.27

1.0395 <1 324 95.63 1.0274 1 521 97,14 1.0244 3 422 97.51 1.0237 4 361 97.61 1.0202 5 163 98.06

1.0176 6 125 98.39 .9840 1 531 103.04 .9564 2 404 107.30 .9555 1 080 107.44 .9491 <1 414 108.50

.9308 1 541,235 111.69 .9279 <1 424 112.23 .9235 1 531 113.05 .9215 <1 371 113.42 .9066 <1 600 116.34

.9039 1 523 116.89 .9012 4 363,280 117.45 .8997 4 325 117.78

18 Calcium Tungsten Oxide, Ca 3W0 6

Sample 0 The sample was prepared by a solid state Internal standard W, a = 3.16516 A reaction of CaCO3 and HWO 3 when heated at 1000 °C for 24 hours. CuKdj A = 1.54056 A; temp. 25 °C

d(A) 7 hkl 2t:(«) Color Colorless 4.701 60 Oil 18.86 4.562 45 101,101 19.44 Optical data 4.008 65 110,002 22.16 Low , N ^ 2.00 3.589 4 111,111 24.79 2.905 30 020 30.75 Structure Monoclinic, P2l /n (14), Z=2, by analogy 2.835 100 112 31.53 of the powder pattern with that of 2.776 30 200 32.22 Na 3 FeF6 . Steward and Rooksby [1951] con 2.503 2 210 35.85 sidered that the structure of Ca 3 WO6 was 2.451 16 121,121 36.64 similar to (NH4 )sPeF6 but departed con 2.425 7 013 37.04 siderably from cubic symmetry, and they suggested that the atomic arrangement 2.403 16 103 37.39 might be identical to that of Na 3 AlF6 . 2.393 20 211 37.56 2.350 4 022 38.26 2.283 2 202 39.43 2.278 4 202 39.53

2.220 4 113 40.60 Lattice constants 2.164 3 122,122 41.71 2.005 30 220 45.18 2.002 a(A) b(A) C(A) PC) 30 004 45.26 1.964 2 023 46.19

NBS, 1.945 3 221,221 sample 46.65 1.882 4 031 48.32 at 25°C 5.547 5.808 8.002 90.15 1.853 8 123 49.13 ±.001 ±.001 ±.001 ±.01 1.827 12 130,213 49.87 1.802 6 301,301 50.62

1.791 17 222,114 50.94 1.762 4 310 51.84 Density 1.721 2 311,311 53.19 (calculated) 5.154 g/cm 3 at 25° C. 1.662 18 132,132 55.21 1.648 14 024 55.75 Reference intensity I/I ,- 1.624 8 204 corundum ~~ . 9.7 56.62 1.620 13 204 56.78 1.614 20 312 57.02 1.611 19 312 57.11 1.566 2 033 58.91

1.558 8 231,231 59.28 1.543 4 015 59.90 1.538 4 105 60.11 1.531 4 321 60.40 1.522 3 303 60.82

19 Calcium Tungsten Oxide, Ca3W06 - continued

d(A) / hkl *>(°) 1,518 2 303 61.00 Additional patterns 1.507 2 133 61.47 1. PDF card 20-244 [Chang et al. f 1966] 1.452 3 322,040 64.09 2. Baglio, J.A C and S. Natansohn 1.417 8 224 65.85 1.415 10 224 65.96

1.386 6 400 67.51 1.384 6 141,141 67.63 1.365 6 233,042 68.71 1.360 6 125 68.97 1.349 8 410,134 69.65 References Chang, L.L.Y., M.G. Scroger, and B. Phill 1.337 2 330 70.35 ips (1966). J. Am. Ceram. Soc. 49, 385. 1.331 4 411 70.74 Steward, E. G. and H. P. Rooksby (1951). 1.324 2 314 71.13 Acta Cryst. 4, 503. 1.321 2 314 71.36 Baglio, J.A. and S. Natansohn (1969). J. 1.312 2 402 71.90 Appl. Cryst. 2, 252.

1.309 2 402 72.10 1.266 10 116 74.93

20 Cobalt Chromium Oxide, CoCr20 4

0 Sample Internal standard W, a = 3.16516 A The sample was made by heating a mixture of CoO and Cr2 O3 overnight at 900 °C., CuKd! * = 1.54056 A; temp. 25 °C grinding, and reheating for 17 hours at 1200 °C. d(A) 7 hkl 20 (°)

4.82 14 111 18.41 Color 2.947 35 220 30.30 Dark bluish green 2.512 100 311 35.72 2.405 8 222 37.36 Structure 2.084 25 400 43.39 Cubic, Fd3m (227), Z=8, spinel type [Natta and Passerini, 1929] . 1.700 12 422 53.90 1.6027 35 511 57.45 1.4721 45 440 63.10 1.4081 2 531 66.33 1.3171 4 620 71.58

1,2702 10 533 74.66 1.2556 5 622 75.68 Lattice constants 1.2023 3 444 79.68 1.1664 1 711 82.65 1.1131 5 642 87.58 a(A) 1.0844 14 731 90.52 1.0409 4 800 95.46 *3 OQQ NBS, sample at 25 °C — - - 8 .9818 2 822 103.36 ±.0002 .9618 7 751 106.42 .9554 4 662 107.46

.9313 4 840 111.61 .9141 1 911 114 . 84 Density .8880 2 664 120.33 (calculated) 5.215 g/cm 3 at 25° C. .8732 7 931 123.81 .8502 13 844 129.92 Reference intensity I/I _ 1.8 .8168 3 10-2-0 141.12 ' corundum ~ .8053 10 951 146.08

Additional patterns References 1. PDF card 1-1122 [New Jersey Zinc Co., Natta, G., and L. Passerini (1929). Gazz, Palmerton, Pa.] Chim. Ital. 59, 280.

21 Cobalt Iron Oxide, CoFe20 4

0 Sample Internal standard W, a = 3.16516 A The sample was prepared by adding Co(OH)2 dissolved in NaOH to a FeCl3 solution CuKd! A = L54056 A; temp. 25 °C acidified with HCl. This mixture was heated to 80 °C while CoFe^O^ was pre d(A) I hkl 2*(°) cipitated by adding NaOH to a pH of 10. 18.29 The precipitate was heated to 950 °C in 4.847 10 111 30.08 air for 40 hours. 2.968 30 220 2.531 100 311 35.44 2.424 8 222 37.06 Color 2.099 20 400 43.06 Black 1.926 1 331 47.16 1.713 10 422 53.45 Structure 56.97 Cubic, Fd3m (227), Z=8, spinel type 1.615 30 711 1.483 40 440 62.57 [Natta and Passerini, 1929]. -3 1.419 531 65.75

1.3273 4 620 70.95 1.2798 9 533 74.01 1.2652 4 622 75.01 1.2114 2 444 78.97 1.1749 2 551 81.93

Lattice constants 1.1214 4 642 86.77 1.0925 2 731 89,67 a(A) 1.0490 5 800 94.50 .9891 2 822 102.30 8 751 105.29 NBS, sample at 25 °C ————————— 8.3919 .9690 ±.0001 .9627 4 662 106.29 .9382 4 840 110.38 .9213 1 911 113.46 .8946 2 664 118.87 .8797 6 931 122.24 Density (calculated) 5.304 g/cm 3 at 25° C. .8564 14 844 128.16 .8434 1 933 131.93 Reference intensity .8229 3 10-2-0 138.80 951 143.43 I/I corundum. _~ 2.7 .8112 8 .8075 2 10-2-2 145.07

Additional patterns 1. PDF card 1-1121, incorrectly labelled References CoPes O4 [New Jersey Zinc Co., Palmerton, Natta, G., and L. Passerini (1929). Gazz, Pa.] Chim. Ital. 59, 280.

22 Lithium Sodium Aluminum Fluoride, cryolithionite, Li 3Na3AI 2F 12

Sample 0 A natural mineral from Ivigtut, Green Internal standard Ag, a = 4.08641 A land (National Museum #94311) was used. CuKai X= 1.54056 A; temp. 25 °C It contained a few percent of NasAlF6 and these lines were disregarded. An a- d (A) I hkl 2$(°) nalysis by Menzer [1930] of material from this locality indicated that the 4.95 13 211 17.89 cryolithionite had total impurities of 4.28 100 220 20.73 less than 0.3 weight percent, and that 3.243 5 321 27.48 the Na to Li ratio was 3:2.82. 3.029 55 400 29.46 2.711 35 420 33.02 Major impurities 0.001-0.01% each: Ag, Ba, Ca, Cu, Ni, Pb, 2.584 17 332 34.68 Si, and Ti. 2.477 1 422 36.24 0.01 -0.1 % each: Cr and Fe. 2.376 35 431 37.83 2.213 50 521 40.74 2.144 6 440 42.11 Color Colorless 1.966 55 611 46.13 1.917 20 620 47.39 Optical data 1.788 2 631 51.05 Isotropic, N=1.340 1.750 10 444 52.24 1.715 5 543 53.38 Structure 1.681 16 640 Cubic, Ia3d (230), Z=8, garnet type. The 54.53 1.649 11 721 structure was determined by Menzer[1930] 55.69 1.619 30 642 56.81 [1971]. and refined by Geller 1.539 7 732 60.05 1.515 9 800 61.12

Lattice constants 1.493 3 811 62.15 1.470 2 820 63.20 a(A) 1.449 2 653 64.21 1.429 8 822 65.24 NBS, sample at 25 °C —————————— 12.1254 1.410 3 831 66.25 ±.0002 1.373 2 752 68.26 1.356 12 840 69.25 1.324 2 842 71.18 Density 1.3077 2 921 72.18 (calculated) 2.770 g/cm 3 at 25° C. (based 1.2928 6 664 73.14 on a Na to Li ratio of 1:1). 1.2780 4 851 74.13 Reference intensity 1.2509 2 932 76.02 I/I . - 1.0 1.2378 3 844 76.97 ' corundum 1.2252 8 941 77.91 1.2011 1 10-1-1 79.78 Additional patterns 1. PDF card 2-1282 [Menzer, 1930] 1.1895 2 10-2-0 80.72 1.1564 2 10-3-1 83.53 1.1261 3 10-4-0 86.32 References 1.1163 3 10-3-3 87.26 Geller, S. (1971). Am. Mineralogist 1.1072 5 10-4-2 88.17 56, 18. Menzer, G. (1930). Z. Krist. 75, 265.

23 Lithium Sodium Aluminum Fluoride, cryolithionite, Li 3Na3AI2F 12 - continued

d(A) I hkl 28(*)

1.0980 2 873 89.10 1.0804 2 11-2-1 90.95 1.0716 2 880 91.91 1.0475 2 11-3-2 94.67 1.0400 1 10-6-0 95.58

1.0248 1 10-6-2 97.46 1.0177 2 965 98.38 1.0107 2 12-0-0 99.30 1.0035 <1 12-1-1 100.27 .9965 <1 12-2-0 101.24

.9903 <1 11-5-2 102.13 .9836 3 12-2-2 103.09 .9772 1 12-3-1 104.04 .9646 1 11-6-1 105.98 .9413 2 11-6-3 109.84

.9356 <1 10-8-2 110.83 .9193 1 13-2-1 113.83 .9139 <1 12-4*4 114.89 .9037 3 12-6-0 116.94 .8987 1 13-3-2 117.98

.8939 2 12-6-2 119.02 .8890 1 13-4-1 120.10 .8750 1 888 123.37 .8705 1 13-4-3 124.48 .8617 1 14-1-1 126.74

.8573 2 14-2-0 127.93 .8448 1 14-3-1 131.51 .8408 1 12-8-0 132.74 .8328 1 14-4-0 135.33 .8249 7 14-4-2 138.05

.8212 3 12-7-5 139.43 .8138 1 14-5-1 142.36

24 Magnesium Aluminum Oxide (spinel), MgAI204

Sample 0 Internal standard Ag, a = 4.08641 A The sample was furnished by H. R. Shell of the Bureau of Mines, College Park,Md. CuKfll A= 1.54056 A; temp. 25 °C He used a carbon electrode furnace and removed an excess of MgO with hot HCl d(A) 7 hkl 20(°) after crushing. 4.66 35 111 19.02 2.858 40 220 31.27 Color 2.437 100 311 36.84 Colorless 2.335 3 222 38.53 2.020 65 400 44.83 Optical data Isotropic, N=1.718 1.650 9 422 55.64 1.5554 45 511 59.37 Structure 1.4289 55 440 65.24 Cubic, Fd3m (227), Z=8. The structure 1.3662 3 531 68.64 was determined by Bragg [1915] and Nish- 1.2780 3 620 74.13 ikawa [1915] . Atomic parameters were re fined by Bacon [1952] , using neutron de- 1.2330 8 533 77.32 fraction. 1.2187 1 622 78.40 1.1666 5 444 82.64 1.1320 2 711 85.76 1.0802 5 642 90.97

1.0524 12 731 94.10 1.0104 7 800 99.34 0.9527 2 822 107.90 Lattice constants .9334 8 751 111.22 .9274 1 662 112.32

a(A) .9038 6 840 116.91 .8872 1 911 120.50 NBS, sample at 25 °C ————— - ———— 8 f|Q*3 1 .8820 <1 842 121.69 ±.0001 .8616 <1 664 126.76 .8474 8 931 130.74

.8249 17 844 138.07 .8123 <1 933 142.97 .7927 2 10«2'0 152.70 Density .7814 11 951 160.65 (calculated) 3.578 g/cm 3 at 25° C. Reference intensity

I/I corundum = 1.7 References Bacon, G.E. (1952). Acta Cryst. 5, 684. Bragg, W.H. (1915). Nature 95, 561. Nishikawa, S. (1915). Proc. Math. Phys. Soc., Tokyo, 8, 199. Additional patterns Swanson, H.E.,and R.K. Fuyat (1953), Natl. 1. PDF card 5-672[Swanson and Fuyat,1953] Bur. Std. U.S. Circ. 539, EC, 35.

25 Magnesium Sulfite Hydrate, MgS03 -6H20

Sample o The sample was formed by precipitation Internal standard W, a = 3.16516 A when aqueous solutions of MgCl2 •6HS 0 and CuKfll A = 1.54056 A; temp. 25 °C H2 S03 were mixed. d(A) / hkl 2&(°)

Color 5.85 12 101 15.14 Colorless 4.416 85 110 20.09 3.905 100 012 22.75 Optical data 3.524 4 021 25.25 3.025 65 003 29.50 Uniaxial (-), N0=1.51, Ne=1.46 2.926 30 202 30.53 Structure 2.758 50 211 32.43 Hexagonal, R3 (146), Z=3 . The structure 2.552 4 300 35.14 was determined by Klasens et al. [1935], 2.497 10 113 35.94 2.439 30 122 36.82

2.208 2 220 40.83 2.178 4 104 41.43 2.067 7 131 43.75 1.952 10 024,303 46.49 1.924 12 312 47.21 Lattice constants 1.872 2 401 48.60 0 0 a(A) c(A) 1.786 30 214,223 51.11 1.767 1 015 51.70 1.764 1 042 51.77 NBS, sample at 25 °C 8.8385 9.080 1.725 2 321 53.05 ±.0004 ±.001 1.670 13 410 54.93 1.638 3 232 56.09 1.551 3 134 59.56 1.538 2 125 60.10 Density 1.513 <1 006 61.19 (calculated) 1.723 g/cm 3 at 25° C. 1.510 1 051 61.33 Reference intensity 1.473 <1 330 63.08 I/I = 1.6 1.463 3 404,413 63.56 1.451 1 502 64.11 1.4315 3 116 65.11 Major impurities 0.001-0.01% each: Ca and Fe 1.3892 4 324 67.35 1,3784 3 422 67.95 0.01 -0.1 % each: Na 1.3591 <1 511 69.05 1.3160 2 152 71.65 1.3014 2 306 72.58

1.2789 3 107 74.07 1.2756 2 600 74.29 1.2484 2 226 76.20 1.2466 3 431 76.33 1.2254 5 520 77.89

26 Magnesium Sulfite Hydrate, MgS0 3 -6H 20 - continued

d(A) I hkl 2u(«)

1.2198 2 244 78.32 Additional patterns al., 1938] 1.2125 2 342 78.88 1. PDF card 1-0473 [Hanawalt et 1.1839 <1 217 81.18 1.1759 <1 514,603 81.85 1.1701 <1 505 82.34

1.1363 <1 523 85.36 1.1311 1 425 85.84 1.1216 2 416 86.75 1.1070 <1 137 88.19 1.1045 1 440 88.43 References Klasens, H.A.,W.G. Perdok, and P. Terpstra 1.1007 ' 1 434 88.82 (1935). Rec. Trav. Chim. 44, 728, 1.0883 <1 208 90.11 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.0856 <1 351 90.40 (1938). Ind. Eng. Chem. Anal.Ed. 10, 457 1.0632 1 072 92.85 1.0566 <1 128 93.60

1.0554 <1 336 93.74 1.0434 <1 327 95.16 1.0380 <1 164,443 95.82 1.0333 1 262 96.40 1.0138 <1 710 98.89

27 Manganese Chloride Hydrate, MnCI2 *4H20

Sample 0 Internal standard W, a = The sample was recrystallized from an 3.16516 A aqueous solution at room temperature. CuKaj * = 1.54056 A; temp. 25 °C

Color d(A) / hkl 20(°) Light pink 7.23 4 110 12.24 5.52 40 200 16.04 Optical data 5.15 8 Oil 17.22 Biaxial(+), Na=1.583, Np=1.608, NY=1.667 5.00 13 101 17.74 2V is large. 4.943 100 111 17.93

Structure 4.766 25 210,020 18.60 Monoclinic, P2l /n (14), Z=4. The struc 4.429 75 111 20.03 ture was determined by Zalkin et al. 4.371 25 120 20.30 [1964]. 4.064 20 211 21.85 3.760 6 021 23.64

3.675 6 121 24.20 3.600 5 220 24.71 3.519 11 211 25.29 3.450 5 121 25.80 Lattice constants 3.433 7 310 25.93

0 0 3.268 18 221 27.21 a(A) t>(A) c(A) fl(9) 3.218 11 311 27.70 3.057 40 002 29.19 NBS, 2.913 75 320,012 30.67 sample 2.817 15 031 31.74 at 25 °C 11.194 9.527 6.202 99.75 ±.001 ±.002 ±.001 ±.01 2.808 12 311 31.84 2.778 25 321 32.19 2.762 35 212 32.39 2.753 40 230 32.50 2.709 30 112 33.04 Density (calculated) 2.016 g/cm 3 at 25° C. 2.595 45 231 34.54 2.589 20 411,122 34.62 Reference intensity 2.572 7 022 34.86 I/I A = i.o 2.499 17 321,202 35.90 2.485 20 312 36.12

2.435 10 231 36.89 2.403 9 330 37.40 2.387 9 420 37.66 2.343 12 421 38.38 2.328 8 140,331 38,65

2.299 4 411 39.15 2.265 7 322 39.77 2.212 9 222,132 40.75 2.198 15 501 41.03 2.185 6 240,412 41.29

28 Manganese Chloride Hydrate, MnCI 2 *4H20 - continued

d(A) 7 hkl 2t(°)

2.149 13 141,510 42.01 Additional patterns 2.142 19 511 42.16 1. PDF card 1-0362 [Hanawalt et al., 1938] 2.121 5 312,421 42.60 2.054 20 431 44.06 2.031 10 422 44.57

2.018 10 241 44.89 1.999 18 332,340 45.34 1.979 25 322 45.81 1.946 3 103 46.63 1.931 6 511 47.01 References Hanawalt, J.D. f H.W. Rinn and L. K. Frevel 1.905 17 113 47.70 (1938). Ind. Eng. Chem. Anal. Ed. 10, 1.898 19 431 47.89 457. 1 0 886 20 142 48.21 Zalkin, A., J. D. Forrester and D. H. Tem- 1.871 8 023 48.62 pleton (1964). Inorg. Chem. 3, 529. 1.858 5 412 48.99

1.839 6 600,242 49.52 Io833 5 432 49.69 1.817 6 611 50.16 1.809 17 151 50.40 1.806 8 522,610 50.50

1,780 9 151 51.29

29 Manganese Cobalt Oxide, MnCo20 4

Sample 0 MnCl2 and CoCl2 in a molar ratio of 1:2 Internal standard Ag, a = 4.08641 A were treated with HNO3 . The product was dried, heated to 760 °C for one hour and CuKGl A = 1.54056 A; temp. 25 °C then heated overnight at 720 °C. d (A) I hkl 20(°)

Color 4.78 14 ill 18.54 Opaque black 2.925 35 220 30.54 2.493 100 311 36.00 Structure 2.388 10 222 37.64 Cubic, Fd3m (227), Z=8, spinel type 2.067 20 400 43.76 [Holgersson and Karlsson, 1929]. 1.687 9 422 54.33 1.5911 30 511 57.91 1.4613 35 440 63.62 1.3976 2 531 66.89 Lattice constants 1.3077 3 620 72.18 1.2610 6 533 75.30 a(A) 1.2463 5 622 76.35 1.1935 2 444 80.39 NBS, sample at 25 °C ————————— 8.269 1.1579 1 711 83.40 ±.001 1.1047 3 642 88.42

1.0764 9 731 91.38 1.0336 3 800 96.35 Density 0.9746 2 822 104.44 (calculated) 5.564 g/cm 3 at 25° C. .9550 5 751 107.52 Reference intensity

I/I corundum, -~~ 1.3 References Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Ind. Eng. Chem. Anal.Ed. 10, 457. Additional patterns Holgersson, S., and A. Karlsson (1929). Z. 1. PDF card 1-1130[Hanawalt et al. f 1938] anorg. u. allgem. Chem. 183, 384 „

30 Potassium Aluminum Sulfate, KAI(S0 4)2

Sample 2-''(*) The sample was prepared by heating d (A) I hkl KAl(S04 ) 2 -12HS 0 at 700 °C for 15 hours. 1.819 13 202 50.10 1.794 9 104 50.86 Color 1.766 <1 113 51.72 Colorless 1.621 2 203 56.74 1.597 <1 005 57.66

Optical data 1.5448 1 210 59.82 Uniaxial (-), No=1.546, Ne=1.533 1.5238 6 114 60.73 1.5170 7 211 61.03 Structure 1.4872 2 105 62.39 1.4405 8 212 64.65 Hexagonal, P321 (150), Z=l, isostructur- al with many other dehydrated alums. The 1.4279 4 204 65.29 structure was determined by Vegard and 1.3625 8 300 68.85 Maurstad [1929]. 1.3358 1 213 70.43 1.3309 1 006 70.73 1.3224 3 115 71.25

Lattice constants 1,2652 2 106 75.01 1.2580 1 205 75.51 a(A) c(A) 1.2215 3 214 78.19 1.2127 2 303 78.87 1.1798 2 220 81.52 NBS, sample at 25 °C 4.7194 7.9833 ±.0001 ±.0003 1.1591 1 116 83.30 1,1222 3 311 86.69 1.1150 2 206 87.39 1.1106 1 215 87.83 Density 1.0985 <1 107 89.05 (calculated) 2.784 g/cm 3 at 25° C. 1.0904 3 312 89.89 Reference intensity 1.0787 <1 223 91.14

' corundum ~~ 1.0363 1 305 96.03 1.0267 1 117 97.22 Additional patterns 1.0156 1 224 98.65 1. PDF card 3-337, Dow Chemical Co.,Mid land, Michigan 1.0134 1 401 98.95 1.0081 2 216 99.65 .9898 2 402 102.19 .9858 2 314 102.78 0 .9694 <1 108 105.24 Internal standard W, a = 3.16516 A CuKdj A = 1.54056 A; temp. 25 °C .9518 <1 306 108.06 .9489 1 225 108.53 321 111.62 d (A) / hkl 20(*> .9312 1 .9190 <1 118 113.89 7.986 25 001 11.07 ,9129 2 322 115.09 4.088 4 100 21.72 3.638 100 101 24.45 .8967 <1 208 118.42 2.858 50 102 31.27 .89X8 2 410 119.48 2.663 15 003 33.63 .8629 2 316 126.42

2.361 25 110 38.08 2.264 8 111 39.78 2.032 4 112 44.56 References 1.996 1 004 45.40 Vegard, L. and A. Maurstad (1929). 1.980 4 201 45.78 Krist. 69, 519. 31 Potassium Barium Nickel Nitrite, K2BaNi(N02) 6

o Sample Internal standard W, a = 3.16516 A The sample was prepared from an aqueous solution of BaCla, NiCla and KNOa ac CuKaj A = 1.54056 A; temp. 25 °C cording to the method given by Ferrari and Colla [1931] . d(A) / hkl 20 (°t 6.22 15 111 14.22 Color 5.39 90 200 16.43 Medium yellow 3.815 100 220 23.30 3.254 30 311 27.39 Optical data 2.699 95 400 33.17 Isotropic, N=1.598 2.477 25 331 36.24 Structure 2.414 55 420 37.22 2.203 85 422 40.93 Cubic, Fm3m (225), Z=4, isostructural 2.078 9 511 43.51 with other hexanitrites [Ferrari and 1.9080 20 440 47.62 Colla, 1933]; structure of this group of compounds was determined by van Driel 1.8247 7 531 49.94 and Verweel [1936]. 1.7994 11 600 50.69 1.7069 20 620 53.65 1 . 6464 5 533 55.79 1.6277 6 622 56.49 Lattice constants 1.5580 3 444 59.26 1.5114 3 711 61.28 a(A) 1.4969 7 640 61.94 1.4423 25 642 64.56 NBS, sample at 25 °C —————————— 10.797 1.4056 6 731 66.46 ±.001 1.3492 5 800 69.63 1.3187 3 733 71.48 1.3094 5 820 72.07 1.2721 8 822 74.53 Density 1.2470 3 751 76.30 (calculated) 2.904 g/cm 3 at 25° C. 1.2387 5 662 76.90 Reference intensity 1.2072 6 840 79.30 1.1851 3 911 81.08 I/I A - 2.9 ' corundum ~" 1.1782 4 842 81.65 1.1507 3 664 84.04 Additional patterns 1. Ferrari and Colla [1931] 1.1316 1 931 85.80 1.1018 3 844 88.71 1.0852 2 933 90.43 1.0796 3 10-0-0 91.03 1.0586 6 10-2-0 93.38

1.0439 3 951 95.10 1.0390 3 10-2-2 95.69 1.0069 3 953 99.82 References 1.0025 5 10-4-0 100.42 van Driel, M. , and H.J. Verweel (1936)* Z. .9858 6 10-4-2 102.78 Krist. 95, 308. Ferrari, A., and C. Colla (1931), Atti re- .9735 1 11-1-1 104.60 ale accad. nazl. Lincei 14, 435. .9542 2 880 107.65 Ferrari, A., and C. Colla (1933). Atti re- .9433 3 971 109.48 ale accad. nazl. Lincei 17, 390. .9398 4 10-4-4 110.09 .9260 3 10.6-0 112.59 32 Potassium Calcium Nickel Nitrite, K2CaNi(N0 2) 6

0 Sample Internal standard W, a = 3.16516 A The sample was prepared from an aqueous solution of CaCla / NiClg and KNOa ac CuK^ A = 1.54056 A; temp. 25 °C cording to the method given by Ferrari and Colla [1931]. d(A) 7 hkl 2&(°)

5.98 6 ill 14.80 Color 5.18 40 200 17.12 Medium yellow 3.66 55 220 24.27 3.124 3 311 28.55 Optical data 2.993 30 222 29.83 Isotropic, N=l.640 2.591 100 400 34.59 2.377 2 331 37.81 Structure 2.317 45 420 38.84 Cubic, Fm3m (225), Z=4, structure deter 2.116 75 422 42.69 mined by van Driel and Verweel [1936], 1.994 5 511 45.44 isostructural with other hexanitrites [Ferrari and Colla, 1933]. 1.833 18 440 49.71 1.752 3 531 52.17 1.726 2 600 53.01 1.638 15 620 56.09 1.495 2 444 62.02

Io450 3 711 64.17 1.4366 3 640 64.85 Lattice constants 1.3847 25 642 67.60 1.3488 2 731 69.65 a(A) 1.2950 5 800 73.00

NBS, sample at 25 °C —————————— 10,361 1.2659 2 733 74.96 ±.001 1.2207 4 822 78.25 1 0 1964 2 751 80.16 1.1886 3 662 80.79 1.1584 5 840 83.36

1.1310 2 842 85.85 1.1045 6 664 88.44 Density 1.0576 3 844 93.49 (calculated) 2.705 g/cm 3 at 25° C. 1.0161 5 10*2-0 98.59 Reference intensity I/I . _ 1.6 1 corundum ~ References van Driel, M., and H.J. Verweel (1936), Z, Additional patterns Krist. 95, 308. 1. PDF card 3-837/(Michigan Alkali Co. Ferrari, A., and C. Colla (1931), Atti re- Wyandotte, Michigan) ale accad. nazl. Lincei 14, 435. 2. van Driel and Verweel [1936] Ferrari, A., and C. Colla (1933), Atti re- 3. Ferrari and Colla [1931] ale accad. nazl. Lincei 17, 390.

33 Potassium Copper Chloride Hydrate (mitscherlichite), K2CuCI 4 *2H20

Sample 0 The sample was prepared by slow evapora Internal standard Ag, a = 4.08641 A of a 2:1 aque tion at room temperature A; temp. 25 °C ous solution of KCl and CuClg . CuKa! A= 1.54056 d(A) 7 hkl 26(0) Color Brilliant greenish blue 5.42 70 101 16.34 5.27 7 110 16.81 Optical data 3.96 20 002 22.44 Uniaxial (-), No=1.638, Ne=1.613 3.73 6 200 23.82 3.335 14 210 26.71

Structure 28.18 P42 /mnm (136), Z=2, isostruc- 3.164 50 112 Tetragonal 211 29.04 with (NH4 ) 2 CuCl4 • 2H2 0 and R^GuCl* 3.072 25 tural 33.01 •2Ha O [Hendricks and Dickinson, 1927]. 2.711 95 202 The structure was refined by Chrobak 2.635 100 220 34.00 35.18 [1934] . 2.549 12 212 2.486 11 103 36.10 2.371 5 301 37.91 2.192 7 222 41.15 2.067 9 213,320 43.76 Lattice constants 2.024 14 312 44.75 1.999 9 321 45.33 a(A) c(A) 1.977 25 004 45.86 1.864 17 223,400 48.82 1.807 5 303,410 50.46 NBS, sample at 25°C 7.454 7.909 1.763 3 411 51.82 ±.001 ±.001 1.701 2 214 53.87 1.643 5 412 55.88 1,627 4 323 56.51 1.606 5 332 57.31 Density 1.5814 25 224 58.30 (calculated) 2.416 g/cm 3 at 25° C. 1.5476 3 105 59.70 Reference intensity

' corundum "~ * References Chrobak, L. (1934). Z. Krist. 88, 35. Hanawalt, J.D., H.W. Rinn, and L.K. Frevel Additional patterns (1938). Ind. Eng. Chem. Anal.Ed.10, 457. 1. Chrobak [1934] Hendricks, S.B. and R.G. Dickinson (1927)* 2. PDF card 1-1073 [Hanawalt et al.,1938] J. Am. Chem. Soc. 49, 2149. 3. PDF card 13-203 [Kleber and Steinike- Kleber, W. and U. Steinike-Hartung (1957). Hartung, 1959] Z. Krist. Ill, 213.

Major impurities 0.01 -0.1 % each: Si

34 Potassium Iron Cyanide, K3 Fe(CN) 6

Sample o The sample was obtained from City Chemi Internal standard W, a = 3.16516 A cal Corp., New York, N.Y. CuKa t A = 1.54056 A; temp. 25 °C

Color d(A) / hkl 2*0 Deep reddish orange 6.74 12 200 13.12 6.54 3 Oil 13.53 Optical data 5.90 2 111,111 15.00 Biaxial(+) N =1.561, N0 =1.562, N =1.576, 5.21 7 020 16.99 2V is medium? Y 4.691 2 211,211 18.90

Structure 4.120 100 310,220 21.55 Monoclinic, P2I /c (14), Z = 4 [Gottfried 4.012 20 102,102 22.14 and Nagelschmidt, 1930]. 3.742 3 112,112 23.76 3.367 7 212, 400, + 26.45 3.205 5 031,410 27.81

3.178 4 122,122 28.05 Lattice constants 3.086 30 230 28.91 3.067 35 302 29.09 0 2.945 I 45 j 312,222 30.32 0 £(°) a(A) b(A) c(A) 2.938 > < 312,222 30.40 NBS, 2.641 25 322 33.91 sample 2.625 20 402,132 34.14 at 25°C 13.471 10.417 8.402 90.11 2.605 15 040 34.40 ±.002 ±.001 ±.001 ±.01 2.448 1 141,141 36.68 2.429 2 240,123 36.97

2.300 4 521,332,+ 39.14 2.265 4 502 39.76 Density 2.215 7 512,042 40.70 (calculated) 1.855 g/cm 3 at 25° C. 2.183 9 142 41.32 2.097 10 432,432 43.10 Reference intensity 2.077 14 522, 104, + 43.54 I/I = 1.6 corundum 2.059 25 440,014 43.93 1.986 2 342,342 45.65 <1 Polymorphism 1.938 251,251 46.84 1.899 1 532 47.85 K3 Fe(CN) 6 is reported to undergo a change in crystalline state at about 1.885 1 630 48.25 130 °K [Barros and Oosterhuis, 1970]. 1.870 7 224,314 48.65 1.828 1 433,541,-f 49.83 Additional patterns 1.781 3 134,404 51.26 1. PDF card 1-423 [Hanawalt et al.,1938] 1.772

1.756 1 343,414 52.05 1.748 1 702 52.28 1.735 1 060,234 52.70 1.7230 3 352,160 53.11 1.7099 1 542 53.55

35 Potassium Iron Cyanide, K3Fe(CN)6 - continued

d(A) I hkl W (°) 1.6812 6 260 54.54 References 1.6571 2 722 55.40 Barros, F.de S. and W.T. Oosterhuis(1970). 1.6341 2 514,452 56.25 J. Phys. Chem. 3, 279. 1.6027 1 820 57.45 Gottfried, C. and J.G. Nagelschmidt(1930). 1.5926 3 162,162 57.85 Z. Krist. 73, 357. Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.5616 <1 802,732 59.11 (1938). Ind. Eng. Chem. Anal.Ed.10, 457. 1.5429 1 460 59.90 1.5341 1 552,552 60.28 1.5107 1 362,362 61.31 1.5025 <1 135,651,+ 61.68

1.4893 <1 415 62.29 1.4694 8 624,444,+ 63.23 1.4514 2 742 64.11 1.4133 1 515,750 66.05 1.4287 1 902 66.25

1.3961 1 544,912 66.97 1.3919 1 823 67.20 1.3790 1 562,435 67.91 1.3750 1 930 68.14 1.3725 1 272 68.28

1.3597 1 216,922 69.01

36 Potassium Iron Fluoride, K3 FeF 6

Sample o The sample was prepared by adding a so Internal standard W, a = 3.16516 A lution of FeCl3 in HF to a solution of CuKaj A = 1.54056 A; temp. 25 °C KF with an excess of HF. d (A) I hkl 20(°) Color Colorless 4.98 30 111 17.79 4.312 17 200 20.58 3.048 100 220 29.28 Optical data 2.598 3 311 34.50 Isotropic, N s= (sample was very 2.490 8 222 36.04 fine grained) 2.155 40 400 41.88 1.978 3 331 45.84 Structure 1.929 3 420 47.08 Cubic/ Fm3m (225), Z=4, [Bode and Voss, 1.760 25 422 51.92 1957]% Peacock [1957] found KaFeFe to be 1.658 7 511 55.35 tetragonal with a=8.59 and c=8.66. Our sample showed no evidence of being non- 1.524 11 440 60.74 cubic. 1.457 4 531 63.82 1.437 3 600 64.84 Lattice constants 1.364 5 620 68.78 1.3151 1 533 71.71

a(A) 1.2446 3 444 76.47 1.2074 3 711 79.28 NBS, sample at 25 °C —————————— 8.622 1.1519 4 642 83.93 ±.001

Density (calculated) 2.975 g/cm 3 at 25° C.

Reference intensity I/I , ©- 2.4 corundum ~~ References Bode, H., and E. Voss (1957). Z. Anorg. Additional patterns Allgem. Chem. 290, 1. 1. PDF card 3-0589 [Dow Chemical Co.] Peacock, R. D. (1957). J. Chem. Soc. 1957, Midland, Mich. 4684.

37 Potassium Nitrite, KN02

Sample 0 Reagent grade KNOa was obtained from Al Internal standard W, a = 3.16516 A lied Chemical Co., Morristown, N.J. The CuKai * = 1.54056 A; temp. 25 °C sample was maintained in a dry atmos phere. d(A) 7 hkl 29 C) Color 3.98 4 101 22.31 Colorless 3.42 <1 003 26.07 3o304 100 012 26.96 2.497 12 110 35.94 Optical data 2.205 25 104 40.89 Uniaxial (-) NQ=1.466, Ne<1.400 2.117 5 021 42.67 Structure p 2.016 6 113 44.92 Hexagonal, R3m (166), Z=3 [Chang, 1963], 1.992 4 202 45.49 [Tanisaki and Ishimatsu, 1965]. KNOa was 1.855 2 015 49.08 earlier reported to be monoclinic [Zieg- 1.709 2 006 53.58 ler, 1936]. 1.653 1 024 55.54 1.615 2 211 56.96 1.557 <1 122 59.29 Lattice constants 1.488 <1 205 62.35 1.441 <1 300 64.61

a(A) c(A) 1.410 1 116 66.23 1 0 387 <1 107 67.48 NBS, sample at 25 °C — —— 4 QQd 10.253 1.378 1 214 67.95 ±.001 ±.001 1.328 1 303 70.89 1.279 <1 125 74.07

1.229 <1 018 77.61 Density 1.213 <1 027 78.86 (calculated) 1.914 g/cm 3 at 25° C.

Polymorphism References KNOa undergoes a phase transition at Chang, Sh-C. (1963). Dissertation Abstr. 70°C, above which it is cubic [Tanisaki 24, 1668, and Ishimatsu, 1965] 0 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Ind. Eng. Chem., Anal. Ed. 10, 457. Additional patterns Tanisaki, S., and T. Ishimatsu (1965). J. 1. PDF card 1-668 [Hanawalt et al,,1938] Phys. Soc. Japan, 20, 1277. 2. Ziegler [1936] Ziegler, G. E. (1936), Z. Krist. 94, 491.

38 Potassium Oxalate Hydrate, K2C 20 4 ©H 20

Sample 0 The sample was reagent grade material Internal standard Ag, a = 4.08641 A recrystallized from aqueous solution. CuKa! A= 1.54056 A; temp. 25 °C

d(A) 20(0) Color 7 hkl Colorless 5.024 20 Oil 17.64 4.990 25 200 17.76 Optical data 4.916 30 in 18.03 4.316 20 002 20.56 Biaxial(+) Na =1.440, Ny -1.562. 4.160 5 111 21.34 2V is very large. 4.048 25 202 21.94 3.980 4 211 22.32 Structure 3.225 10 211 27.64 Monoclinic, A2/a (15), Z=4 [Hendricks, 3.087 40 020,311 28.90 1935] . Two refinements of the structure 2.954 35 120 30.23 have been published [Chidambaram et al., 1964] and [Pedersen, 1964]. 2.807 100 202 31.85 2.749 25 113 32.54 2.695 14 213 33.21 2.628 5 220 34.09 2.606 i 35 r 013 34.38 2.598 Lattice constants ; l 402 34.49 2.563 25 122 34.98 0 Q a(A) b(A) C(A) 0(°) 2.546 10 311 35.22 2.497 55 400 35.93 2.456 75 NBS, 222 36.56 sample 2.447 60 411 36.69 at 25 °C 10 . 684 6.182 9.226 110.77 2.327 ±.001 ±.001 ±.001 ±.01 8 122 38.66 2.266 15 320 39.75 2.240 5 322 40.23 2.188 6 413 41.22 2.156 12 004 41.86

Density 2.079 14 222 43.50 (calculated) 2.148 g/cm 3 at 25° C. 2.026 20 404 44.69 2.004 10 031,511 45.20 Reference intensity 1.943 6 420 46.72 I/I . - 1.0 corundum "~ 1.916 3 231 47.42

1.910 8 513 47.58 Additional patterns 1.891 2 402 48.08 1. PDF card 14-760[HanawaIt et al.,1938] 1.845 2 224 49.35 1.835 4 124 49.64 1.833 9 322 49.71

1.809 10 231 50.40 1.793 5 324,313 50.90 1.780 5 602 51.27 1.769 8 024,215 51.61 1.750 1 522 52.23

39 Potassium Oxalate Hydrate, K2C204 'H20 - continued

d(A) 7 fcA?? 2&D

1.744 3 315 52.43 References 1.738 6 115,511 52.61 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.697 4 233 53.98 (1938). Ind. Eng. Chem.Anal.Ed. 10, 457. 1.687 1 611 54.32 Hendricks, S.B. (1935). Z. Krist. 91, 48. 1.677 2 520 54.68 Chidambaram, R.,A. Sequeira, and S.K. Sik- ka (1964). J. Chem. Phys. 41, 3616. 1.664 4 600 55.14 Pedersen, B.F. (1964). Acta Chem. Scand. 1.660 5 124 55.29 18, 1635. 1.631 2 431 56.38 1.6125 3 422 57.07 1.5706 5 524 58.74

1.5686 3 413,515 58.82 1.5554 2 115 59.37 1.5429 4 622 59.90 1.5332 6 206,224 60.32 1.4971 2 233,406 61.93

1.4910 1 611 62.21 1.4644 4 142 63.47 1.4538 5 711 63.99 1.4435 2 242 64.50 1.4266 1 522 65.36

1.4160 2 142 65.91 1.4043 5 404 66.53 1.3961 3 342,602 66.97 1.3861 2 333,513 67.52 1.3745 5 235 68.17

1.3507 2 606 69.54 1.3364 2 631 70.39 1.3320 1 802 70.66 1.3274 2 442,435 70.94 1.3253 4 633 71.07

1.2991 3 526,804 72.73 1.2789 3 424,342 74.07 1.2749 3 811,433 74.34 1.2489 2 542,800 76.16 1.2374 2 626 77.00

40 Potassium Selenate, K2Se0 4

Sample o W, a = 3.16516 A The sample was precipitated by adding Internal standard H2 SeCU to K2 CO 3 in solution. CuKaj A = 1.54056 A; temp. 25 °C

d (A) 7 hkl 2*0 Color Colorless 5.23 17 020 16.94 4.320 on \ 120 20.54 ou \ 4.304 111 20.62 Optical data 3.827 30 200 23.22 Biaxial(-f) Na=1.535, Ng=1.539, Ny=1.545, 3.594 5 210 24.75 2V is large [Tutton, 1897]. 3.506 <5 121 25.38 Structure 3.226 12 201 27.63 Orthorhombic, Pnam (62), Z=4 [Gattow, 3.175 5 130 28.08 with pKaSO*. The 28.86 1962], isostructural 3.091 \ 220 structure was refined by Kalman et al. 3.083 1 211 28.94 [1970] . 3.015 100 031,002 29.60 2.803 <5 131 31.90 2.747 7 221 32.57 Lattice constants 2.695 <5 112 33.22 2.617 I / 040 34.23 2.602 022 34.44 a(A) b(A) c(A) f I 2.579 11 230 34.76 NBS, sample 25 °C 7.654 10.468 5.996 2.477 7 310,140 36.24 ±.001 ±.001 ±.001 2.370 8 231 37.94 2.362 5 202 38.07

2.301 \ 30 { 212 39.11 2.289 311, 141, -h 39.33 Density 2.180 7 132 41.39 (calculated) 3.058 g/cm 3 at 25° C. 2.160 240 41.78 > 30 j 2.151 222 41.96 Reference intensity 2.060 <5 330 43.92 corundum, 2.032 <5 241 * 44.55 2.019 <5 150 44.85 1.976 <5 051 45.88 Additional patterns 1.955 9 232 46.40 1. PDF card 1-857 [Hanawalt et al.,1938] 1.914 11 151,400 47.47 1.910 11 312,142 47.57 1.902 6 113 47.78 1.837 5 250 49.58 1.827 7 340 49.87

1.821 5 322 50.05 1.772 <5 203 51.53 1.744 9 060 52.42 1.735 11 033 52.73 1.676 6 152 54,73

41 Potassium Selenate, K2Se04 - continued

d (A) I /zfeZ 2''(°) References 1.636 5 161 56.16 Gattow, G. (1962). Acta Cryst., 15, 419. 1.616 9 431 56.95 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1,594 6 412 57.80 (1938). Ind. Eng, Chem. Anal.Ed.10, 457. 1.587 5 260 58.07 Kalman, A., J. S. Stephens, and D. W. J. 1. 580 5 233 58.34 Cruickshank (1970). Acta Cryst., B26, 1451. 1.5657 5 252 58.94 Tutton, A.E.H. (1897). J. Chem. Soc., 71, 1.5623 7 351 59.08 846. 1.5600 6 342 59.18 1.5561 5 313,143 59.34 1,5345 <5 261 60.26

1.5076 9 062,323 61.45 1.4991 7 004 61.84 1.4673 10 170,243 63.33 1.4638 7 432 63.50 1.4505 <5 071 64.15

1.4459 <5 053 64.38 1.4340 <5 333 64.98 1.4258 <5 171 65.40 1.4166 <5 124 65.88 1.4132 <5 450 66.06

1.4024 9 262,530 66.63 1.3960 5 204 66.98 1.3927 <5 270 67.16 1.3823 •-5 403 67.73 1.3566 < 5 271 69.19

1.3551 <5 134 69.28 1.3519 5 253,512 69.47 1.3483 5 224,343 69.68 1.3188 <5 172 71.47 1.3081 <5 080 72.15

1.3006 -5 044 72.63 1.2897 <5 180,460+ 73.35

42 Potassium Sodium Aluminum Fluoride (elpasolite), K2NaAIF,

Sample Made by dissolving aluminum in HF, add Internal standard W, a = 3.16516 A ing KsCOs and NasCOs, drying, melting, CuKaj A = 1.54056 A; temp. 25 °C and annealing 72 hours at 650 °C. d(A) I hkl 2-(*) Color Colorless 4.687 20 111 18.92 4.059 4 200 21.88 Optical data 2.868 100 220 31.16 Isotropic, N=1.376 [Frondel,1948] . 2.345 75 222 38.35 2.030 90 400 44.59

Structure 1.864 4 331 48.82 Cubic, Fm3m (225), 2=4, by analogy with 1.817 1 420 50.18 KaFeF6 and other hexafluorides. Helmholz 1.658 30 422 55.35 [1959] also obtained data consistent 1.5633 6 333 59.04 with Fm3m using a synthetic sample of 1.4356 35 440 64.90 K2NaAlF6 in which a small amount of alu minum was replaced by iron. The natural 1.3730 1 531 68.25 mineral elpasolite, KsNaAlF6 / has been 1.3539 1 600 69.35 reported to have space group Pa3 (205) 1.2841 12 620 73.72 [Frondel, 1948],[Menzer, 1932]. Steward 1.2245 7 622 77.96 and Rooksby [1953] gave the space group 1.1722 8 444 82.16 Pa3 (205) but their photographed pattern as published does not show the extra 1.1373 2 711 85.27 lines that would require Pa3. 1.0854 11 642 90.42 1.0572 2 731 93.54 1.0152 3 800 98.71 0.9924 <1 733 101.83

.9851 <1 820 102.88 Lattice constants .9572 4 822 107.16 .9378 <1 751 110.45 a(A) .9318 1 662 111.52 .9081 7 840 116.04 NBS, sample at 25 °C —————————— 8.1220 ±.0001 .8915 <1 911 119.55 .8862 <1 842 120.74 .8659 4 664 125.64 .8513 1 931 129.59 .8289 6 844 136.63

.8162 1 933 141.32 10-2-0 Density .7964 8 150.57 (calculated) 3.002 g/cm 3 at 25° C. Reference intensity References

© corundum = - « / Frondel, C.(1948). Am.Mineralogist 33, 84. Helmholz, L. (1959). J.Chem.Phys. 31, 172, Menzer, G. (1932). Fortschr.Mineral.Krist, Petrog. 17, 439. Additional patterns Steward, E. G., and H. P. Rooksby (1953), 1. PDF card 8-70 [Frondel, 1948] Acta Cryst. 6, 49.

43 Rubidium Selenate, Rb2Se04

Sample 0 The sample was precipitated by adding a Internal standard Ag, a = 4.08641 A solution of RbgCO 3 to one of CuKa, A= 1.54056 A; temp. 25 °C

Major impurities d (A) 7 hkl 2e(*) 0.01 -0.1 % each: Al, Ba, Cr, and Na 5.42 4 020 16.35 0.1 -1.0 % each: Mg 4.48 7 120 19.81 4.451 9 111 19.93 3.990 16 200 22.26 Color 3.740 11 210 23.77 Colorless 3,626 18 121 24.53

3,351 14 201 26.58 Optical data 3.285 11 130 27.12 Biaxial(+),N =1.535, Ng -1.539, N =1.545, 3.212 220 27.74 2V is large [Tutton, 1897]. Y > 100 < 3.202 I 211 27.84 3.113 92 031 28.66 Structure Orthorhombic, Pnam (62), Z=4, isostruc- 3.088 60 002 28.89 tural with K, Cs, and Tl selenates and 2.902 2 131 30 0 76 with e-KgS04 [Gattow, 1962], The struc 2.849 9 221 31.37 ture of Kg SeO4 was determined by Ka'lma'n 2.704 13 040 33.10 et al. [1970]. 2.676 16 230 33.46

2.584 25 310 34o69 2,543 4 122 35.27 Lattice constants 2.454 4 231 36.59 2.383 20 311,212 37.72 a(A) t>(A) c(A) 2.366 13 141 37.99 2.251 NBS, sample at 8 132 40.03 2.239 25 °C —— - - 7.979 10.820 6.174 14 240 40.25 2.225 ±.001 ±.001 ±.001 30 321,222 40.50 2.142 8 330 42.15 2.105 5 241 42.93

2.088 10 150 43.29 Density 2.042 2 051 44«32 (calculated) 3.919 g/cm 3 at 25° C. 2.023 10 331,232 44.77 1.994 10 400 45.46 Reference intensity 1.982 6 312 45.75 I/I , - I Q ' corundum ~~ J. . ,/ 1.962 1 410 46.23 1.901 4 250 47.80 1.898 10 401 47.88 1.870 7 123,411 48.65 References 1.829 3 203 49.81 Gattow, G. (1962). Acta Cryst. 15, 419. Kalman, A., J. S. Stephens, and D. W. J 0 1.813 16 341,242 50.29 Cruickshank (1970). Acta Cryst. B26, 1.802 20 060,213 50.57 1451. 1.787 17 033 51.08 Tutton, A.E.H. (1897). J 0 Chem. Soc. 71, 1.759 2 332,160 51.94 846. 1.745 9 430,133 52.38

44 Rubidium Selenate, Rb2Se0 4 - continued

d(A) I hkl 2G( Q)

1.730 7 152 52.88 1.692 4 161 54.16 1.680 7 431,350 54.59 1.675 8 402 54.74 1.656 2 412 55.45

1.643 4 260 55.90 1.631 1 233 56.38 1.619 2 351,252 56.82 1.617 2 342 56.91 1.611 1 313 57.13

1.605 2 143 57.38 1.587 4 261 58.06 1.558 9 062 59.27 1.543 7 004 59.87 1.530 8 520 60.44

1.520 6 432 60.91 1.500 2 071 61.81 1.491 1 053 62.20 1.487 1 521 62.42 1.4671 1 450 63.34

1.4503 12 361,262 64.16 1.4324 2 403 65.06 1.4204 1 531,413 65.68 1.3961 4 253 66.97 1.3938 5 343 67.10

1.3912 5 224 67.24 1.3745 8 540 68.17 1.3709 4 522 68.37 1.3618 2 172 68.89 1.3529 1 080 69.40

1.3414 1 541 70.09 1.3370 5 234 70.36 1.3307 4 433 70.74 1.3070 3 461 72o22 1.3036 5 181 72.44

1.2913 2 620 73.24 1.2842 2 550,263 73.71 1.2705 2 244 74.64 1.2656 1 443 74.98 1.2572 3 551 75.57

1.2527 3 513 75.89 1.2389 2 082 76.89

45 Silver Cyanide, AgCN

Sample 0 The sample was obtained from the reac Internal standard W, a = 3.16516 A tion of solutions of KCN and AgN03 . CuKaj A = 1.54056 A; temp. 25 °C

Major impurities d(A) I hkl 20(») 0.001-0.01% each: Al, ca, Cr, Fe, Si. 3.699 45 101 24.04 0.01 -0.1 % each: Ba and Mg. 3.001 100 110 29.75 2.345 \ 18 < 012 38.35 2.329 021 38.62 Color 1.848 \ 9 1 202 49.26 Colorless 1.841 i i 211 49.48

1.7528 4 003 52.14 Optical data 1.7333 8 300 52.77 Uniaxial (+), NQ=1.685, Ne=1.93 [Win 1.5745 3 122 58.58 chell and Winchell, 1964]. 1.5132 4 113 61.20 1.5008 4 220 61.76 Structure Hexagonal, R3m (160), Z=3. Structure 1.3908 2 131 67.26 proposed by Braekken [1929], 1.2740 2 104 74.40 1.2645 2 312 75.06 1.2620 1 401 75.23 1.2321 2 303 77.39

Lattice constants 1.1730 2 024 82.09 1.1636 2 321 82.90 0 0 1.1403 1 223 84.99 a(A) c(A) 1.1349 1 410 85.49

NBS, sample at 25 °C 6.0047 5.2570 ±.0004 ±.0005 Additional patterns 1. PDF card 1-859 [Hanawalt et al.,1938]

Density References (calculated) 4.063 g/cm 3 at 25° C. Braekken, H. (1929). Kgl. Norske Vidensk. Selskabs Forh. II 1929, 123. Reference intensity Hanawalt, J.D., H.W. Rinn, and L.K. Frevel

!/I' corundumA -~ 4.0 (1938). Ind. Eng. Chem. Anal.Ed. 10, 457 Natta, G., and O. Vecchia (1933). Gazz. Chim. Ital. 63, 439. Polymorphism Wlnchell, A.N. and H. Winchell (1964)."The A cubic form of AgCN, with AgBr in solid Microscopic Characters of Artificial In solution, is reported by Natta and Vec- organic Solid Substances" Academic Press chia [1933]. New York and London.

46 Silver Oxalate, Ag2C20<

Sample d(A) I hkl 2- :-'(°) The sample was obtained from the City Chemical Corp., New York, N.Y. 2.395 8 211 37.52 2.322 20 400 38.75 Color 021 39.14 Colorless 2.300 6 2.280 25 121 39.49 2.187 10 121 41.25 Structure Monoclinic, P2, /n (14), Z=2. It was as 2.158 17 301 41.83 sumed to be isostructural with Na2 C2 O4 2.018 19 130 44.88 [Jeffrey and Parry, 1954]. 1.949 14 411 46.57 1.930 25 321 47.05 1.889 1 230 48.13

420 48.97 0(°) 1.859 5 a(A) b(A) C(A) 1.771 30 321,031 51.57 1.740 5 411 52.54 NBS, 1.719 18 330 53.23 sample 1.713 14 002 53.43 at 25 °C 9.368 6.2039 3.4556 97.63° ±.001 ±.0003 +.0003 ±.01 1.6932 2 231 54.12 1.6623 6 112 55.21 1.6177 5 231 56.87 1.5906 2 112 57.93 1.5507 8 040 59.57 Density 5.065 g/cm 3 at 25° C. (calculated) 1.5473 10 600 59.71 1.5410 10 202,312 59.98 Reference intensity 1.4991 7 022 61.84 I/I . - 3.2 ' corundum "~ 1.4749 2 402 62.97 1.4709 3 240 63.16 Additional patterns 63.85 1. PDF card 14-777 [Griffith, 1943] 1.4566 4 431 1.4533 3 122 64.01 1.4449 9 611 64.43 References 1.4086 3 141 66.30 Griffith, R.L.(1943).J.Chem.Phys. 11, 499. 1.3847 13 312,620 67.60 Jeffrey, G.A., and G.S. Parry (1954). J. Am. Chem. Soc. 76, 5283. 1.3634 2 431 68.80 1.3318 3 422,241 70.67 1.3248 3 132 71.10 1 . 3 144 7 611 71.75 o 1.3124 6 341 71.88 Internal standard W, a = 3.16516 A CuKaj A = 1.54056 A; temp. 25 °C 1.2971 4 710 72.86 1.2897 4 440 73.35 d(A) I hkl 2& (°) 1.2600 4 341 75.37 1.2326 2 602 77.35 5.16 55 110 17.17 1.2298 o 150 77.56 4.65 12 200 19.08 3.363 13 101 26.48 1.2066 3 631 79.34 3.102 35 020 28.76 1.1960 3 721 80.19 2.996 100 Oil 29.80 1.1851 1 701 81.08 1.1709 2 332 82.27 2.957 4 111 30.20 1.1666 4 051 82.64 2.760 85 111 32.41 2.664 5 211 33.61 1.1513 4 350,151 83.99 2.579 10 220 34.75 1.1494 4 042 84.16 2.464 20 301 36.43 47 Sodium Chromium Oxide, Na2Cr04

Sample o The sample was prepared by heating Internal standard W, a = 3.16516 A 0 at 600 °C for 60 hours. Na 2 Cr04 -4H 2 CuKaj A = 1.54056 A; temp. 25 °C

Color d(A) I hkl 2& (°) Brilliant yellow 4.96 20 Oil 17.88 Optical data 4.64 4 020 19.12 BiaxiaBiaxial ( + ) , Na = 1.765, NY = 1.788, 2V is 4.073 65 111 21.80 large . 3.885 65 120 22.87 3.574 40 200 24.89

Structure 2.932 60 002 30.46 Orthorhombic, Amam (63), 2=4. The struc 2.897 100 211 30.84 ture was determined by Miller [1936]; 2.733 70 031 32.74 the space group designation was correct 2.553 5 131 35.12 ed by Niggli [1954] . 2.477 25 022 36.23

2.342 4 122 38.41 2.317 3 040 38.83 2.203 3 140 40.93 2.171 13 231 41.56 2.119 8 320 42.63 Lattice constants 2.036 19 222 44.46 0 0 0 a(A) b(A) c(A) 1.944 12 240 46.68 1,848 4 113 49.27 15 331 50.81 NBS, 1.795 18 400 51.08 sample at 25 °C 7.1462 9.2635 5 . 8640 1.787 ±.0004 ±.0004 ±.0003 1.761 3 142 51.87 1.715 4 151 53.38 1.686 8 213 54.37 1.681 6 411 54.55 1.661 6 340 55.27 Density (calculated) 2.771 g/cm 3 at 25° C. 1.651 11 033 55.63 1.6195 19 242 56.80 Reference intensity 1.6089 1 133 57.21 I/I = 1.2 1.5836 2 251 58.21 1.5438 2 060 59.86

1.5256 4 402 60.65 Additional patterns 1.5090 3 160 61.39 14 431 62.02 1. PDF card 1-927 [Hanawalt et al.,1938] 1.4951 1.4661 7 004 63.39 1.4493 2 422 64.21

References 1.4453 1 342 64.41 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.4187 5 351 65.77 (1938).Ind. Eng. Chem. Anal.Ed. 10, 845. 1.3718 5 124 68.32 Miller, J.J. (1936). 2. Krist. 94, 131. 1.3664 4 062,520 68.63 Niggli, A. (1954). Acta Cryst. 7, 776. 1.3570 4 333 69.17

48 Sodium Chromium Oxide, Na2Cr04 - continued

d(A) 7 hkl 20(*) 1.3419 5 162 70.06 1.3215 2 153 71.31 1.3014 4 224 72.58 1.2762 2 262 74.25 1.2737 2 442 74.42

1.2587 1 253 75.46 1.2385 1 044,522 76.92 1.2132 7 433 78.83 1.2058 1 324 79.41 1.1912 1 600 80.58

1 C 1850 2 362 81.09 1.1705 5 244 82.31 1.1682 2 460 82.50 1.1577 2 611,080 83.42 1.1485 1 115 84.24

1.1451 3 513 84.55 1.1432 2 180 84.72 1.1332 3 404 85.65 1.1112 1 551 87.77 1,1062 2 215 88.27

1.0963 1 035 89.28 1.0917 1 631 89.75 1.0849 2 462 90.47 1.0838 1 135 90.58 1.0769 1 082 91.33

1.0732 2 622 91.74 1.0650 2 182 92.65 1.0632 1 064 92 0 85 1.0478 2 273 94.64 1.0417 1 380 95,37

1.0189 1 264 98.23 1.0136 1 091 98.92 1.0110 1 613 99.27 1.0035 2 191 100.28 0.9962 2 642,335 101.29

49 Sodium Chromium Oxide Hydrate, Na2Cr04 *4H 20

Sample 0 Internal standard Ag, a = 4.08641 A The sample was obtained from J.T. Baker Chemical Co., Phillipsburg, N.J. and was CuKd! X= 1.54056 A; temp. 25 °C recrystallized from aqueous solution at room temperature, d(A) 7 hkl 20(°)

8.12 6 Oil 10.89 Color 5.99 11 100 14.78 Brilliant yellow 5.91 20 002 14.97 5.60 8 020 15.82 Optical data 5.29 45 111,110 16.74 Biaxial(+) Na=1.564, Np =1.568, Ny =1.590, 5.224 7 012 16.96 5.055 80 021 17.53 Structure 4.878 5 102 18.17 Monoclinic, P2 l /c (14), [Geslin et al. f 4,467 100 112 19.86 1968] . Z is assumed to be 4. 4.088 13 121,120 21.72

3.712 10 013 23.95 3.666 12 121 24.26 3.569 30 113 24.93 3.555 40 031,112 25*03 3.216 55 023 27.72

3.170 131 }45 { 28.13 Lattice constants 3.162 130 28.20 3.122 10 123 28.57 0 a(A) b(A) C(A) £(°) 3.113 6 122 28.65 2.995 200 }25| 29.81 2.989 NBS, 211 29.87 sample 2.963 50 132 at 25 °C 6.199 11.183 12.218 104.94 30.14 2.895 20 ±.001 ±.001 ±.001 ±.01 212,210 30.86 2.865 20 114 31.19 2.855 25 014 31.31

2.795 3 040 32.00 2.719 14 041 32.91 2.712 16 221 33.00 Density 2.658 17 211 33.68 (calculated) 1.899 g/cm 3 at 25° C, 2.647 11 133 33.83

2.641 8 132,220,+ 33.92 Additional patterns 2.614 5 123 34.27 1. PDF card 1-334 [Hanawalt et al.,1938] 2.535 11 141,140 35.38 2. Geslin et al. [1968], 2.529 9 042 35.47 2.468 4 223 36.38

References 2.458 4 221 36.52 Geslin, M., M. Gaultier and G. Pannetier 2.426 8 142,141 37.02 (1968). Bull.Soc.Chim.France, 1968^3,939 2.412 8 104 37.24 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 2.383 3 214,231 37.72 (1938). Ind. Eng. Chenu Anal.Ed.10, 457. 2.359 4 114 38.12

50 Sodium Chromium Oxide Hydrate, Na2Cr04 ©4H20 - continued

d(A) I hkl 20 r) d(A) / hkl &>(*)

2.339 4 232 38.46 1.778 6 135,160+ 51.33 2.315 9 133,034 38.87 1.762 3 333 51.85 2.278 5 043 39.52 1.737 12 312 52.64 2.245 20 143 40.14 1.724 4 117 53.08 2.222 5 125 40.56 1.700 4 245 53.89

2.212 3 233 40.75 1.695 4 243 54.05 2.197 2 051 41.05 1.683 3 063,325 54.46 2.176 4 025 41.47 1.667 6 017,127 55.04 2.103 4 215 42.97 1.656 5 341 55.43 2.095 14 150,213,+ 43.15 1.639 5 154,215 56.06

2.041 3 234 44.34 1.623 2 340,055 56.66 2.036 4 232,144 44.45 1.609 3 316,046 57.19 2.031 1 11 143,106,+ 44.58 1.595 5 335,227 57.75 2.029 J I 044,135 44.62 1.582 7 071,260 58.28 2.026 12 134,312 44.70 1.576 10 163,064 58.51

2.022 3 311 44.79 1.5619 2 326,246 59.10 1.994 4 035,115 45.45 1.5436 2 170,253,+ 59.87 1.967 4 006 46.10 1.5231 2 413 60.76 1.960 5 243 46.29 1.5186 2 172,171 60.96 1.939 7 016 46.81 1.4995 3 404 61.82

1.931 14 322,321 47.02 1.4910 3 353,336 62.21 1.923 15 153 47.23 1.4757 5 165,008,+ 62.93 1.904 4 125 47.73 1.4624 1 018,065 63.57 1.897 5 304 47.92 1.4493 1 424 64.21 1.875 7 204 48.52 1.4419 3 327 64.58

1.864 10 060,311 48.82 1.4344 1 228 64.96 1.856 7 026,216,+ 49.03 1.4128 2 138 66.08 1.838 9 244 49.56 1.4058 4 265,346+ 66.45 1.803 11 045,332 50.58 1.3885 3 081 67.39 1.784 10 153,226,+ 51.17

51 Sodium Hydrogen Sulfate Hydrate, NaHS0 4 ©H 20

Sample 0 The material was from the Specialty Internal standard W, a = 3.16516 A Chemicals Div. of Allied Chemical Corp., Morristown, N. J. CuKd! A = 1.54056 A; temp. 25 °C d(A) I hkl 2&( .) Color Colorless 5.18 19 111 17.12 5.110 35 Oil 17.34 Optical data 3.909 5 020 22.73 Biaxial(-) Na=1.43, N0=1.46, Nv=1.48, 2V 3.633 30 211 24.48 is large. 3.557 100 111,200 25.01

3.462 70 202 25.71 Structure 3.422 55 120 26.02 Monoclinic, Aa(9),Z=4. The structure was 3.378 18 002 26.36 determined by Pringle and Broadbent, 2.759 20 122 32.42 [1965]. 2.629 15 220 34.08

2.591 2 222 34.59 2.555 1 9 / 022 35.09 2.550 J 311 35.16 2.509 6 211 35.76 2.438 6 131 36.84 Lattice constants 2.431 7 031 36.95 0 0 0(°) 2.421 11 113 37.11 a(A) b(A) c(A) 2.213 9 313 40.73 2.204 11 322 40.91 NBS, 2.182 10 131 41.34 sample at 25 °C 8.213 7.812 7.805 120.04° 2.164 6 013 41.71 ±.001 ±.001 ±.001 ±.01 2.159 9 122 41.81 2.054 4 402 44.06 2.027 5 320 44.68 1.999 5 202 45.32

Density 1.951 2 204 46.51 (calculated) 2.124 g/cm 3 at 25° C. 1.919 2 411 47.32 1.893 4 311 48.03 Reference intensity 1.889 5 413 48.13 1.883 4 140 48.28 I/I' corundum, ""- 1.6 1.857 2 231 49.02 1.839 4 113 49.53 Additional patterns 1.830 3 233 49.78 1. PDF card 1-546 [Hanawalt et al.,1938] 1.818 10 422 50.14 1.780 6 222 51.29

1.778 3 400 51.34 1.745 2 224 52.40 1.731 4 404 52.80 1.727 5 333 52.97 1.711 4 240 53.52

52 Sodium Hydrogen Sulfate Hydrate, NaHS04 -H 20 - continued

d(A) 7 hkl 20(°)

1.703 6 033 53.78 References 1,690 8 042,004 54.24 Hanawalt, J.D. , H.W. Rinn and L.K. Frevel, 1.685 6 124 54.42 (1938). Ind. Eng. Chem. Anal.Ed. 10,457, 1.618 2 420 56.85 Pringle, G.E., and T.A. Broadbent (1965). 1.591 3 513 57.93 Acta Cryst. 19, 426.

1.576 1 431,342 58.51 1.561 2 331 59.12 1.550 2 024 59.59 1.527 1 511 60.58 1.523 1 051 60.77

1.5085 3 522 61.41 1.4803 1 322 62.71 1.4445 <1 115 64.45 1.4231 2 524 65.54 1.4145 3 442 65.99

1.3967 1 242 66.94 1.3879 2 124 67.42 1.3800 3 244 67.86 1.3605 2 344 68.97 1.3487 3 602 69.66

1.3455 2 251 69.85 1.3365 2 531,520 70.39 1.3315 2 015,153 70.69 1.3255 1 431 71.06 1.3146 1 440,313 71.74

1.2950 2 204 73.00 1.2802 2 160,135 73.98 1.2773 1 044 74.18 1.2724 1 206 74.51 1.2643 <1 611 75.07

1.2531 1 422,511 75.86 1.2351 <1 162 77.17 1.2294 <1 224 77.59 1.2266 1 451 77.80 1.2227 1 535,260 78.10

1.2197 2 351 78.33 1.2114 <1 633 78.97 1.2054 1 115 79.44 1.1868 <1 333 80.94 1.1758 1 526 81.86

1.1701 1 362 82.34 1.1632 <1 162 82.94

53 Sodium Iron Fluoride, Na3FeF6

Sample d(A) 7 hkl 2*0 The sample was prepared by adding FeCl3 solution to one containing NaF in HF. 2.542 6 120 35.28 2.484 20 210 36.13 Color 2.424 25 121 37.06 Colorless 2.398 15 103 37.47 103 37,70 Optical data 2.384 }40{ Almost isotropic, lOl.41,very finely di 2.376 211 37.83 vided. 2.326 4 022 38.67 2.212 11 113 40.76 Structure 2.202 16 113 40.95 Monoclinic, Z«2 [Croft and Kestigian, , , 122 42.07 1968], Space group P21 /n (14), by analo 2.146 J 15 I gy with the powder pattern of cryolite, 2.139 122 42.21 Na3 AlF6 . 2.115 4 212 42.72 1.987 85 220 45.62 Lattice constants 1.947 6 023 46.61 0 1.929 6 221 47,07 a(A) t>(A) C(A) 0O 1.925 4 221 47.18 1.857 3 031 49.00 NBS, 1.838 7 123 49.54 sample 1,804 17 130 50.54 at 25 °C 5.513 5.728 7.964 90.40 ±.001 ±.001 ±.001 ±.01 1.792 10 301 50.91 1.780 222 51.28 }25{ 1.776 114 51.40 Density 1.760 16 131,131 51.91 (calculated) 3.154 g/cm 3 at 25° C. 1.750 5 310 52.22 Reference intensity 1.722 2 032 53.16 1.707 4 311 53.65 I/I A = °' 4 1.643 30 132,132 55.90 1.634 25 024 56.24 Additional patterns 1.619 7 204 56.81 1. PDF card 1-0991 [Dow Chemical Co., Midland, Michigan] 1.606 45 312 57.32 2. PDF card 21-1125 [Croft and Kestigian 1.598 25 312 57.64 1968] 1.547 7 320 59.74 1.541 8 231 60.00 1.535 9 015 60.25 0 Internal standard W, a = 3.16516 A 1.519 6 321 60.93 CuK^ A = 1.54056 A; temp. 25 °C 1.5163 7 321,303 61.06 1.4908 4 133 62.22 d(A) / hkl 2*.C) 1.4579 3 232 63.79 1.4318 4 040 65.09 4.65 75 Oil 19.07 4.54 •^ r 101 19.52 1.4096 11 224,041 66.25 4.52 } \ 101 19.62 1.4023 10 224 66,64 3.98 100 002,110 22.34 1,3859 3 140 67.53 3.56 9 111 24.98 1.3782 3 400,034 67.96 1.3657 2 141,141 68.67 3.55 8 111 25.04 2.864 35 020 31.20 2.819 112 31.72 }95{ 2,806 112 31.87 References 2.756 25 200 32,46 Croft, W.J. and M. Kestigian (1968). Mat. 54 Res. Bull, 3, 571. Sodium Selenate, Na2Se04

Sample o The sample, obtained from K & K Labora Internal standard W, a = 3.16516 A tories, Inc., Plainview, N.Y. , was re- CuKaj A = 1.54056 A; temp. 25 °C crystallized and dried at 50 °C. d (A) / hkl 2«(«) Color 4.831 100 111 18.35 Colorless 3.959 45 220 22.44 3.273 70 131 27.22 Optical data 3.150 45 040 28.31 Biaxial(+), Na =1.506, Np =1.520, NY -1.534 2.884 90 311 30.98 2V is large. 2.746 55 022 32.58 2.618 5 202 34.22 Structure 2.543 1 400 35.26 Orthorhombic, Fddd (70), Z=8, isostruc- 2.421 \ 25 ( 331 37.10 tural with Na 2 SO 4 , form V (thenardite). 2.418 222 37.15 The structure was determined by Naray- ' * Szabo and Argay [1963] and refined by 2.012 8 242 45.01 Kalman and Cruickshank [1970]. 1.978 10 440 45.83 1.940 2 260 46.79 1.918 35 351 47.37 1.865 16 422 48.78

1.801 2 133 50.63 Lattice constants 1.753 2 531 52.13 1.728 30 062,313 52.95 1.700 1 171 53.87 a(A) C(A) b(A) 1.659 2 442 55.33

NBS , sample 1.6370 5 620,262 56.14 -,-1- 9 c °(~> 10.171 1 "~) C Q"7 6.1038 1.6104 12 333 57.15 ±.001 ±.001 ±.0003 1.5733 2 080 58.63 1.5635 5 153 59.03 1.5373 9 371 60.14

Density 1.5258 3 004 60.64 (calculated) 3.212 g/cm 3 at 25° C. 1.4816 8 602 62.65 1.4336 6 353 65.00 Reference intensity 1.4295 8 462,513 65.21 1.4237 5 224 65.51 ' corundum = •*• • 8 1.4047 2 711 66.51 1.3729 6 044 68.26 1.3606 1 533 68.96 1.3510 2 191 69.52 1.3482 4 282 69.69

Additional patterns 1.3396 13 731 70.20 1. PDF card 1-272 [Hanawalt et al.,1938] 1.3379 13 480 70.31 2. Naray-Szabo and Argay [1963] 1.3360 11 173 70.42 1.3253 2 244 71.07 1.3184 7 660 71.50

55 Sodium Selenate, Na2Se04 - continued

References d(A) / hkl 2fJ(°) Hanawalt, J.D. , H.W. Rinn, and L.K. Frevel 1.3152 7 571 71.70 (1938). Ind. Eng. Chem. Anal.Ed. 10, 457 1.3084 3 404 72.13 Kalman, A. and D.W.J. Cruickshank (1970). 1.2814 1 424 73.90 Acta Cryst. B26, 436. 1.2647 2 391 75.04 Naray-Szabo, I. and Gy. Argay (1963). Acta 1.2523 2 373 75.92 Chim. Hung. 39, 85.

1.2325 1 751 77.36 1.2218 1 2-10-0 78.17 1.2080 2 444 79.23 1.2065 2 115 79.35 1.1993 2 264 79.92

1.1774 2 713 81.72 1.1637 3 0-10-2 82.89 1.1537 1 822 83.77 1.1450 2 193 84.55 1.1440 2 315 84.65

1.1383 1 733 85.17 1.1346 1 2-10-2 85.51 1.1325 1 591 85.71 1.1181 3 1-11-1 87.09 1.1162 4 624 87.27

1.1076 5 335 88.13 1.0955 3 084 89.36 1.0920 3 155 89.72 1.0788 2 682 91.12 1.0741 1 931 91.63

1.0706 2 284 92.02 1.0678 2 3-11-1 92.34 1.0581 1 4-10-2 93.43 1.0491 1 0-12-0 94.49 1.0452 1 355 94.95

56 Tin Sulfide (berndtite), beta, SnS2

Sample o The sample was prepared by heating NH^Cl, Internal standard W, a = 3.16516 A Sn amalgamated with Hg, and sulfur in excess until all the Hg was driven off. CuKa! A = 1.54056 A; temp. 25 °C The remaining material was recrystalliz- 2»(°) ed by sublimation within an almost clos d(A) 7 hkl ed tube. 5.89 100 001 15.02 3.162 30 100 28.20 2.951 5 002 30.26 Major impurities 2.784 55 101 32.12 0.01 -0.1 % each: Al, Bi, Cd, Hg, and Pb 2.155 25 102 41.88 1.9665 5 003 46.12 1.8240 30 110 49.96 1.7431 20 111 52.45 Color '1.6693 8 103 54.96 Deep yellow brown 1.5801 4 200 58.35 1.5521 4 112 59.51 Structure 1.5263 8 201 60.62 Hexagonal, P3ml (164), Z = l, isostructur- 1.4749 4 004 62.97 al with Cdlg [oftedal, 1928] . 1.3928 5 202 67.15 1.3374 6 113 70.33 Lattice constants 1.2314 2 203 77.44 1.1942 2 210 80.33 a(A) C(A) 1.1799 1 005 81.51 1.1705 5 211 82.31 1.1469 7 114 84.38 NBS, sample at 25 °C 3.6486 5.8992 ±.0001 ±.0003 1.1069 5 212 88.20 1.1050 5 105 88.39 1.0778 <1 204 91.23 1.0534 4 300 93.98 Density 1.0370 2 301 95.94 (calculated) 3.854 g/cm 3 at 25° C. 1.0208 3 213 97.98 Reference intensity 0.9909 2 115 102.04 ' corundum ~~ 4.6 .9832 <1 006 103.15 .9454 1 205 109.13 Polymorphism .9385 1 106 110.33 Moh [1969] found three additional lines .9285 2 303 112.12 in the pattern of this phase and con .9121 2 220 115.24 cluded that it was of lower symmetry. A- .9015 2 221 117.39 bove 692 °C SnS2 appears in a different .8762 1 310 123.06 crystal form ( a ). PDF card 21 -1231 .8715 <1 222 124.22 [Guenter and Oswald, 1968] represents a polytype with c_ doubled which we did not observe. .8669 2 311 125.39 .8571 3 304 127.99 .8400 3 312 132.98 References .8393 3 215 133.21 Guenter, J.R. and H.R. Oswald (1968). Na- turwiss. 55, 177. Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Ind. Eng. Chem. Anal.Ed.10, 457. Additional patterns Moh, G.H. (1969). Neues Jahrb. Mineral. 1. Oftedal [1928] Abhand. Ill, 227. 2. PDF card 1-1010 [Hanawalt et al,1938] Oftedal, I. (1928). Z. Physik. Chem,(Leip 3. Moh [1969] zig) 134, 301. 57 4. Guenter and Oswald [1968] Vanadium, V

Sample High-purity electrolytic vanadium crys Density tals were obtained from the U.S. Bureau (calculated) 6.097 g/cm 3 at 25° C. of Mines. The sample shipped in argon had the following Bureau of Mines analy Reference intensity

sis : aluminum 10 ppm I/I :orundum. =~~ 2.4 carbon 16 chromium <40 copper < 5 hydrogen 42

manganese 5 0 nickel 6 Internal standard W, a = 3.16516 A nitrogen 10 Q oxyg en 35 CuKa l * = 1.54056 A; temp. 25 °C silicon 15 0 d(A) hkl 2"(°) At NBS the crystals finer than 60 mesh I were removed and annealed by R.M. Water- 2.1411 100 110 42.17 strat for one minute at 1600 °C in a 200 61.16 vacuum of 10" 5 mm Hg using a thoria cru 1.5141 12 1.2363 19 211 77.08 cible. The sample was then mounted in 92.04 silicone grease for x-ray measurements. 1.0704 5 220 0.9575 8 310 107.12 Intensity values were obtained from fine powder of unknown oxygen content. .8739 3 222 123.63 .8091 11 321 144.37 Color Metallic silver

Structure Cubic, Im3m (229), Z=2 [Hull, 1922]. Additional patterns 1. PDF card 1-1224, [Hanawalt et al.,1938| Lattice constants

a(A) References Hanawalt, J.D., H.W. Rinn and L.K. Frevel, NBS, sample at 25 °C ————————— 3.0274 (1938). Ind. Eng. Chem. Anal.Ed. 10,457* ±.0001 Hull, A.W. (1922). Phys. Rev. 20, 113.

58 Zinc Chromium Oxide, ZnCr20 4

0 Sample Internal standard Ag, a = 4.08641 A Equimolar amounts of ZnO and Cr2 O3 were mixed, pressed into pellets and heated CuKfll A = 1.54056 A; temp. 25 °C to 900 °C for two hours. The pellets were ground, and reheated to sharpen the d (A) I hkl 2e(*) pattern. 4.807 6 111 18.44 2.947 45 220 30.30 Color 2.511 100 311 35.73 Light olive gray 2.405 7 222 37.36 2.083 16 400 43.41 Structure Cubic, Fd3m (227), Z=8, spinel type, 1.911 2 331 47.53 [Passerini, 1929]. 1.6996 13 422 53.90 1.6025 35 511 57.46 1.4719 40 440 63.11 1.4084 2 531 66.31

1.3168 5 620 71.60 Lattice constants 1.2701 10 533 74.67 1.2558 4 622 75.67 a(A) 1.2023 3 444 79.68 1.1664 2 711 82.66

NBS, sample at 25 °C -—————_ O *5 *7 c 8 1.1128 6 642 87.61 ±.0001 1.0840 12 731 90.57 1.0409 5 800 95.46 .9814 4 822 103.42 .9616 8 751 106.46 Density (calculated) 5.367 g/cm 3 at 25° C. .9552 3 662 107.49 .9310 3 840 111.66 Reference intensity .8877 3 664 120.39 I/I , - 4.0 .8730 7 931 123.85 ' corundum "" .8499 10 844 130.01

.8370 2 933 133.93 Additional patterns .8165 3 10-2-0 141.24 1. PDF card 21-1476[Kohlmuller and Omaly .8050 9 951 146.22 1968] . .8013 4 10-2-2 148.00 2. PDF card 1-1123 [New Jersey Zinc Co. New Palmerton, Pa.] References Kohlmuller, R.,and J. Omaly (1968). Bull, Soc. Chim. France 1968, 4383. Passerini, L. (1929). Atti reale accad. nazl. Lincei 9, 338.

59 Zinc Iron Oxide (franklinite), ZnFe20 4

Sample o The sample was prepared by co-precipita Internal standard Ag, a = 4.08641 A tion of the hydroxides, followed by heating at 600 °C for 17 hours and one CuKfll A= 1.54056 A; temp. 25 °C hour at 800 °c. d(A) I hkl 2e(°) Color 4.873 1 111 18.19 Medium brown 2.984 35 220 29.92 2.543 100 311 35.26 2.436 6 222 36.86 Optical data 2.109 17 400 42.84 Isotropic, N>2.00 1.937 <1 331 46.87 1.723 12 422 53.12 Structure 1.624 30 511 56.63 Cubic, Fd3m (227), Z=8, spinel type, 1.491 35 440 62.20 [Posnjak, 1930]. 1.4270 1 531 65.34

1.3348 4 620 70.49 1.2872 9 533 73.51 1.2721 4 622 74.53 1.2184 2 444 78.43 Lattice constants 1.1820 1 711 81.34

a(A) 1.1280 5 642 86.14 1.0990 11 731 89.00 1.0553 4 800 93.76 NBS, sample at 25 8.4411 °C 0.9949 2 822 ±.0002 101.47 .9747 6 751 104.42

,9684 2 662 105.39 .9439 2 840 109.38 .8999 1 664 117.73 .8848 5 931 121.04 Density .8616 8 844 126.77 (calculated) 5.324 g/cm 3 at 25° C. .8277 4 10-2-0 137.08 Reference intensity .8159 6 951 141.48 I/I . .8122 2 10-2-2 143.00

Additional patterns References 1. PDF card 1-1108 [Posnjak, 1930] Ferguson, R.B, (1962)* Geol. Soc. Am. Mem. 2. PDF card 10-467 (natural mineral with 85, 193. Mn* 2 andFe"1" 2 ) [Ferguson, 1962] Posnjak, E. (1930). Am. J. Sci. 19, 67.

60 Aluminum Chloride, AICI3

Structure 26(°) d(A) / hkl Monoclinic, C2/m (12), z=4. The struc A - L54056 A ture was determined by Ketelaar et al. [1947] . 1.956 1 003 46.38 1.0P9 ? 0 «4 2 47.08 1.922 11 1 3 2 47.26 Lattice parameters 1.907 -203 47.66 9.3+0.02, b=10 . 24±0 .04 , c-6.l7tO.02A, 6 a=5. 1.8^5 7> ? 4 0 47.96 [ibid.] 1.836 1 -3 1 2 49.60 1.787 1 -223 51.08 Density 51.38 (calculated) 2.49 g/cm3 1.777 10 2 P 2 * 1.760 IB -133 51 .90 1.710 2n -3 3 1 53.54 Thermal parameters Isotropic, overall B = 2.0 1.707 20 060 53.66 1.679 1 222 54.62 1.647 ^ 330 55. 7R Atomic positions 1.638 4 -3 3 2 + 56.10 Those -used were the arrangement desig 1.517 2 133 61 .04 nated as the "ionic structure" [Ketelaar et al. , 1947] . 1.506 1 -? o ** 61.54 1.4P4 3 331 62.52 1.475 3 062 62.96 Scattering factors 1.471 3 -3?3 63.14 Al°, Cl° [3.3.1A] 1.467 4 004 63.34

1.460 3 2 6 0 + 63. 68 Scale factor 1.420 1 -421 65.68 (integrated intensities) 1.811 x 10^ 1.415 p 203 65.94 1.410 4 <* 0 0 66.22 -134 66.54 Additional patterns 1 .U04 S 1. PDF card 1-1133[HanawaIt et al.,1938] 1.400 q -262 66.78 2. Laschkarew [1930] 1.2*4 1 401 73.74 1.272 1 -263 74.56 1.231 3 262 77. 4Q Calculated Pattern (Peak heights) 1.223 1 -4 n 4 78.10 28(°) 1.174 1 0 0 b 82.04 d(A) / hkl R6.P8 A = 1.54056 A 1.119 2 333 1.112 2 064 + 87.64 1.108 2 -3 3 5 + Rft.08 ion 1^.10 5.36 o n l 1.0R9 1 263 90.00 5.12 12 020 17.30 20 17.94 4.94 1 1 0 1.087 -ill 20.10 2 460 ^0.26 '±.41 12 1.0 n-4 3.P6 (, 021 23.04 3 1 9 1 90.60 1.0R3 p -533 90.70 1.0*1 -4Q5 o 26.52 2 90.88 3.36 1 1 1 1.003 2.^3 30 002 30.44 1 531 100.36 2.92 19 30.54 1 3 0 .995 -1Q3 2.8° 1 -1 1 2 30.92 1 101.40 .994 -464 2.n? 31 200 31.70 1 101 .60 .988 1 -602 102.42 .9*6 -391 2.60 5b 31 .94 1 102.74 -1 3 1 .972 2.462 96 131 36.46 1 334 104.76 2.445 5 n -202 36.72 .967 2.207 1 -P 2 2 40.86 1 065 105.60 .963 -336 2.HR4 1 221 43.38 1 106.22

61 AhMinum Chloride, AICI3 - continued

Calculated Pattern (Integrated) d(A) / hkl 28(°) 0 A * 7.54056 A d(A) / hkl 2 en A = 1. 54056 A l.?72 p -263 74.56 1.234 1 1 3 4 77.24 5.57 Q^ 001 15,00 1.231 5 262 77.47 5,5? in 020 17.31 1.223 2 -404 78.10 4.94 17 1 1 0 17.94 1.174 2 005 82.04 4.41 10 -1 1 1 20.10 3.86 5 021 ?3.0* 1.119 ? 333 86. 9P 1.113 1 -5 3 1 P7.61 3.36 2 1 1 1 26.5? 1.112 ? 064 87.64 2.93 29 002 30. 4U 1.109 I -462 87.99 2.92 5 130 30.59 1.108 1 -1 P 1 88.07 2.P2 1 -201 30.61 2.89 1 -112 30.9? 1.108 2 -335 88.10 1.0Q9 p 263 89.99 2.82 30 200 31.70 1.0R7 3 460 90.25 2.80 57 -131 31.95 1.0B4 3 191 90.61 2.462 100 1 3 1 36.47 1.0R3 3 -533 90.71 2.445 43 -202 36.7? 2.207 1 -2 P 2 40.5* 1.0K1 1 -4Q5 00. HS 1.033 1 1 3 5 96.40 2.064 ? 221 43, 3P 1.02& 1 461 97.3? 1.956 1 0 0 3 46. 3P 1.022 1 1 Q 2 97.8? 1.929 2 042 47.07 1,019 1 -534 Q8.21 1.9?5 1 1 5 0 47.17 1.922 1? I 3 2 47.26 1,003 Z 531 100,36 .9^5 Z -193 101.40 -> 1.907 7 -203 47.66 .994 -464 101,60 -602 1.6Q5 1 240 47.98 .988 1 102,4? 1.B36 o -3 1 2 49.61 .9^6 ?. -391 102.73 1.7P7 1 -223 51.07 1.777 12 202 51.37 .972 2 334 104.77 .967 9 065 105.60 1.774 ? 151 51.45 .963 P -3 3 6 106.2? 1.761 2? -133 51.89 .923 1 532 113.20 -194 1.710 24 -331 53.53 .915 1 114.63 1.707 1? 060 53.66 -465 1.703 1 2 4 1 53.78 .913 1 115.00

1.679 1 222 54.6? 1.647 2 330 55.7ft 1.639 3 061 56.07 1.638 3 -332 56.12 1.517 2 133 61.04 Reference Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.506 -204 1 61,53 (1938). Ind. Eng. Chem. Anal.Ed.10, 457. 1.4fi4 3 331 62.5? 1.475 3 062 62.9^ Ketelaar, J.A.A., C.H.MacGillavry,and P.A. 1.471 3 -333 63.15 Renes (1947). Rec. Trav. Chim. 66, 501. 1.467 4 004 63.35 Laschkarew, W.E. (1930). Z. Anorg. u. all- gem. Chenu 193, 270. 1*460 3 260 63. 6R 1.459 2 -402 63.74 1.421 1 -421 65.67 1.415 3 203 65.94 1.410 5 400 66*23

1.404 6 -134 66*54 1*402 1 -171 66. 6R 1*400 9 -262 66.79 1*379 1 -352 67.89 1.2B4 1 401 73.74

62 Barium Oxide, BaO

Structure Calculated Pattern (Peak heights) Cubic, Fm3m (225), Z=4 [Gerlach, 1922] 26(°) o d(A) / hkl A = 1.54056 A Lattice parameters a=5.5393A, (published value: a=5.53912± 3.1974 100 1 1 1 27.88 0.00013A)[Zollweg, 1955] 2.7693 86 200 32.30 1.9585 4 :1 ? ? 0 46.32 1.6704 32 3 1 1 54.92 Density 1.5989 1'4 222 S7.60 (calculated) 5.992 g/cm3 1.3m*7 S 400 67.60 1.270ft in 3 3 1 74.62 Thermal parameters 1.2387 12 4 ? 0 76. °0 Overall temperature factor, 1.0 1.1307 M 422 85. RB 1.0650 6 511 + 9?.54

Scattering factors .9792 ^ 440 103.74 Ba+a [Cromer and Waber, 1965] .9364 h 531 110.70 .9?3?_ s 442 + O [Suzuki, 1960] 113.10 • P^75B 4 620 123.16 .R44? $ 5 3 3 131. 52 Scale factor .8351 4 6 ? 2 134.56 [integrated intensities] 6.438 x 104 .7996 1 444 14^.90

Additional patterns 1. PDF 1-746 [Hanawalt et al., 1938] Calculated Pattern (Integrated) 2 BO d(A) 7 hkl X = 1.54056 A Reference Cromer, D.T. and J. T. Waber (1965). Acta 3.19B1 ion 1 1 1 27.87 2.7697 R"? Cryst. 18, 104. 200 32.30 1.9584 55 220 46.3? Gerlach, W. (1922). Z. Physik 9, 184. 1.6702 43 311 54.93 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.5991 IB 222 57.59 (1938). Ind. Eng. Chem. Anal. Ed.10,457. Suzuki, T. (1960). Acta Cryst. 13, 279. 1.3848 R 400 67.59 Zollweg, R.J. (1955). Phys.Rev.100 #2,671. 1.270H 16 331 74.62 1.2386 20 4 2 0 76.91 1.1307 15 422 85. 8P 1.0660 9 511 92.53

1.0660 3 333 92.53 .9792 5 440 103.74 .9363 14 531 110.71 .9232 ?. 600 113. in .9232 10 442 113.10

.8758 10 620 123.16 .8447 3 533 131.53 .8351 11 622 134.56 .7995 5 4 4 <+ 148.91

63 Beryllium, alpha, Be

Structure Hexagonal, Z=2, isostructural with mag Calculated Pattern (Peak heights) nesium [McKeehan, 1922], P63 /mmc (194) 26(°) d(A) / hkl [Neuberger, 1932]. A = 1.54056 A

1.9795 30 100 45. RO Lattice parameters 1.7925 25 002 50.90 a= 2.2859 ±.0002, c= 3.5844±.0003A,(pub 1.7330 100 1 0 1 52.78 lished values: a=2.2858 ±.0002, c=3.5843 1.32B7 Q i n 2 70.66 Q 84.74 ±.00031) [McKay and Hill, 1963]. 1.1430 1 1 0 1.0230 P I 0 3 97.70 .9*98 1 200 102.20 Density .9636 •\ 106.14 1.845 g/cm3 1 1 2 (calculated) .9541 ^ ? n i 107.68 .P961 1 n o 4 118.54 Thermal parameters Isotropic, overall B = 2.0 .8664 1 ? n 2 125.50 .B163 1 104 141.32 Polymorphism A second hexagonal modification of be ryllium exists. It has different alloy ing properties and a volume 29% larger than the one described here [Sidhu and Henry, 1950]. Calculated Pattern (Integrated) 26C) Scattering factors d(A) / hkl Be0 [3.3.1A] \ = 1.54056 A

1.9797 ?. f] 100 45. AO Scale factor 1.7922 25 002 50.91 (integrated intensities) 5.998 1.7329 100 1 0 1 52. 7R 1.32B6 11 1 0 2 70. 87 1.1429 1? 1 1 0 R4.74 Additional patterns et al.,1938] 1.0229 12 1 0 3 97.70 1. PDF card l-1291[Hanawalt P 2 n o 102.1° 2. Jaeger and Zanstra [1933] .9898 .9637 14 1 1 2 1 06.13 .9541 in 201 107.67 .8961 ? 004 118.54 Reference 125.50 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel .8665 3•^ 202 .8164 104 141.31 (1938). Ind. Eng. Chem. Anal.Ed.10, 457. Jaeger, P.M. and J.E, Zanstra(1933). Proc. Acad. Sci. Amsterdam 36, 636. McKay, K.J.H. and N.A. Hill(1963). J.Nucl. Materials 8, 263. McKeehan, L.W. (1922). Proc.Natl.Acad.Sci. US 8, 270. Neuberger, M.C.(1932). Z. Phys. Chem. Bl7, 285. Sidhu, S.S. and C.O. Henry(1950). J. Appl. Phys. 21, 1036.

64 Beryllium Lanthanum Oxide, Be2La205

Structure Monoclinic, C2/c (15), Z=4 [ Harris and Calculated Pattern (Peak heights) Yakel, 1968] 26(°) d(A) / ^2 A = 1.54056 A Lattice parameters a= 7.5356 ± 0.0006, b= 7.3476 ± 0.0017, 5.260 ? 1 1 0 16.84 c= 7.4387 ± 0.00061, 3- 91°33'+1'[ibid.] 4.255 4 1 1 1 20. P6 3.787 ion 200 23.60 3.717 54 002 23.92 3.675 73 020 24.20 Density (calculated) 6.061 g/cm3 [ibid.] 3.292 21 0 P 1 ?7.06 3.064 3<± -1 1 2 29.12 3.009 67 1 1 2 29.66 Thermal parameters 2.682 30 -? 0 2 33. 3B Isotropic: La 0.414 ,2.630 79 220 34.06 Be 0.412 0(1) 0.564 2.612 70 0 ? 2 + 34.30 2.494 24 -221 0(2) 0.480 35. QB 2.465 A 2 2 1 36.42 0(3) 0.404 2.376 6 3 1 0 37.84 0(4) 0.666 2.259 t -1 1 3 39.83

Scattering factors 2.227 11 113 + 40.48 La3 * [Cromer and Waber, 1965], corrected 2.220 7 1 3 1 40.60 2.166 47 -? 2 2 41 .66 for dispersion using Af'=2.6, Af"=9.2 2.123 24 222 42.44 Be2 * [Cromer and Waber] 2.054 5 023 44.014 O" [3.3.1A] 2.026 1? -3 1 2 44.70 l. Q *0 25 312 + 45.80 Scale factor 1.967 17 132 46.12 (integrated intensities) 11.38 x 104 1.883 17 400 4^,26 1.659 ? 004 48.96

Additional patterns 1.R37 8 0 14 C 49.58 -223 1. Weir and Van Valkenburg [1960]. 1.821 2 50.04 1.7834 15 041 51.18 1.7634 2S -1 1 4 51 .80 1.7422 20 1 1 4 52.46 I'3 1.7379 -3 1 3 52.62 Reference 1 .7043 5 -133 53.74 Cromer, D.T. and J.T. Waber (1965). Acta 1.6990 14 -4 0 2 + 53.92 Cryst. 18, 104. 1.6P3B q 3 1 3 54.10 Harris, L.A. and H.L. Yakel (1968). Acta 1.6903 6 1 3 3 54.22 Cryst. B24, 672. 1.6857 '•4 -? n 4 54.38 Weir, C.E. and A. Van Valkenburg [I960], 420 54.72 1.6761 14•* J. Res. Natl. Bur. Std. 64A, 105. 1.6621 432 55.22 1.65in 7 240 55.62 1.6467 S 042 55.78

1.6434 5 -4 ? 1 55.90 1.6263 4 421 56.54 '•} 1.6159 -241 56.94 1.6076 11 241 57.26 1.5974 ^> -332 57.66

1.5745 S 332 58. 5B 1.5420 9 -422 59.^4 1.531R 1 -224 60.38 1.5154 6 -2 42 + 61.10 1.5021 p 2 M 2 61.70

65 Beryllium Lanthanum Oxide, Be? La?0, - continued

20(°) d(A) 7 hkl o Calculated Pattern (Integrated) A = 1.54056 A 2 BO d(A) / hkl 1.4827 8 -3 1 4 62.60 X = 1.54056 A 1.475° 3 043 + 62.92 1.4589 6 -134 63.74 5,260 2 1 1 0 16.8'* 1.4463 IS 314 + 64.36 .'4 1.4431 9 -333 64.52 4.256 1 1 1 20.8^ 3.766 10" 200 23.60 5? 002 1.4189 4 333 65.76 3.718 23. Q! 75 0 ? 0 1.4147 3 1 5 1 6S.98 3.674 24.21 1.4041 1 -423 66.54 3.294 23 021 P7.05 1.3816 3 -2 M 3 67.76 37 29.13 1.3665 1 2 fi 3 68.62 3.063 -1 1 2 3.009 7? 1 1 2 29.66 33 -202 1.3596 7 5 1 2 69.02 2.6A3 33.37 87 220 1.3413 ? -404 + 70.10 2.630 34.06 1 .3149 s 4 4 0 71.72 1.3067 1 044 72.24 2.613 54 022 34.29 l.?P90 5 -4 4 1 72.74 2.611 32 *> 0 2 34.32 2.494 27 -2 2 1 35.98 ."> 2.465 f\ 2 2 1 36.42 1.2 Q 07 441 73.28 q 1.2877 5 -3 3 4 73.48 2.376 3 1 0 37.83 1.2^41 ? 5 ? 0 73.72 1.2755 1 -3 1 5 74.30 2.259 1 -1 1 3 39.88 1.2636 5 334 75.12 2.228 6 -1 3 1 40.45 2.226 q 1 1 3 40.49 2.217 u 1 3 1 40.65 1.2599 5 531 + 75.38 -222 1.2582 4 -135 75.50 2.166 58 41.65 1.2553 5 600 75.70 1.2492 6 -153 + 76.14 2.128 29 222 42.44 1.2472 5 -442 + 76. 28 2.055 6 023 44.03 2.026 IS -3 1 2 44.70 9 1.2439 r> 1 5 3 76.52 1.9P.1 -1 3 2 45.76 1.2404 ? 006 76.78 1.979 27 3 1 2 45.81 1.2115 '4 -1 1 6 78.96 1.2084 7 n 6 i 79,20 1.966 21 1 3 2 46.12 1.2049 4 532 79.48 1*883 23 400 48.29 1.359 2 004 48.96

66 Beryllium Lanthanum Oxide, Be2 La20 5 - continued

26(°) d(A) / WH 2en d(A) I fcfef A = 1.54056 A X = 1.54056 A

7 332 58. 5* 1.170* ^ -4 4 3 ^2.2^ 1.5744 •? 1.5Ul« 13 -422 ^9.95 1.1679 206 *2.5? 1.5317 2 -? P 4 60.3* 1.1520 7 -261 *3.9? 1.5156 (\ -242 61.0° 1 . 1504 1 -533 R4.06 1 .5142 5 422 61.15 1.1491 6 261 »4. 19

1.5023 p 242 61 .69 1.1449 3 -335 R4.57 1.4826 12 -3 1 4 62.60 1.1424 ? -154 84. 7^ 1.4759 1 5 1 0 62.9? 1 .1412 7 5 1 4 R4.9H 1.4758 p 043 62. 9? 1 .1401 u -622 85. On 1.4589 Q -134 63.74 1.1367 1 1 5 4 R5.32

1.4471 in 134 64.32 1.1354 4 -353 R5.44 ^ 1.4463 16 3 1 4 64.36 1.1290 £. 533 R6.04 1.4443 2. -333 64.46 1.1237 3 335 R6.5^ 1.4188 5 333 65.76 1.1233 p 622 86.58 1.4146 p 1 5 1 65.9P 1.1229 5 353 R6.63

1 .4041 1 -4?3 66.54 1.1130 1 226 87. 5^ 1.3817 '4 -2 4 3 67.77 1.1106 7 -3 1 6 87.83 1.3666 ^ 2 4 3 68.61 1.1087 1 262 88. OP 1.3594 11 5 1 2 69.03 1.0979 ? 063 89.11 1.3424 P 1 5 2 70,04 1.0979 14 -136 R9.ll

1 .3413 3 -404 70. in 1.0903 3 1 3 b 89. on 1.3150 q 440 71.7? 1 . OR75 '4- 316 90.20 1.3066 1 0 u 4 72.25 1.0832 1 -4 4 4 H0.6 C, 1.2991 7 -441 72.73 1.0822 1 -623 90.76 1.2907 3 441 73. 2« 1.0676 3 -534 92.36

1.2^77 6 -334 73. 4R 1.0648 2 7 1 0 Q2. 68 1.2*32 1 530 73. 7P 1.0574 o -263 93.51 1.2754 1 -3 1 5 74.31 1.0544 1 -354 93. 8b 1 .2636 R 334 75.12 1.Q537 1 -604 93.94 1.2599 ? -424 75.38 1.0507 1 263 94. 3n

1.2597 p 531 75.39 1.0449 3 534 94 . 99 1.2582 R -135 75.49 1.0411 o 354 95.44 1.2555 u 600 75.69 1.0389 P 551 95.71 1 .2494 6 -153 76.12 1.0381 <; -155 95.81 1 .2487 3 1 3 5 76.1^ 1.0365 2 640 96.00

1.2474 p 3 5 1 76.27 1.0327 6 155 96.47 1.2471 3 -4 4 2 76. 2 Q 1.0301 1 -171 96.79 1.2438 6 1 5 3 76.53 1.0297 4 -641 96.8'i 1.2393 1 006 76.86 1.0291 1 1 7 1 96. 9? 1.2324 1 442 77.37 1.0274 1 046 97.14

1.2114 7 -1 1 6 78. Q7 1.0235 P 641 97.64 1.2083 R 061 79.21 1.0226 2 406 97.74 1.2045 4 532 79.51 1.0211 4 -336 97.93 1.2012 Q 1 1 6 79.77 1.0190 5 -461 98.21 1.1994 4 -6 0 2 79.92 1.0164 4 712 98.55

1.1954 1 352 80.24 1.0150 4 4 6 1 98.74 1.1880 5 620 80.84 1.0129 P -624 99.01 1.1778 1 *6 2 1 81.6* 1.0072 1 552 99.77 1.1743 2 0 ? 6 R1.98 1.0042. 2 -642 100.17 1.1711 6 -5 1 4 82.26 1.0031 p 336 100.33

67 Calcium, Ca

Structure Calculated Pattern (Integrated) Cubic, Fm3ro (225),Z=4. The structure was determined by Hull [1921]. d(A) 7 hkl 2e(°) A = /. 54056 A

Lattice parameters ion 27.62 .0002A, (published value: 3.2266 1 1 1 a = 5.5886 ± 2.7943 4S 200 32.00 a = 5.5884 ±.00021) [Bernstein and Smith 1.9759 2* 220 45.80 1959]. 1.6*50 30 3 1 1 S4.4H 1.6133 3 222 57.04

Density 1.3971 3 400 66.9? (calculated) 1.525 g/cm3 1.2B21 9 3 3 1 73. B5 1.2497 4 420 76.11 1.2497 4 n 2 4 76.11 Thermal parameters 1.1408 S 422 ^4.94 Isotropic, overall B=2.0 1 .0755 4 5 1 1 PI .4R 1.C75S 1 333 91. 4R Scattering factors .3879 1 440 102.46 Ca° [3.3.1A] .9447 3 5 3 1 109.26 .9447 3 1 3 5 109.26

Scale factor .9314 3 442 111.5R (integrated intensities) 0.9867 x 104 .BR36 1 0 ? 6 121.32 .R836 1 6 2. 0 121.32 . Q 523 ^ 533 129.33 .S425 P 622 132. 2H

.8066 1 444 145.46 Calculated Pattern (Peak heights) .7826 4 7 1 1 159.67 .7926 4 551 159.67 d(A) / hkl 2en o A = 1.54056 A

3.2269 ion l 1 1 27.62 2.7^45 <*r> 200 32.00 1.9754 23 220 45.90 Additional patterns 1.6*51 23 3 1 1 54.40 1. PDF card 1-735 [Hanawalt et al.,1938] l.f>133 b 2 ? 2 57.04 2. Hull [1921] 1.3971 3 400 66.92 l.?*2P 5 ^31 73. B6 Reference ^ 420 + 1 .249R 76.10 and J.F. Smith (1959). Acta i. 1408 ^ 4 ? 2 84.94 Bernstein,B.T. 1.0755 3 r^ 1 1 + 91.49 Cryst. 12, 419. Hanawalt, J.D., H.W. Rinn, and L.K. Frevel .QPRQ 1 440 102.46 (1938). Ind. Eng. Chem. Anal.Ed.10, 457. .9446 ? 531 + 109.26 Hull, A.W. (1921). Phys. Rev. 17, 42. .^314 1 442 111.5ft .«B36 1 620 + 121 .32 .85?? 1 533 129.32

.H425 1 6 ? 2 132.20 .782S o 711 + 159.63

68 Cesium Beryllium Fluoride, CsBeF3

Structure Calculated Pattern (Peak heights) Orthorhombic, Pnma (62), Z=4 [ Steinfink and Brunton, 1968] 20(°) Q d(A) / hkl A = 1.54056 A Lattice parameters a=4.828±.002,b=6.004±.002,c=l2.794±.003A 5.433 2*1 o j 1 16.30 [ ibid..] 3.854 37 1 0 2 23.06 3.610 ion 1 1 1 24.64 3.477 64 n 1 3 2^.60 Density 3.243 3 1 1 2 27.4fl (calculated) 3.55 g/cm3 [ibid.] 3.197 30 004 27.89 Thermal parameters 3.002 17 020 2Q.74 2.P22 13 1 1 3 31.68 Isotropic: Cs 2.62 2.667 a 1 0 4 33.58 F(l) 4.22 2.414 16 200 37.22 F(2) 4.39 Be 2.44 2-. 36B 55 1 2 2 ^7.96 2.259 1 202 39.88 2.P39 1 2 1 0 40.24 Polymorphism 2.206 8 2 1 1 40.88 2.1*19 4 024 41.20 Breusov, Novoselova, and Simanov [1958] described three phases, specifying that 2.1?2 3 006 42.36 the beta phase occurred between 140 and 2.116 27 1 1 5 42.70 360 °C. The material being described 2.J01 9 2 C 3 43.02 here was thought to be the beta form, 1.994 '4 124 45.46 [Steinfink and Brunton,1968] 1.983 13 2 j 3 45.72 1.978 10 n 3 1 45. R4 Scattering factors 1.951 ? 1 0 6 46.52 Be2 *, F [Cromer and Waber,1965] 1.927 10 2 fi 4 47.12 Cs+ [ibid.], corrected for dispersion by 1.691 4 220 48.34 Af'=-1.40 and Af"=7.75 [Cromer,1965] 1.829 5 1 3 1 49.80 1.B12 A 033 50.32 Scale factor 1.746 5 0 1 7 52.28 2 (integrated intensities) 7.513 x 104 1.738 026 52.60 1 .696 I 1 3 3 54.02 1.635 6 1 2 6 56.20 Additional patterns 1 .622 .? 224 1. PDF 17-323 (at 200 D C). [Breusov and 56.72 1.5^6 2 206 + 57.62 Simanov,1959] 1.561 I 302 59.14 1.543 4 311 59.90 References 1.529 3 231 60.48 Breusov, O.N., A.V. Novoselova, and Yu.P. 1.518 2 108 60.98 Simanov (1958). Dokl. Akad. Nauk. S.S.S. 1.501 3 0 u 0 61.76 R. 118, 935. 1.499 4 1 3 5 61 .86 Breusov, O.N. and Yu. P. Simanov (1959). 1.461 1 3 1 3 63.66 '4 Russ. J. Inorg, Chem. 4, 1190. 1.449 233 64.22 Cromer, D.T. (1965). Acta Cryst. 18, 17. 1.416 3 2 1 7 65.90 D.T. and J.T. Waber (1965). Acta Cromer, 1.411 2 226 66. 18 Cryst. 18, 104. 1.399 2 1 4 2 66.84 Steinfink, H. and G.D. Brunton(1968). Acta 1.385 4 322 67.60 Cryst. B24, 807. 1.359 1 044 69.06

1.355 3 128 69.30 1.350 ? 037 69.60 1.333 I 208 70.58 1.330 3 1 1 9 70.80 1.329 3 3 1 5 70.86

69 Cesium Beryllium Fluoride, CsBeF, - continued

26( c) 26D d(A) I hkl d(A) I hkl A * 1.54056 A A = 1.54056 A

-> 1.275 1 240 74.36 1.598 206 57.63 1.248 t 331 76.22 1.561 ? 302 59.15 1.184 1 244 81. 36 1.181 ? 326 81.42 1.543 5 3 1 1 59. P 9 1.178 3 237 + 81.66 1.530 4 231 60.47 1.51B 3 108 60. ^R 1.160 1 1 5 1 83.18 1.510 1 3 1 2 61.32 1.140 1 4 1 3 84.98 1.501 3 0 i| 0 61.7^ 1.129 1 404 86.02 1.126 1 3 3 5 + 86.30 1.499 5 1 3 5 61.86 1.060 1 155 + 93.16 1.460 ? 3 1 3 63,66 1.449 5 233 64.2? 1.058 1 2 210 + Q3.46 1.416 ^ 2 1 7 65.91 1.049 1 3 1 9 94.50 1.411 2 226 66.19 .901 1 1 5 9 117.52 .901 1 3 b 5 117.54 1.399 3 1 4 2 66. R3 1.385 5 322 67.60 1.359 p 0 q. 4 69.07 1.355 4 128 69.30 1.350 3 037 69. 6P Calculated Pattern (Integrated) 28(*) 1.333 1 208 70.59 / hkl 1.330 3 1 1 9 d(A) A * 1.54056 A 70.79 1.329 3 3 1 5 70.87 1.297 1 324 72.89 5.435 24 0 1 1 16.29 1.279 1 0 0 10 74.04 3.654 35 1 0 2 23.06 3.610 100 1 1 1 24.64 1.275 ? 2 4 0 74.36 3.477 64 0 1 3 25.60 1.248 1 3 3 1 76.21 3.243 2 1 1 2 27. 4R 1.190 1 1 4 6 80.71 1.1B4 ?. 244 31.16 3.199 32 004 27.87 1.181 2 326 81.4? 3.002 IB 020 29.74 2.821 14 1 1 3 31.60 1.178 i 4 1 1 R1.65 2.666 4 104 33.58 1.176 3 237 81.67 2.414 IS 200 37.22 1.177 1 0 2 10 81.76 1.160 2 1 5 1 83.17 1 2.368 62 1 2 2 37.96 1.156 053 R3.5P 2.354 1 0 1 5 38.20 2.259 1 202 39.88 1.143 1 1 2 10 84.70 2.240 1 2 1 0 40.23 1.140 1 4 1 3 84. 9Q 2.206 10 2 1 1 40.87 1.130 I 2 0 10 85.91 1.129 1 404 86.0? 2.189 R 0 2 4 41.21 1.127 3 1 3 9 86.24 2.132 3 006 42.35 2.116 31 1 1 5 42.70 1.126 1 335 86.31 2.101 1 203 43.02 1.082 I 342 90. 8H 1.994 4 1 2 4 45.46 1.067 1 143 Q2.3R 1.061 1 328 93.09 1.983 15 2 1 3 45.7? 1.060 2 1 5 5 P3.16 1.977 3 0 3 1 45.35 1.951 2 1 0 6 46.5? 1.D58 1 2 2 10 93.46 1.927 13 204 47.13 1.057 1 424 93.57 1.881 5 220 48.34 1.049 1 3 1 9 94.49 1.043 1 253 95.27 1.830 7 1 3 1 49.79 1.032 1 2 1 11 Q6.53 1.812 in 033 50.32 1.748 6 0 1 7 52.28 1*005 1 * 3 3 100.14 1.738 2 026 52.60 .993 1 * 1 7 101.69 1.696 1 1 3 3 54.01 .984 1 1 2 12 103.09 .969 1 1 6 2 105.37 1.636 R 1 ? 6 56. 1 Q .960 1 3 5 1 \06.76 1.622 4 224 56.7? 1.599 1 008 57.59 70 Hydrogen Borate, beta, HB02

Calculated Pattern (Peak heights) Structure 260 Q Monoclinic, P2l /a(14),Z=12 [Zachariasen, d(A) / hkl 1963]. A « 7.54056 ^ 6.753 33 n o 1 13.10 Lattice parameters 5.542 I 1 1 0 15.98 a=7.122±.002,b=8.842±.002,c=6.771±.002A, 5.368 7 0 1 1 16.50 20.26 3=93.26±.01° [ibid.] 4.380 22 1 1 -1 4.195 100 1 1 1 21.16 3.556 5 200 25,02 Density r> (calculated) 2.051 g/cm3 [ibid.] 3.324 1 2 -1 26,80 3.297 q 2 3 0 27.02 3.241 10 1 2 1 27.50 Thermal parameters 3.222 in 2 0 -1 27.66 Isotropic: BT 0.72 3.157 3 0 1 2 2R.24 1.06 3.074 ion 201 29.02 B11 0.98 3.027 2 2 1 -1 29,49 1.01 2.944 i t 1 -2 30.34 2.B31 ? 1 1 2 31.58 0.89 1.11 2.723 7 130 32.86 1.09 2.701 in 0 3 1 33,14 1.23 2.685 10 022 33,34 1.15 2.550 11 1 2 -2 35.16 H.VI 2.50 2.545 9 1 3 -1 35. ?4 2.50 II 35.54 2.50 2.524 12 2 2 1 + III 2.425 6 2 1 -2 37.04 2.3P3 1 202 37,72 2.301 1 2 1 2 39.12 Polymorphism 2.290 ? 3 1 0 39.32 There are two other polymorphs of HBQs . One form is orthorhombic [Tazaki, 1940], 2.211 10 040 40.78 2*206 P, 3 1 -1 40.88 and the other, cubic [Zachariasen,1963]. 2.190 17 22-2 41.18 PDF cards 9-15 and 15-403 appear to be 2.144 3 1 3 -2 42.12 the orthorhombic form. PDF card 15-868 2*128 3 ? 3 1 42.44 contains the pattern of the cubic form. 2.111 2 140 42.80 2.025 2 32-1 44,72 Scattering factors 2.008 15 023 + 45.12 , B°^ [McWeeny, 1951] BT 1.958 6 I 2 -3 46.32 O° [Berghuis et al.,1955] 1.916 1 23-2 47.40 1.907 3 123 + 47.64 Scale factor 49,24 intensities) 1.116 x 104 1.B49 10 312 + (integrated 1.816 1 32-2 50.14 1.802 4 33-1 50,60 Reference 1*795 4 241 50.82 Berghuis, J., IJ. M. Haanapel, M. Potters, 1.791 3 033 50,96 B.O. Loopstra, C.H. MacGillavry, and A. 1.778 2 400 + 51,36 L. Veenendaal (1955). Acta Cryst. 8,478. 1.762 1 331 51.84 McWeeny, R. (1951). Acta Cryst. 13, 403. 1.717 2 133 + 53.32 Tazaki,H.(1940). J.Sci.Hiroshima U.AlO,37. 1.711 3 4 1 -1 53.52 W.H. (1963). Acta Cryst. 16, Zachariasen, 54,04 385. 1.696 2 401 1.665 1 * 1 1 55,10 1.6S8 3 1 5 1 55.36 1.652 3 31-3 + 55.58 1.622 \ 42-1 56.70

71 HydrofM Borate, beta, HB02 - continued

20H 0 d(A) / hkl d(A) / hkl 20O Q A * 1.54056 A X= 1.S40S6A

1.617 I 340 56.90 2.143 3 13-2 42.13 1.612 1 40-2 57.10 2.128 3 2 3 1 42.44 1.597 1 1 1 * 57.63 2.111 2 140 42.80 1*583 1 421 5B.22 2.025 2 32-1 44.72 1.538 2 402 60.12 2.008 14 023 45.12

1.5*1* 1 1 2 * 60.72 2.005 7 141 45. IP 1.452 ^ 422 64.06 1.958 ? 1 2 -3 46.33 ? 1.448 25-2 64.26 1.93.6 1 23-2 47,40 1.415 1 2 ? 4 65.96 1.908 2 2 1 -3 47.62 1.3327 1 1 6 -2 70.62 1.907 ? 1 2 3 47.65

1.2913 1 352 73.24 1.849 11 3 1 2 49.24 1.2883 2 20-5 73.44 1.847 1 330 49. 3P 1.2216 1 1 6 -3 7B.18 1.818 1 32-2 SO. 13 1.2185 1 35-3 7ft. 42 1.502 4 33-1 50.61 1.1708 1 1 7 "2 82.28 1.795 5 241 50,83

1.7^0 1 033 SO. 97 1.778 I 400 51.36 1.777 1 1 4 2 51. 3« Calculated Pattern (Integrated) 1.762 1 331 SI. 85 1.718 2 1 3 3 53. 2n d(A) / hkl 2*r> A = 7.54056 /4° 1.716 2 150 53.34 1.711 2 4 1 -1 53.52 401 54.04 6.7f>0 2S 001 13. OP 1.696 ? 5.541 1 1 1 0 15. 9* 1.665 1 4 1 1 55,10 5.370 <5 0 ] 1 16.4^ 1.658 3 1 5 1 55.37 4.421 1 0?0 20.07 4. 382 20 1 3 -1 ?0.2S 1.652 2 3 1 -3 55,59 1.652 1 33-2 55.59 42-1 4.195 R7 1 1 1 21.16 1.622 1 56.70 3.555 => 1.617 1 3*0 56.91 200 ?5.03 40-2 3.325 5 I ? -1 26. 7<> 1.612 1 57.11 3.2^9 9 210 ?7.01 3.?41 9 1 2 1 27.50 1.597 1 1 1 4 57.68 1.583 1 4?1 58,23 3.223 9 20-1 27. 6S 1.636 2 402 60,12 124 3.157 3 0 1 2 28.24 1.524 2 60,72 3.075 ion 2 0 1 29.01 1.452 4 * 2 2 64,06 3.0?B 1 2 1 -1 29.47 25-2 2.944 1 1 1 -2 30.33 1.448 1 64.28 1.415 1 224 65,95 2.930 2 1 1 2 31.58 1.3327 1 1 6 -2 70,6? 1.311? 1 25-3 2.723 7 1 3 0 32.87 71,95 2.702 in 031 33.13 1.2915 1 352 73, ?3 2.6B5 9 022 33.34 2.5SO 10 12-2 35.16 1.2883 1 ? 0 -5 73.44 1.2216 2 1 6 -3 78,18 1.2186 1 35-3 78.41 2.545 2 1 3 -1 35.24 60-1 2.525 1? 35.53 1.1787 1 81.61 ? 2 1 1.1709 17-2 2.522 1 ? 0 -2 35.56 \ B2.27 2.426 7 2 1 -2 37.03 2.3*3 1 202 37.72 1.1267 1 006 86,?F» 1.0983 I 4 1 -5 89,07 2.301 I 212 39.12 2.2R9 5 310 39.3? 2.211 10 0 if 0 40. 79 2.205 3 3 \ -1 40. 8P 2.191 19 ? 2 -2 41.17 Magnesium Phosphate, alpha, M^P20 7

Structure Monoclinic, P2X /c (14), [Calvo, 1967]. Calculated Pattern (Peak heights) Z is assumed to be 4, not 2, as given by 26(°) d(A) 7 hkl Calvo[1967] . X c 1.54056 A

Lattice parameters 6.42 1 1 0 0 13.78 a=6.891±.005, b=8.295±.005, c=9.072±.005A, 5.09 3 -111 17.40 p =113.0±.l° [ibid.] i*. 367 3 -102 20.32 4.149 16 0 ? 0 21.40 3.864 1 -1 1 2 23.00 Density (calculated) 3.18 g/cm3 [ibid.] 3.844 3 1 1 1 23.12 3.714 1 021 23.94 3.^90 3 -121 25.50 Thermal parameters 3.213 4 200 27.74 Isotropic: Mg(l) 0.26 3.007 100 -122 + 29.68 Mg(2) 0.33 2.94(4 1 30.34 P (1) 0.17 022 2.838 ?. -1 1 3 31.50 P (2) 0.13 2.671 1 -2 2 1 33.52 O (1) 0.38 2.639 1 0 1 3 33.94 0.32 2.624 £> 031 34.14 0.37 0.31 2.5*40 q 2 2 0 + 35.30 0.57 2.434 5 1 ?. 2 36.90 0.14 2.174 3 I 1 3 41.50 2.100 11 -2 3 2 + 43.04 2.074 ? 310 + 43.60

2.040 ] -133 44.38 2.016 2 -322 44.92 2.012 1 041 45.02 1.P73 3 -142 48.56 1.865 fj 024 + 4A.80 Atomic positions The atomic parameters given by Calvo 1.730 3 321 52.88 1.707 5 1^2 + 53.64 [1967] are for a related non-primitive 1.6^3 1 330 54.12 space group setting B2i /c . Those param 1.641 P 55. 96 •5 223 + eters were converted by a matrix to the 1.638 0 1 5 56.12 corresponding values for P2!/c,to facil itate computer calculations. 1.627 1 051 + 56.50 1.614 3 -404 57.02 1.607 3 1^0 + 57.30 Polymorphism 1.574 7 -334 58. 58 A high-temperature polymorph, 3-MgsP2 O7/ 1.541 ? 3?2 + 59.96 has the thortveitite structure. The transition occurs at 68 °C,with apparent 1.503 2 204 + 61.66 coexistence of both a. and 6 phases over 1.476 3 -432 + 6P.92 1 .471 3 0 14 4 63.14 an extended temperature interval.[ibid.] 1.413 ?_ 224 66.08 1.3^3 2 060 67.72 Scattering factors 1.3*58 1 -1 u 5 6^.12 Mg"1" 2 , P° , O" 1 [3.3.1A] -> 1.353 2 U 3 69.38 1.338 1 -5J4 + 70.28 Scale factor 1.335 o -511 + 70.50 (integrated intensities) 2.543 x 104 1.325 4 -235 + 71.06 1.322 2 234 71. ?B Additional patterns 1.318 1 412 71 .54 1.270 1 510 + 74.68 1. PDF card 8-38 [Menary, African Explo 1.256 2 1 6 2 75.66 sives and Chemical Industries Ltd., 1.237 I 2 U 4 + 7R.54 Transvaal, South Africa] 73 Magnesium Phosphate, alpha, Mg2P20 7 - continued

20(°) Calculated Pattern (Integrated) d (A) / hkl A = 7.54056 A d(A) / hkl 2 en X = 7.54056 A 1.693 3 330 54.12 1.660 I 302 55.2^ -125 6.43 13.77 1.648 1 55.7? 3 1 0 0 -243 5.09 6 -1 1 1 17.39 1.642 p 55.97 4.366 7 -102 20.32 1.641 3 223 56.00 4.175 4 002 21. ?6 4.147 35 0?0 PI. 41 1.637 5 0 1 5 56.13 1.628 2 3 1 2 56.47 3.R64 -1 1 2 23.00 1.627 3 051 56.51 I -4Q4 3.845 5 1 1 1 23.11 1.614 9 57.01 3.715 p 0?1 P3.94 1.607 ? 400 57.30 3.4R9 6 -1 ? 1 25.51 3.213 in 200 P7.74 i.sns 5 1 5 0 57.31 1.574 2? -334 58. 5P 3.008 1.550 2 -3 P 5 59. 50 7? -2 i 2 29.67 -342 3.007 ion -122 ?9.6f> 1.542 1 59.93 3.006 86 1 0 2 29.70 1.542 1 052 59.95 2.9^8 1 1 2 1 29.78 2.996 4 210 29.80 1.542 4 322 59.96 1.504 1 -? 4 4 61.6? 2.943 022 30.35 1.503 14 204 61.67 1 -432 2.838 4 -1 1 3 31.49 1.476 6 62.^? 2.671 2 -? 2 1 33.53 1.476 2 -P 5 2 62.94 2.639 3 0 l 3 33.94 2.625 U n 3 1 34.13 1.471 7 044 63.14 1.452 2 4 1 1 64. in 2.542 3 -131 35. 2P, 1.413 5 224 66.07 2.540 1^ 2 P 0 35.31 1.402 1 3 4 1 66.64 2.540 4 1 3 0 35.31 1.395 I 1 ? 5 67.0? 2.434 1 2 2 36.90 13 -502 2.305 1 032 39.04 1.391 I 67.27 1.3*3 6 060 67.7? 2.245 p 40.14 1.364 1 0 6 1 68.77 ? 2 1 -145 2.1P3 1 -1 1 4 41.33 1.358 2 69.13 2.174 q 1 1 3 41.49 1.354 5 243 69.37 2.100 2? -232 43.04 2.099 9 2 1 2 43.06 1.339 3 -5 1 4 70.26 1.338 ? -154 70.31 o 2.0R8 1 OQ4 43. 3n 1.336 1 5 3 70.4? 2.074 5 3 1 0 43.60 1.335 3 -5 1 1 70.51 2.074 1 040 43.61 1.326 4 -4 1 6 71.03 2.040 2 -1 3 3 44. 3P -236 2.016 4 -3 P 2 44.93 1.326 9 71.06 i.3?0 1 234 71. 38 2.013 1 041 45.01 1.319 1 0 ? 6 71.43 1.974 1 -1 4 1 45.93 1.318 1 412 71.54 1.920 1 231 47. 2P 1.312 2 350 71.93 1.873 6 -1 4 2 48.56 1.866 4 -3 1 4 48.76 1.270 3 5 1 0 74.67 1.270 1 260 74.68 1.865 16 024 48.80 1.262 1 106 75.23 1.791 1 104 50.96 1.256 h 1 6 2 75.65 1.751 1 -1 3 4 52.20 1.251 1 -1 1 7 76.04 1.745 1 -402 52.39 1.730 7 3 2 1 52. R8 1.238 2 063 76.94 1.237 2 -227 77.04 -534 1.710 1 -143 53.56 1.218 2 78.48 1.708 5 -412 53.62 1*217 2 244 78.54 -506 1.707 6 1 4 2 53.65 1.208 1 79.20 1.707 4 232 53.65 1.698 1 -333 53.95 Reference Calvo, C. (1967). Acta Cryst. 23, 289. 74 Manganese Vanadium Oxide, Mn2V2 07

Structure Monoclinic, C2/m (12), Z=2. The struc Calculated Pattern (Peak heights) ture was determined by Dorm and Marinder 2 en o d(A) / hkl [1967]. A = 1.54056 A.

Lattice parameters 5.221 17 1 1 0 16.96 a=6.710±,002 f b=8.726±.002,c=4.970±.OOlA f 4. K?8 1 001 18.36 0 P 0 20.34 3=103.57±.01° [ibid.] 4*362 6 3.935 r> -1 1 1 22.58 3.P55 53 111 + 27.38 Density 3.238 ion n 2 1 27.52 4"-J (calculated) 3.801 g/cms 3.056 -P 0 1 29.20 2.656 11 1 3 0 33.72 2.612 l n 220 34.30 Thermal parameters 2.449 6 2 n 1 36.66 Isotropic [ibid.] 2.42B 4 -131 37.00 2.416 ^ Oo2 37.18 Scattering factors 2.363 5 -1 1 2 37.^6 Mn°, 1 40.24 , 0"1 [3.3.1A] 2.239 1 3 1 2.205 4 -202 40.90 Scale factor 2.1P-1 4 0 n 0 41.36 (integrated intensities) 2.738 x 104 2.136 1 ? ?. 1 42.28 2.119 IS -311 42.64 2.112 in 310 + 42.78 Additional patterns 2.051 2 1 1 2 44.12 1. Brisi [1958] 1.9^9 6 0 <4 1 45.58 1.967 13 -222 46.10 1.806 1 -3 1 2 50.50 Reference 1.790 2 311 50. Q8 -241 Brisi, C. (1958). Ann. Chim. (Rome)48,270. 1.776 4 51 .42 B. Marinder (1967). Acta Dorm, E. and 1.754 4 202 52.10 Chem. Scand. 21, 590. 1.747 3 -331 52.34 1.742 S 330 52.50 1.708 1^ 1 3 2 53.62 1.6R6 3 1 5 0 54.38

1.631 3 400 + 56.38 1.627 6 222 56.52 1.623 3 -1 5 1 56.66 1.619 1 0 M 2 56.82 1.610 1 n o 3 57.16

1.601 1 -203 57.52 1.562 7 1 5 1 59. ne 1.559 16 -332 + 59.24 1.550 5 -242 59.58 1.548 S 331 59.68

1.526 2 -402 60.54 1.503 2 -223 61.66 1.4634 3 1 1 3 63.52 1.4544 5 060 63.96 1.4503 3 -313 64.16

1.4395 8 -133 64.70 1.4356 6 312 64. PO 1.4235 3 -152 65.52 1.3722 3 421 68,30 1.3634 4 -351 68.80

75 Manganese Vanadium Oxide, Mn2V20 7 - continued

hkl 26(«) Calculated Pattern (Integrated) d(A) / A - 1.54056 A 2 BO hkl d(A) I X = 1.54056 A 1.3606 3 350 68.96 1.3255 1 203 + 71.06 -261 1.3133 3 71. B2 5.224 15 1 1 0 16.96 1.2685 2. 223 74.78 4.831 1 001 18.35 1.266P 2 -5 1 2 74.90 4.363 6 020 20.34 3.935 2 -1 1 1 22. 5R -423 1.2545 1 75.76 3.261 I 200 P7.32 1.2514 ? -442 + 75.98 1.2306 1 -204 77.50 3.255 49 1 1 1 27.38 -114 1.2285 ?_ 77.66 3.238 100 021 27.52 1.2250 1 402 77.92 3.056 52 -2 0 1 29.20 2.657 1? 1 3 0 33.71 -171 1.1^96 1 79.90 2.612 21 220 34,30 1.1902 1 530 80.66 1.3 800 1 5 1 1 81.50 2.450 7 201 36.65 1.161*1 1 024 82. R6 2.428 4 -1 3 1 37.00 1.1307 3 1 5 3 85.88 2.416 3 002 37.19 2.369 6 -1 1 2 37.95 -353 1.1240 ? 86.52 2.239 in 131 40.24 1.1178 -. 3 5 2 + 87.12 -334 -202 1.0934 I 89.58 2.204 6 40.91 1.0852 3 460 + 90.44 2.181 5 040 41.35 1.0733 4 -533 + 91.72 2.136 1 2 2 1 42. ?« 2.118 IB -3 1 1 42.65 -244 1.0719 1 91.88 2.113 1 022 42.75 1 -424 9?, 24 1.0687 •* 1.0640 ? 0 8 1 + 92.76 2.110 3 1 0 42.8? 1.0614 1 1 3 4 93.06 3 1 1 2 44.13 -622 2.051 1.0593 1 93.30 7 041 45.59 1.983 -222 1.967 17 46. in 1.0549 ? 6 P 0 + 93.80 1.806 1 -3 1 2 50.50 1.0536 \ -462 93.96 -> 1.0344 280 96.26 1.790 3 3 1 1 50. 9P 1.0323 o -552 + 96.52 5 -2 4 1 51.4? •> 1.776 1.0299 3 7 1 96. R2 1.754 5 202 52. 0° 1.746 3 -3 3 1 52.35 -154 1.0113 ? 99.22 1.74.1 5 3 3 0 52.50 .9*73 -;> S 3 2 102.56 '„} .9R3P 5 5 1 103.06 1.708 25 1 3 2 53.6? .977h 1 -2 8 2 103.98 1.6R6 4 150 54.37 -225 1"! .3673 1 105.56 1.631 400 56. 3P 1.629 1 241 56. 4? .9663 1 005 + 105.72 1.628 3 222 56.40 .9371 1 -135 110.56 -151 .932R 1 -4 0 5 111.34 1.623 1 56.6^ .9263 1 2 B 2 + 112.52 1.619 1 042 56.8? .9129 ? -4 B 1 115.08 1.610 ? 003 57.15 1.601 2 -2 0 3 57.53 .9096 I -731 + 115.74 1.563 9 1 5 1 59.07 .9013 1 -2 9 3 + 117.44 -332 .R939 1 -7 1 3 117,94 1.558 12 59,24 1.558 7 -4 2 1 59.25 -242 1.551 p 59. 5^ 6 3 3 1 59.68 1.548 -402 1.528 3 60.54 -223 1.503 4 61.67 1.4635 5 1 1 3 63.5? 1.4543 7 060 63.96 1.4491 p -3 1 3 64.22 -133 1.4395 11 64.70

76 Manganese Vanadium Oxide, Mn2V20 7 - continued

26(°) 20O o d(A) I £&; d (A) / hkl X = J. 54056 A A = 1.54056 A

-225 1.4353 3 3 1 2 64.91 .9673 2 105.56 1.4236 5 -152 65.51 .9663 ? 005 105.7? 5 4 ? 1 68.29 .9657 1 -3 1 5 105.82 1.3723 -264 S 68. Bl .9391* 1 1 10.16 1.3633 -3 5 1 -135 1.3610 3 350 68.94 .9373 .1 1 10.54 -405 1.3256 1 203 71.04 .9326 2 11 1.34 1.3251 1 -4 LI 1 71. OB .9265 1 7 1 0 112.47 112.5? 1.3132 5 -2 6 1 71. B3 .9263 1 2 8 2 1.2685 2 223 74. 7B .9152 1 334 114.63 1.2667 ? -5 1 2 74.90 .9143 1 602 114. BO

1.2544 ? -423 75.77 .9129 3 -4 8 1 115. OP 115.73 1.2515 2 -442 75.97 .9096 ? -7 3 1 1.2506 1 261 76.04 .9092 1 5 1 3 115.82 1.2306 2 -204 77.50 .9014 2 -2 ft 3 117,42 117. 4S 1.2235 - 3 -1 1 4 77.66 .9013 1 570 -732 1.2P4B 1 4 Q 2 77.94 .9006 1 117. SP 117. 9S 1.2051 1 441 79.46 .8989 1 -7 1 3 1.1995 2 -171 79.90 1.1903 3 530 BO. 65 1.1B01 3 5 1 1 81.49

1.164H ? 0?4 82. B6 1.1308 4 1 5 3 85. SR 1.1241 .3 -3 5 3 86.51 1.1196 1 262 86.94 1.1183 2 -601 87.07

1.1176 4 352 87.14 1.0933 p -334 89. 5R 1.0B54 3 460 Q0.42 1.0B51 3 333 90. 4S 1.0733 6 -533 91.72

1.0732 2 1 7 2 91*73 1.071B 1 -2 4 4 91.89 1.0685 P -^24 92. 2S 1.0640 4 0 R 1 92.77 1.0634 1 -551 92. 83

1.0619 1 1 3 4 ^3.00 1.059? 2 -6 ? 2 ^3.31 1.0S49 1 2 0 4 ^3.81 1.0549 2 620 93.83 1.0535 1 -462 Q3.97

1.0344 3 2 B 0 c»6.26 1.0330 1 -372 96.43 1.0323 3 -552 96.5? 1.0300 ? 3 7 1 06.81 1.0113 3 -154 99.2?

1.0059 1 -5 1 4 99.96 .9961 1 -173 101.31 .9872 4 532 102.57 .9838 3 ^51 1.03.07 .9776 2 -2 B 2 103.98

77 Methanesulfonanilide, C 6H 5-NH-S02CH 3

Structure Calculated Pattern (Peak heights) Monoclinic, P2 X /c (14), Z=4 (King,1968] 2BC) o fcfeZ d(A) / A = 1.54056 A Lattice parameters a=9.203±.007,b=8.2!7±.005,c=11.026±.006A 100 9.90 3-103.71°±.06° [ibid.] 8.^3 11 6.S? 21 0 1 1 13.58 6.05 52 1 1 0 14.64 5.67 4 -1 ] 1 15.62 Density 100 002 16.54 (calculated) 1.41 g/cm3 [ibid.] 5.36 -102 5,163 45 17.16 Thermal parameters 4.940 5 1 1 1 17.94 0 ] 2 19.78 Isotropic: H(12) through H(20) [ibid.] 4.485 26 4.471 29 200 19. R4 3.00 4.371 99 -1 1 2 20.30 0(2) 4.17 0(3) 4.38 4. IRQ 2? 102 21.24 N(4) 3.29 4.107 48 0 ? 0 ?1.62 22.62 C(5) 4.58 3.926 55 ? 1 0 + 3.834 9 021 23.18 C(6) 2.93 1 ? 0 + 23.82 C(7) 3.98 3.732 2? 4.48 C(8) 3.639 17 -1 ? 1 24.44 C(9) 4.52 3.537 5 -2 1 2 25.16 C(10) 4.66 3.422 5 1 2 1 26.02 C(ll) 3.91 3.317 15 -1 1 3 26.86 3.259 30 022 27.34

Scattering factors 3.042 ^ -? 2 1 29.34 ~j 29.50 N° , 0° [3.3.1A] 3.025 2 ? 0 -2 1 3 30.10 C° [Berghuis et al.,1955] 2.966 I 2.P93 2 212 30.88 S° [Dawson, 1960] 2.R79 1 1 1 3 31.04 H° [Stewart et al. , 1965] ? -3 1 1 31.12 2.872 -222 2. 836 34 31.52 Scale factor 3 1 0 31.92 (Integrated intensities) 2.385 x 104 2.801 10 2.796 12 221 31.98 2.746 1 -3 1 2 32.53 -123 2.719 1 32.92 2.677 9 004 33.44 2.654 1 0 3 1 33.74 Reference 2.608 16 -1 1 4 34,36 Berghuis, J., IJ. M. Haanapel, M. Potters, 2.546 3 014 35.22 B.O. Loopstra, C.H. MacGillavry, and A. L. Veenendaal (1955). Acta Cryst. 8,478. 2.490 2 -3 1 3 36.04 -214 + Dawson, B. (1960). Acta Cryst. 13, 403. 2.464 7 36.44 2.457 5 -3 2 1 36.54 Klug, H.P. (1968). Acta Cryst. B24, 792. -132 37.12 Stewart, R.F., E.R.Davidson, and W.T.Simp- 2.420 2 2.412 2 320 37,24 son (1965). J. Chenu Phys. 42, 3175. 2.376 3 302 37.84 2.335 2 230 38.52 2.282 5 312 + 39.46 2.278 5 -3 0 ^ 39.52 2.262 1 3 2 1 39.82

2.244 2 024 + 40.16 2.235 4 400 40.32 2.195 2 -3 1 4 41.08 -133 2.185 2 41.28 -412 2.180 2 41.33

78 Methanesulfonanilide, C 6H 5-NH-S0 2CH3 - continued

26( c) r! d (A) / hkl Calculated Pattern (Integrated) A = 7.54056 A 20O d(A) / W« 2.145 1 223 42.10 A = 7, 54056 -4° 2.042 1 -331 44.32 2.025 1 214 44.72 8.94 q 1 0 0 9.BR 2.017 3 3 0 -H 44.90 3 6.S2 1^ 0 1 1 13.57 1.99b '} "332 45.40 6.05 47 1 1 0 14.63 5.67 4 15.61 IB -1 1 1 1.925 1 1 1 5 47. 5.36 91 002 16.54 1 . 9 0 B 1 402 47.62 1.367 ^ 2 4 0 48.74 5.166 4? -102 17. IS 1.863 :> 421 '48.84 4.940 5 1 1 1 17. Q4 1.P42 •< 2 3 49.44 \ 4.487 21 0 1 2 19.77 4.1*70 IB 200 1P*64 1.319 -242 50.10 3 4.?73 ion -1 1 2 20.29 1.B09 ! 2 ti 1 50.40 1.7Q2 -1 1 6 5H.92 4 4.179 2? 102 21.24 1.787 -143 + 51.06 3 4.109 47 020 21.61 1.770 51.50 2 -? 1 6 3.Q27 56 210 22.62 3.919 3 ?2.67 -334 + -2 0 2 1.751 4 52.18 3.536 r> 021 23.17 1.745 p -4 3 2 52.40 1.771 0 4 ? 2 + 52.84 3.733 21 23. SI 1.6*5 o -3 1 6 54.40 1 2 0 3.725 5 1 1 2 23.67 1.640 ^20 56.04 1 3.639 1* -1 ? 1 24.44 3.537 5 -2 1 2 25.1^ 1.608 -? 4 4 57.26 1 3.422 5 1 2 1 26.0? 1.SR7 3 5 0 2 58.08 1.511 1 -236 61.28 3.317 IS 26.86 1.458 -336 63.80 -1 1 3 1 3.260 32 ?7.34 1.451 252 64.12 0 ? 2 1 3.042 ^ -2 2 1 29.34 3.025 1 ? 2 0 29.50 1.436 -622 64.90 I 2.967 1 -2 1 3 30.09 1.432 1 -352 65. 10 1.376 1 -436 68.10 2.893 *> Z 1 2 30. P>^ 1.373 1 3 1 6 68.24 2.e*o 1 1 1 3 31*03 2.872 ? -3 1 1 31.12 2.836 3^ -222 31.5? 2.B02

2.796 Q 221 31. 9R 2.747 1 -3 1 2 32.57 2.718 \ -123 32.9? 2.678 10 004 33.4? 2.654 1 031 33.75

2*609 19 -1 1 4 34.35 2.546 3 0 1 4 35.22 2.490 o -3 1 3 36.04 2.464 7 -214 36.4? 2.462 1 1 ? 3 36.47

2*457 1 -3 2 1 36.55 2.420 2 -132 37.12 2.412 1 320 37.24 2.376 4 302 37. 83 2.335 2 230 38.52

2.2R6 2 -124 39. 3Q 2.282 u 3 1 2 39.45 2.278 3 -304 39.52 2.262 1 3 2 1 39.61 2.245 1 -232 40.13

79 Methanesulfonanilide, CCH 5-NH-S02CH3 - continued

20(°) d(A) / hkl X = 1.54056 A

2.213 ? 0 ? 4 40.16 2.235 4 4 n o 40.3? 2.1^6 p -3 1 4 41. OP 2.1*5 ? -1 3 3 41.2* 2.1B1 1 -4 1 2 41.36

2.145 2 223 42.10 2.042 1 -331 44. 3P 2.02b I 2 1 4 44. 72 2.017 1 041 44.89 2.017 3 330 44.91

1.996 P -332 45.40 1.963 1 4 ? 0 46.20 1.^41 1 -1 3 * 46.76 1.9?5 1 1 1 5 47.18 l.POB I 402 47*61

1.967 2 240 48.74 1.864 1 421 48.83 1.842 1 323 49.45 1,819 3 -242 50.09 1.B09 1 2 q 1 50.41

1.792 4 -1 1 6 50.91 1.787 1 -1 u 3 51.06 1.785 1 006 51.12 1.770 9 -2 1 6 51.59 1.752 5 -334 52. 1*

1.751 1 3 1 4 52.20 1.744 o -4 ? 2 52.42 1.732 1 430 S2.8P 1.731 1 422 52. 86 1.6*5 2 -3 1 6 54.30

1.640 1 5 ? 0 56.04 1.608 ,o -? u 4 57*25 1.5A7 1 502 58. 0* 1.542 1 250 59.9? 1.512 1 -2 3 6 61.27

1.458 p -3 3 6 63. 71 1.451 1 252 64.13 1.439 1 350 64.7? 1.436 1 -622 64.89 1.431 1 -352 65.11

1.376 1 -436 68.10 1.373 1 3 1 6 68.24

80 Nickel Chloride, NiCU

Structure Hexagonal, R32 (155) or R3m (166), Z = 3 Calculated Pattern (Peak heights) (hexagonal cell) [Pauling, 1929]. The 26(°) / hkl structure was refined and the space d(A) A = 1. 54056 A group determined as R3m by Ferrari et al., [1963]. 5.60 ion 003 15.26 2.97 30 1 0 1 30. OB Lattice parameters 2.4R 79 104 36.24 a= 3.478 ±.001, c= 17.41 ±.12 [Ferrari 2.28 P 0 1 5 39.52 OQ9 46.94 et al., 1963]. 1.93 1 1.92 10 1 0 7 47.36 Density 1.76 1* 0 1 B 51.78 1.71 17 1 1 0 52.58 (calculated) 3.540 g/Cm3 1.67 8 1 1 3 55. 03 1.50 ? 021 61.78 Thermal parameters Isotropic, overall B = 2.0 1.45 2 0 0 12 64.14 1.42 6 0 ? 4 65.54 1.40 3 0 1 11 66.70 Scattering factors 1.3? 1 205 67.74 1.2 Q 73.12 Cl° [3.3.1A] 1 1 1 9 Ni° [3. 3. IB] 1.29 1 027 73.44 1.24 3 208 76.92 1.14 1 2 1 1 85.38 Scale factor 1.11 3 1 1 12 87.48 (integrated intensities) 1.668 x 104 I.JO 3 2 1 4 3B.76

1.09 1 2 n 11 89. R2 Additional patterns 96.16 et al.,1938] 1.04 1 217 1. PDF card 1-1134[Hanawalt I.n2 1 1 0 16 97.64 1.01 2 128 99,56 1.00 1 300 100.20 Reference 105.86 Braibanti and G. Bigliardi .965 1 1 1 15 Ferrari, A., A. .826 1 3 0 12 + 137. R2 (1963). Acta Cryst. 16, 846. .S20 1 1 3 4 139.74 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel .7R7 1 2 1 16 156.62 (1938). Ind. Eng. Chem. Anal.Ed.10, 457. Pauling, L. (1929). Proc.Natl. Acad.Sci.0S 15, 709.

81 Nickel Chloride, NiCI2 - continued

Calculated Pattern (Integrated) 20D d(A) / taz \ = 1.54056 A

5.80 9^ 003 15.25 2.97 37 1 0 1 30. OR 2. 85 I 0 1 2 31.40 2.48 100 104 36.24 2.28 11 015 39. S3

1,93 ? 0 D 9 46.93 1.92 14 1 0 7 47.36 1.76 27 0 1 S 51. 73 1.74 26 1 1 0 52. 5P 1.67 12 1 1 3 55. OP

1.50 3 021 61. 7R 1.45 t+ 0 0 12 64.14 1.42 11 024 65.53 1.40 4 0 1 Jl 66.70 1.38 2 205 67.73

1.29 2 1 1 9 73.11 1.29 2 027 73.44 1.24 6 2ns 76.92 1.16 I 0 0 35 33.16 1.14 2 2 1 1 85.38

1.11 7 1 1 12 87.49 1.10 7 2 1 4 88.75 1.09 1 2 0 11 89.82 LOG 1 1 2 5 90.77 1.04 2 2 1 7 96.17

1.02 ? 1 0 16 97.65 1.01 5 1 2 Q 99.56 1.00 3 3 Q 0 100.21 .965 ? 1 1 15 105.86 .924 2 1 2 .11 112.91

.882 P 0 2 16 121.70 .877 1 1 0 19 122*96 .670 2 220 124.72 .B60 1 223 127.22 .836 ? 0 1 20 134.17

.834 1 1 3 1 134.77 .826 2 0 3 12 137.81 .826 2 3 0 1.2 137.81 .820 5 134 139.73 *B12 1 3 1 5 142.97

.792 2 1 3 7 153.15 .787 6 2 1 16 156.61 .733 2 0 2 19 159.47

82 Nickel Phosphide, Ni 12P5

Structure Tetragonal, I4/m (87),Z=2 [Rundqvist and Calculated Pattern (Peak heights) Larsson, 1959] 26C) d(A) I hkl A = 7.54056 A. Lattice parameters a=8.646, c=5.07ol [ibid.] 4,37 4 0 1 1 20.30 '4.3? 3 020 ?0.5H Density 3.07 3 ? 1 1 + 29.02 (calculated) 7.53 g/cm3 [ibid] 3.056 3 -> ? o 29.20 2.735 16 3 1 0 32.72 Thermal parameters 2.535 2 002 35.38 2.505 q 031 35. P2 Overall temperature factor, 0.49 [ibid.] 2.341 42 1 J 2 3R.42 2.1«6 18 022 41.26 Scattering factors 2.367 2? 2 3 1 + 41.64 Ni° [Thomas and Umeda, 1957] 2.162 33 040 41.74 P° [Tomiie and Stam, 1958] 2.038 20 330 44.42 6 rj 1.933 ? 4 0 + 46. 9b 1.B59 100 3 1 2 48.96 Scale factor 1.696 7 5 1 0 54.04 [integrated intensities] 13.389 x 104 1.645 3 042 55. B6 1.636 P, 051 + 56.16 1.588 5 332 58.02 1.537 7 ? 4 2 + 60.14 1.531 2 ? 5 1 60.42

Reference 1.458 1 033 63.80 Rundqvist, S. and E. Larsson (1959). Acta 1.409 2 512 + 66.26 Chem. Scan. 13/ 551. 1.381 3 233 67. 78 1.367 u 620 68.60 Thomas, L.H. and K. Umeda(1957). J. Chem. 1.316 1 1 4 3 71.66 Phys. 26, 293. Tomiie, Y. and C.H.Stam (1958). Acta Cryst. 1.305 1 541 72.36 11, 126. 1.260 o 352 + 74,00 1.268 7 004 74.84 1.253 1 062 75,38 1.249 1 3 6 1 76.14

1.223 6 710 + 7P.10 1.209 2 053 + 79.18 1.203 11 262 + 79.60 1.200 7 640 + 79. 8B 1.150 1 3 1 4 84.12

1.135 ?. 370 85.46 1.101 10 552 + 88.76 1.093 3 044 8^.58 1.084 LV 642 90.56 1.0B1 4 651 + 90.84

1.076 3 334 PI. 40 1.060 10 244 + 93.22 1.049 4 K 1 1 + 94.46 1.015 2 514 98.70 1.005 1 570 100.06

.969 3 2 B 2 105,32 .967 3 4 A 0 + 105.68 .955 1 1 9 0 107.56 .934 2 572 + 111.08 .929 2 624 111,94 83 Nickel Phosphide, Ni I2P5 - continued

20O d(A) / hkl Calculated Pattern (Integrated) A = 7.54056 A 20O d(A) / hkl .926 1 653 112.56 A = 1.54056 A .922 1 761 113.30 .911 1 930 115. 3B 4.37 3 0 1 1 20.29 .905 3 9 1 3 * 116.58 4.32 2 020 20.5? .880 4 714 + 12?. 16 3.07 2 2 1 1 29.02 3.075 1 1 2 1 29.02 .875 1 055 123.44 3.057 o 220 29.19 .871 ? 644 124.34 .865 1 4 9 1 * 125.96 2.734 14 310 32.7^ .846 2 374 131.24 2.535 1 002 35.38 .840 I 950 + 133.06 2.505 8 031 35.81 2.342 40 112 38.41 .837 J 116 133.92 2.187 17 022 41.25 .820 1 763 + 139.90 .818 3 682 + 140.54 2.168 2 3 2 1 41.63 .807 6 3 1 6 145.16 2.168 16 231 41.63 .805 4 583 146.08 2.162 ?3 0 4 0 41.75 2.038 19 330 44.42 .804 7 10 g 2 + 146.66 1.978 7 1 4 1 46.85 .803 1 4 10 0 147.32 .797 4 952 + 150.16 1.933 16 420 46.96 .790 1 6 Q 1 + 154.62 1.933 43 ? 4 0 46.96 .788 2 574 155.96 1.859 100 3 1 2 48.96 1.696 7 5 1 0 54.04 .783 3 1 11 0 159.50 1.645 '4 042 55,85 "5 1.637 4 3 1 56.15 1.637 ? 3 4 1 56.15 1.637 3 0 5 1 56.1^ 1.588 3 332 58.0? 1.537 1 4?2 60.14

1.537 6 242 60.14 1.531 1 251 60.43 1.458 2 033 63.79 1.409 ? 5 1 2 66.26 1.409 1 1 5 2 66.26

1.301 3 233 67. 7 B 1.367 5 620 68. 5Q 1.316 r> 1 4 3 71.66 1.305 1 541 72.36 l.PRO ? 532 74.00

1.280 A 352 74.00 1.267 0 0 0 4 74.85 1.253 1 062 75. 8^ 1.249 1 3 6 1 76.14 1.223 4 7 1 0 78.10

1.223 1 550 78.10 1.223 2 1 7 0 78.10 1.209 1 433 79.18 1.209 1 3^3 79.18 1.209 1 053 79. IB

1.203 6 622 79.61 1.203 9 262 79.61 1.200 1 071 79.86 1.199 3 640 79.95 1.150 1 3 1 4 84.11

84 Nickel Phosphide, Ni 12P5 - continued

20(e) d(A) / hkl d(A) / hkl 2en A = 1.54056 A A = 1.54056 A

1.135 3 370 85.45 .808 ? 284 144.89 1.101 6 552 88.76 .807 1>1 3 1 6 145.15 1.101 3 7 1 2 88.76 .806 1 5 " 3 145.9? 1.101 5 172 88.76 .804 14 10 2 2 146.68 1.093 4 0 4 14. 89.58 .804 8 2 10 2 146. 6B

1.084 5 6 t| 2 90.58 .803 1 4 10 0 147.29 1.082 2 6 5 1 90.83 .7^7 1 592 150.15 1.082 1 5 6 1 QQ.83 .7^7 11 952 150.1^ 1.076 4 334 91.40 .797 1 365 150.2^ 1.060 '4 424 93.22 .794 ? 664 151.84

1.060 11 2 <* 4 93.22 .790 2 691 154.62 1.049 2 7*1 P4.47 .7^0 1 961 1S4.62 1.049 3 8 1 1 94.47 .788 7 574 155.97 1.049 1 181 94.47 .787 1 046 156.34 1.015 3 514 98.71 .784 2 075 1S8.7U

1.005 2 570 100.06 .783 1? 1 11 0 159.50 .997 1 073 101.15 .969 4 282 105.31 .967 1 840 105.66 .967 3 480 105.66

.955 1 190 107*56 .934 2 572 111.06 .934 1 235 111.13 .929 3 624 111.94 .926 I 653 112.57

.922 1 761 113.30 .911 2 930 1.15.38 .905 3 8 1 3 116.57 .905 1 1 8 3 116.57 .905 r> 743 116.57

.894 I n i 2 119.10 .880 o 1 7 4 122.16 • 880 s 7 1 M- 122.16 • 6*0 2 554 122.16 .675 I 055 123.43

.871 3 6 4 4 124.34 .865 2 4 Q 1 125.87 .865 1 860 125.98 »AU3 1 10 2 0 130.61 .846 4 374 131.25

.840 2 950 133.05 .840 1 5 Q 0 133.05 .837 3 1 1 6 133.92 .829 1 026 136.50 .826 1 772 137.76

.820 1 2 P 3 1 39.89 .820 I 763 139.89 .818 1 862 140.54 .818 5 682 140.54 .818 ? 0 10 2 140.54

85 Phosphorus Oxide (stable form I), P20 5 (orthorhombic)

Structure Calculated Pattern (Peak heights) Orthorhombic, Fdd2 (43), Z=Q. The struc ture was determined by de Decker [1941]. 2 0O d(A) / hkl A = L54056 A Lattice parameters a = 16.3, b = 8.14, c = 5.26 A [ibid.] 4.26 ion i i i 20.82 4.07 i 4 n o 21. BO 3.f^ c; 220 24,42 Density 3.43 14 3 1 1 25. 9R 2.88 4 ? 0 31.04 (calculated) 2.70 g/cm3 [ibid.] 41 2.62 20 S 1 1 34.16 Thermal parameters 2.39 7 1 3 1 37. 6B 2.21 ^ 0?2 40. R2 Isotropic, overall B = 2.0 2. 06 1 7 1 1 43. P2 2.04 ? 040 + 44. 4S Polymorphism R 531 + 46.82 de Decker and MacGillavry [1941] des 1.939 1.R89 9 602 4A.12 cribed a metastable rhombohedral form 1.821 p R ? 0 + 50.04 having the space group R3c (161). Hill, 1.705 1 1 1 3 53.72 Faust, and Hendricks [1-943] identified a 1.675 3 ^ 1 1 54.74 third phase which was thought to be te tragonal but was later shown to be a 1.517 3 5 1 3 61.02 •5 different orthorhombic phase »with space 1.497 4 <| 2 + 61.94 group Pnam (62) [MacGillavry et al., 1.443 1 9 3 1 64.26 1.440 1 ^40 64.68 1949]. 1.404 9 551 66.56

Scattering factors 1.315 1 004 71.72 1.312 ? 10 2 2 71.92 0°, P° [3.3.1A] 1.263 1 8 M 2 75.18 1.206 p 062 + 79.40 1.196 1 424 80.18 Scale factor 933- (integrated intensities) 11.79 x 104 1.143 1 34.78

Additional patterns 1. PDF card 5-318 [Hill et al.,1943] . (in correctly labelled "at 562 °C"). 2. Thilo and Wieker [1954],

86 Phosphorus Oxide (stable form I), P20 5 (orthorhombic) - continued

Reference Calculated Pattern (Integrated) de Decker, H.C.J. (1941). Rec. Trav. Chim. 20(°) 60, 413. d(A) / hkl X = 1.54056 A de Decker, H. C. J. and C. H. MacGillavry (1941). Rec. Trav. Chim. 60, 153. Hill, W.L., G.T. Faust, 4.26 100 1 1 1 ?0.81 and S.B. Hendricks 4.07 9 400 21.79 (1943). J. Am. Chem. Soc. 65, 794. 3.64 h ? 2 0 24.43 MacGillavry, C.H., H.C.J. de Decker, and 3.43 15 3 1 1 25.97 L.M. Nijland (1949). Nature 164, 448. 2.B8 4S 420 31.03 Thilo, E. and W. Wieker (1954). Z. anorg. u. allgem. Chem. 277, 27. 2.62 24 5 1 1 34. 15 2.39 ^ 131 37. 6R 2.?1 Q 022 40.8? 2.06 1 711 43. 9? 2.04 1 A 0 0 44.43

2.03 2 040 44.46 1.942 4 422 46.74 1.939 9 ^31 46. 82 1.890 p 602 48.11 1.822 p ^20 50.0?

1.821 1 4 £+ 0 50.06 1.705 1 1 1 3 53.73 1.676 4 911 54.73 1.548 1 1 5 1 S9.67 1.537 4 5 1 3 61.03

1.498 1 8 P 2 61.90 1.497 7 4 if 2 61.94 1.448 4 9 3 1 64.27 1.440 1 ^40 64.6* 1.421 1 333 65.63

1.404 3 551 66.56 1.342 1 533 70.05 1.315 1 004 71.71 1.312 ? 1022 71.93 1.272 1 10^0 74.53

1.263 1 8 U 2 75.16 1.206 1 13 1 1 79.37 1.206 3 062 79.41 1.196 p 4 2 4 80.17 1.190 1 1 5 3 80.69

1.180 1 951 81.51 1.143 2 933 84.78 1.120 1 553 R6.B7 .924 1 482 112.91

87 Phosphorus Oxide (stable form II), P205 (orthorhombic)

Structure Orthorhombic, Pnam (62), Z=4, The struc Calculated Pattern (Peak heights) ture was determined by MacGillavry et o / hkl 2 en al. [1949]. Using their data, Cruick- d(A) A = 7.54056 A shank [1964] performed a least squares structure refinement. 5.67 55 1 1 0 15.62 4.61 41 200 19.22 4.07 4 0 1 1 21.82 Lattice parameters 3.88 81 210 22.90 a= 9.23, b= 7.18, c= 4.94A [ibid.] 3.72 46 1 1 1 23.88

3.59 53 020 24.78 Density 3.37 46 201 26.40 (calculated) 2.880 g/cma 3.05 100 2 1 1 29.24 2.83 7 220 + 31.54 Thermal parameters 2.77 75 1 2 1 32.28 Isotropic, overall B=.55 [Cruickshank, 2.47 35 002 36.34 1964] . 2.45 15 311 + 36.58 2.34 9 320 38,50 2.31 3 400 39.00 Atomic positions 2.26 13 1 1 2 39.78 Cruickshank [1964] 2.18 3 202 41.42 Polymorphism 2.15 11 0 3 1 41.90 Two other forms are known. One is meta- 2.12 8 230 42.52 2.11 3 2 1 stable and has the rhombohedral space 4 42.78 2.10 1 3 1 43.10 group R3c(161)[de Decker and MacGillavry 2 stable 1941]. The other is a different 2. OR 6 2 1 2 43.38 orthorhombic phase with space group Fdd2 2.01 12 4 1 1 45.14 (43) [de Decker, 1941]. 1.987 3 1 2 2 45.62 1.941 4 420 46.76 1.889 4 330 48.12 Scattering factors 1 0°, P° [3.3.1A] 1.862 JL 222 48.88 i.sne B 421 50.48 1.762 1 140 + 51.84 Scale factor 1.697 in. 322 53.98 104 (integrated intensities) 1.041 x 1.690 4 1 3 2 54.24

1.686 4 402 54.36 Additional patterns 1.681 2 5 1 1 54.54 1. PDF card 5-0488 [Hill et al., 1943]. 1.673 R 240 54.84 (incorrectly labelled "at 580 °C") 1.660 1 1 4 1 55.30 2. Thilo and Wieker [1954] 1.642 3 520 + 55.96

1.611 1 232 57.14 1.584 2 ? 4 1 58.13 Reference 1.581 3 1 1 3 58.32 D.W.J. (1964). Acta Cryst.17, 1.574 ? 4 3 1 58.58 Cruickshank, 1.553 677. 3 5 ? 1 59. ?6 (1941). Rec. Trav. Chim. de Decker, H.C.J. 1.S50 7 340 + 59.58 60, 413. 1.538 ? 600 60.10 de Decker, H. C. J. and C. H. MacGillavry 1.526 P 422 60.62 (1941). Rec. Trav. Chim. 60, 153. 1.516 7 2 1 3 61.08 Hill, W.L., G.T. Faust, and S.B. Hendricks 1.S04 1 6 1 0 61.60 (1943). J. Am. Chem. Soc. 65, 794. de Decker, and 1.478 6 123 + 62.84 MacGillavry, C. H., H.C.J. 1.469 601 63.26 Nature 164, 448. 2 L. M. Nijland (1949). 1.462 2 530 63.60 Thilo, E, and W. Wieker (1954). Z. anorg. 1.452 1 0 (* 2 64.08 u. allgem. Chem. 277, 27. 1.423 1 3 1 3 65.54

88 Phosphorus Oxide (stable form II), P,0, (orthorhombic) - continued

26(°) d(A) / hkl Calculated Pattern (Integrated) A * 7.54056 A 20(°) d(A) / hkl 1.419 1 150 65.76 A = 1.54056 A 1.417 1 440 65.86 1.402 1 531 66.69 5.67 47 1 1 0 15.62 1.385 3 242 67.58 4.62 36 200 19.22 1.367 5 522 68.58 4.07 4 Oil 21.82 3.88 78 2 1 0 22.89 1.364 7 t 5 1 68.78 3.7? 42 1 1 1 23.88 1.360 4 621 69.00 1.356 2 033 69.20 3.59 49 n ? o ?4.7* 1.342 1 1 7 3 70.04 3.37 46 201 26.41 1.317 3 4 1 3 71.56 3.05 100 2 1 1 P9.23 2.83 o ? 2 0 31.55 1.313 q 342 71.82 2.83 1 3 1 0 31.63 1.306 5 602 72.30 1.297 1 7 1 0 72.88 2.77 80 121 32.29 1.285 1 6 1 2 73.68 2.47 36 002 36. 3U 1.258 4 532 + 75.52 2.46 4 2 2 1 36.53 2.45 12 3 1 1 36. 5* 1.255 4 711 + 75.76 2.34 9 320 38.50 1.252 2 631 75.96 1.235 5 004 77.18 2.31 3 400 39.00 1.229 5 442 77.62 2.26 14 1 1 2 39.78 1.2?7 3 622 77.76 2. IB 3 202 41.43 2.15 IP. 031 41.91 1.239 1 450 78.36 2.12 9 230 42.51 1.199 1 252 79.96 1.187 2 160 80.94 2.11 4 321 42. 7P 1.177 2 214 81 .76 2. 10 2 1 3 1 43.09 1.174 1 243 82.04 2. OP 6 2 1 2 43.38 2.01 14 ^ 1 1 45.13 1.169 1 433 82.40 1.987 4 1 P 2 45.61 1.166 1 024 82.54 1.163 1 523 82.98 1.941 4 4 ? 0 46.76 1.154 1 8QO 83.76 1.889 5 330 48.13 1.151 1 352 84.00 1.862 1 ? ? 2 48. 8A 1.807 7 4 ? 1 50.47 1.148 3 712 84.26 1.764 1 331 51.77 1.146 1 632 84.44 1.141 2 542 84.90 1.762 ? 1 4 0 51.85 1,139 1 810 85.14 1.697 13 3 ? 2 53.98 1.137 1 641 85.32 1.6^0 4 1 3 2 54.24 1.686 t4 402 54.36 1.128 3 261 + 86.16 1.681 1 511 54.54 1.125 3 731 + 86.46 831 1.330 1 87. 8B 1.673 D ? 4 0 S4.83 1.107 1 722 88.22 1.660 t 1 4 1 55.31 1.105 ? 551 88.42 1.642 ? 520 55.97 1.642 1 4 3 2 55.97 1.098 1 820 89.06 1.611 3 ? 3 2 57. 14 1.093 1 5^3 + 89.60 1.092 1 324 89.74 1.585 ? 241 58.17 1.077 1 062 91.34 1.5*1 2 113 58.30 1.075 ? 1 5 3 91.56 1.575 3 ^31 58.53 1.558 4 5 ? 1 59.26 1.072 1 623 91.84 1.551 3 203 59.56 1.034 2 8 1 2 96.26 1.027 1 651 97.22 1.550 6 340 59. 5* 1.019 3 7 1 3 98.24 1.538 2 600 60.10 1.017 1 633 98.42 1.526 3 422 60.6? 1.516 q 2 1 3 61.08 1.504 1 6 1 0 61.61

89 Phosphorus Oxide (stable form II), P70, (orthorhombic) - continued

20(°) 20(c) d (A) / hkl d(A) 7 hkl A = ;. 54056 A A = 1.54056 A

1.479 9 3 M 1 62.76 1.105 3 551 R8.41 1.477 3 1 2 3 62.85 1.098 2 820 89.06 1.469 3 6 0 1 63.26 1.093 1 452 89.5^ 1.462 3 530 63.60 1.093 1 533 89.60 1.452 2 042 64.07 1.092 ? 324 89.74

1.423 1 3 1 3 65.54 1.077 2 062 PI. 3? 1 .419 i -> 1 5 0 65.76 1.075 3 1 5 3 Q1.55 1.417 4 4 0 65. B7 1.073 1 623 91.79 1.402 2 5 3 1 66.67 1.068 1 234 92.34 1.385 4 242 67.57 1.034 4 R 1 2 96.26

1.367 6 522 68. 5P 1.027 P 651 97.21 1.364 7 1 5 1 68. 7& 1.021 1 353 97.9S 1.359 2 6 2 1 69.03 1.019 1 7 1 3 98.23 1.357 2 033 69.19 1.017 1 633 98.41 1.342 1 1 3 3 70.05 1.016 1 362 98.54

1.318 4 «* 1 3 71.55 .994 2 2 4 M- 101.66 1.313 15 342 71.8? .987 1 524 102.61 1.306 6 6 n 2 72.30 .976 1 462 104.24 1.297 I 7 1 0 72. 8R .966 3 344 1 05.76 1.285 1 6 1 2 73.68 .963 1 604 106.23

1.258 1 351 75.49 .957 ? 2 1 5 107.12 1.256 5 532 75.52 .955 ? 3 7 1 107.57 1.256 P 423 75.68 .953 1 751 107.86 1.254 ? 7 1 1 75.77 .953 1 643 107.90 1.252 p 631 75.95 .946 2 1 2 5 108.76

1.235 3 004 77.17 .947 3 263 108.79 1.229 8 442 77.6? .946 o 733 109.11 1.227 T( 622 77.76 .943 9 534 109.40 1.219 1 450 7S.37 .937 1 8 1 3 110.62 1.199 2 252 79.96 .934 p 553 1 1 1 . 1 P

1.193 1 204 80.43 .931 1 444 til. 67 1.187 3 1 6 0 80.94 .930 2 562 111 .80 1.177 2 2 1 4 81.76 .913 1 035 1 15.01 1.174 .1 243 82.05 .901 p 4 1 5 117.49 1.169 1 433 82.40 .900 3 1011 117. 6P

1.168 2 024 82-54 .899 1 850 117.84 1.163 1 523 82.99 .894 1 7 1 4 118.92 1.154 1 800 83.77 .693 3 180 119,15 1.151 I 3 5 2 83.99 .890 1 940 119.77 1.148 I 7 1 2 84.26 .8R6 1 760 120.74

1.146 p 632 84.44 .885 1 653 120.97 1.141 3 542 R4.90 .676 2 941 123.04 1.139 1 810 85.0° .868 1 454 125.19 1.137 2 641 R5.32 .856 4 1 6 4 128.36 1.129 1 343 86.06 .847 1 525 130.99

1.128 4 2 6 1 86.16 .843 2 804 132.03 1.125 3 7 3 1 86.46 .840 2 1 8 2 132.97 1.124 1 603 R6.51 .838 3 373 133.70 1.110 2 8 1 1 87.89 .837 1 814 133.83 1.107 1 722 B8.23 .837 1 753 134.06

90 Phosphorus Oxide (metastable form), P40 10 (rhombohedral)

Structure Rhombohedral, R3c (161), Z=2. The struc Calculated Pattern (Peak heights) ture was determined by de Decker and 28(°) d(A) / hkl MacGillavry [1941]. Using their data, A = 7.54056 A Cruickshank[1964] refined the structure. 5.39 1 0 0 1 1 0 16.44 Lattice parameters 5.12 76 -110 17.30 a= 7.44A, a= 87°, [de Decker and MacGil 3.71 3 200 23.96 3.39 10 210 26. 28 lavry, 1941]. The corresponding hexago 3.26 20 -2 1 0 27.36 nal parameters are a= 10.25, c= 13.55A, with Z= 6. 3.17 1? 2 1 1 2P.16 3.C1 21 21-1 29.6Q 2.959 9 -211 30.18 Density 2.563 3 -220 34.98 (calculated) 2.30 g/cm3 [de Decker and 2.423 7 -2 2 1 37.08 MacGillavry, 1941] • 2. 38** 1 3 1 0 37.70 2.3m 4 -3 1 0 38.83 Thermal parameters 2.259 9 222 39.03 Isotropic P(l) 2.13 2.229 5 3 1 -1 40.44 P(2) 1.95 2.108 2 3 ? 0 + 42.86 0(3) 4.74 2.067 3 43.76 0(4) 1.81 t ? 1 2. mi* 1 -320 44.98 0(5) 1.99 1.992 2 32-1 45,50 0(6) 2.70 1.951 3 3 -2 1 46.52 1.780 1 32-2 51. 2B Atomic positions 1.691 1 420 54.08 Cruickshank [1964] 1.677 1 4 2 1 54. 6B 1.664 p 332 + ^5.14 1.628 1 -420 56.46 Polymorphism 1.522 1 430 60.82 I de Decker [1941] described a stable or- 1.512 1 431 61.24 i thorhombic phase of P2 O5 with a space -422 : group 1.479 3 6?. 76 Fdd2 (43). Hill, Faust, and Hend- 1.422 l -431 65.62 \ ricks [1943] identified a third form 1.347 1 -432 69.78 which was thought to be tetragonal but 1.327 1 -5 2 1 70.94 ? was later shown to be another orthorhom- ; bic phase with space group Pnam (62) 1.3H2 1 530 72.52 ! [MacGillavry et al., 1949]. 1.298 ? 531 72.78 1.246 1 -433 76.34 1.238 1 4 4 -2 + 76.93 I Scattering factors 1.176 \ -532 81.36 I 0° , P° [3.3.1A]

Scale factor j (integrated intensities) 3.590 x 104

I Additional patterns | 1. PDF card 1-213 [Hanawalt et al., 1938] | 2. Hill, Faust, and Hendricks [1943] | 3. Thilo and Wieker [1954]

91 Phosphorus Oxide (metastable form), P4 010 (rhombohedral) - continued

Reference Calculated Pattern (Integrated) Cruickshank,D.W.J. (1964). Acta Cryst. 17, 677. d(A) / hkl 26O A = 7.54056 A de Decker H.C.J. (1941). Rec. Trav. Chim. 60, 413 5.39 100 1 1 0 16.44 de Decker H. C. J. and C. H. MacGillavry 5.12 76 -1 1 0 17.20 (1941). Rec Trav. Chim. 60, 153. 3.71 4 200 23.95 Hanawalt, J.D , H.w. Rinn, and L.K. Frevel 3.39 IT 2 1 0 ?6.2B (1938). Ina Eng. Chem. Anal.Ed.10, 457. 3.26 23 -2 1 0 27.36 Hill, W.L., G.T. Faust, and S.B. Hendricks (1943). J Am. Chem. Soc. 65, 794. 3.17 14 2 1 1 28.17 MacGillavry, 3.01 2s 2 1 -1 29.69 C.H., H.C.J. de Decker, and 2.959 ? -2 1 1 30. IB L. M. Nijland (1949). Nature 164, 448. 2.562 <4 -220 34.99 2.422 H -2 2 1 37. 0*

2.384 ?. 3 1 0 37.70 2.31*4 5 -3 1 0 *.8,89 2.259 11 222 39. 6P 2.229 2.109 -2 p 2 42. *5

2.1HB 2 320 42.86 2.067 * 3 2 1 43.76 2.014 2 -3?0 44.9" 1.992 ? 32-1 45.53 1.950 11 3 -2 1 46.53

1.780 1 32-2 51.2P 1.694 I 420 54.06 1.677 1 421 54.6^ 1.665 1 -3 3 1 55.12 1.664 ? 332 55.15

1.62ft 1 -420 56.46 1.59B 1 4-21 57.64 1.583 1 -421 58.2? 1.522 ? 430 60.81 1.512 c. 431 61.24

1.479 4 -4 ? 2 62.75 1.421 1 -4 3 1 65.63 1.403 1 520 66.5° 1.396 I 5 2 1 67.00 1.347 1 -432 69.76

1.327 1 -5 2 1 70.94 1.302 2 530 72.5? 1.298 3 5 3 1 72. 7R 1.263 1 -4 14. 1 75.19 1.246 1 -4^3 76.34

1.238 I 600 76. 9p 1.238 1. 4 (4 -2 76. 9R 1.226 1 -5*1 77.85 1.176 ? -532 81. 86 1.054 1 6 (4 1 93.8"

92 Potassium Hydrogen D if or mate, KH(HCOO)2

Structure Orthorhombic, Pbca (61),Z=8 [Larsson and Calculated Pattern (Peak heights) Nahringbauer, 1968] 26(°) o d(A) / hkl A = 1.54056 A Lattice parameters a=17..7086 ± 0.0009, b= 7.5096 ± 0.0004, 8.656 100 200 9.98 5.0464 17.56 c= 7.3774 ± 0.0004JI 6 1 1 1 4. 5255 5 2 1 1 19.60 (published value:a=17.7079±.0009i) [ibid.] 4.4271 1 400 20,04 3. 9277 I 3 1 1 22.62 Density 3.754? 12 020 23.68 (calculated) 1.76 g/cm3 [ibid.] 3.6897 1 002 24.10 3.6100 25 102 24.64 3.4036 41 202 26.16 Thermal parameters 3.?R84 44 <* 1 1 26.28 Isotropic: K 2.72 0(1) 3.49 3.2877 94 1 2 1 27.10 3.2547 7 1 1 2 27.38 0(2) 3.26 3.1293 41 2 2-1 28.50 0(3) 4.38 3.1016 4f> 2 1 2 28.76 0(4) 3.49 2.9511 2 600 30.26 C(l) 2.63 C(2) 3.00 2.9379 7 5 1 1 30.40 2.9117 12 3 2 1 30.68 2.8878 5 3 1 2 30.94 Scattering factors 2.8643 e 420 31.20 H°, C° [3.3.1A] 2.8342 ^ 402 31.54 O° [3.3.1A] corrected for dispersion by Af'=0.0 and Af"=0.1 [3.3.2B] 2.7461 3 610 32.58 2.6697 2B 421 33.54 K° [3.3.1A] corrected for dispersion by 2.6513 20 412 33.78 Af'=0.3 and -f"=l.l [3.3.2B] 2.6316 11 022 34.04 2.6034 3 1 2 2 34.42

Scale factor 2.5744 21 6 1 1 34.82 (integrated intensities) 4.047 x 104 2.5545 14 502 35.10 2.5225 45 222 35.56 2.4326 1 521 36.92 2.4187 3 512 37.14

Reference 2.4087 12 230 37.30 Larsson, G. and I. Nahringbauer(1968) .Acta 2.3493 ? 1 3 1 38.28 Cryst. B24, 666. 2.3167 20 113 + 38.84 2.2895 8 231 39.32 2.?fl06 S 7 1 1 39.48 •* 2.2597 213 + 39.86 2.2140 ? 800 40.72 2.2036 o <=> 1 2 40.92 2.1792 10 430 41.40 2.1731 8 3 1 3 41.52

2.1120 ^ 522 42.78 2.0897 2 431 43.26 2.0860 2 702 43.34 2.0670 8 * 1 3 43.76 2.0571 10 023 + 43.98

2.0404 1R 8 1 1 44.36 2.0171 2 232 + 44.90 2.0036 1 223 45.22 1.9545 1 332 46.42 1.9506 1 5 1 3 46.52

93 Potassium Hydrogen Diformate, KH(HCOO)2 - continued

26(°) d(A) / hkl 0 Calculated Pattern (Integrated) X = 1.54056 A 20(°) d(A) / hkl 1.9427 3 323 46.72 A = 1.54056 A 1.9068 Q 6 3 0 U7.6Q 1.8762 3 432 4R.48 1.A434 3 0 0 U + 49.40 8.854 83 200 9.98 1.8399 4 812 4^.50 5. 0447 5 1 1 1 17.57 4.5239 5 2 1 1 19.61 1.B322 7 6 1 3 49.72 4.4272 1 400 20.04 1.R192 3 041 50.10 3.9282 1 3 1 1 22.62 1.809* 1 1 U 1 50. 3B 1.805B 2 ? 0 4 50.50 3.754B 13 020 23.68 1.7879 1 532 51.04 3.6B87 1 002 24.11 3.6112 26 1 0 2 24.63 1.7R20 7 2 '4 1 51.22 3.4050 42 202 26.15 1.7711 1 10 0 0 51.56 3.3R7P 41 411 26.28 1.7553 1 214 52.06 1.7459 1 1 3 3 52.36 3.2B81 100 1 2 1 27.10 -> 1.7385 3 4 1 52.60 3.2545 4 1 1 2 27.38 3.1302 45 221 28.49 1.7361 1 902 52.68 3.1011 49 2 1 2 28.76 1.7287 1 440 52.92 2.9514 2 600 30.26 1.7137 I 3 1 4 53.42 1.7025 2 404 53.80 2.9383 7 5 1 1 30.40 1.6875 1 623 54.32 2.9111 13 3 2 1 30. 6 Q 2. 8876 5 3 1 2 30.94 1.6829 4 4 n 1 + 54.48 2.8636 9 420 31.21 1.6783 4 10 3 1 54.64 2.8339 q 402 31.54 1.6660 1 142 55.08 1.6483 1 1 2 4 55.72 2.7469 3 6 1 0 32.57 1.5939 1 3 ? 4 57.80 2.6695 31 421 33.54 2.6514 21 412 33,78 1.5652 1 10 ? 1 58.96 2.6314 1? 022 34.04 1.5504 1 424 5^.58 2.6028 3 1 2 2 34.4? 1.5123 3 832 61.24 1.5083 p 633 61.42 2.5742 33 6 1 1 34.82 1.5052 1 9 1 3 61 .56 2.5548 15 502 35. in 2.5223 5? 222 35.56 1.4999 1 524 61.80 2.4324 1 5 2 1 36.92 1.4921 3 043 62.16 2.4186 3 5 1 2 37.14 1.490*4 2 704 62.24 1.4759 1 12 0 0 + 62.92 2.4088 14 230 37.30 1.4717 2 243 63.12 2.3495 3 1 3 1 3R.28 2.3204 3 620 38. 7R 1.4692 2 10 2 2 63.24 2.3169 22 1 1 3 38.84 1.4667 ? 1 5 1 63.36 2.2898 Q 231 39.31 1.4467 3 3 4 3 + 64.34 1.4431 3 1 1 5 64.52 2.2801 9 7 1 1 39.4Q 1.4399 2 334 64.68 2.2620 1 422 39.82 2.2596 2 2 1 3 39.86 1.4289 1 2 1 5 65.24 2.2136 2 800 40.73 1 .4266 1 932 65.36 2.2031 2 6 1 2 40.93 1.4113 1 10 1 3 66.16 1.3R65 1 1 5 2 67.50 2.1790 12 430 41.40 1.3854 1 724 67.56 2.1729 3 3 1 3 41.52 2.1122 3 522 42,78 1.3750 1 543 68.14 2.0898 2 431 43.26 1.3504 2 12 2 1 69.56 2.0863 1 702 43.33 1.3399 1 5 1 5 70.18 1.3386 1 650 70.26 2.0667 10 4 1 3 43.76 1.3265 2 634 + 71.00 2.0573 2 132 43.98 2.0572 10 023 43.98 2.0404 22 B 1 1 44.36 2.0180 1 721 44.88 94 Potassium Hydrogen Diformate, KH(HCOO)2 - continued

200 c 26C) / hkl d (A) I hkl d (A) \ = 7.54056 A X = 1.54056 A

1.4400 p 334 64.6^ 2.0168 1 ? 3 2 44. °1 1.428R 1 2 1 5 65.24 ?.003F I 2 2 3 45.21 1.4266 1 932 65.36 1.9545 i 332 46.4? 1.4114 1 10 1 3 66. IS 1 .9506 1 5 1 3 46.5? 1.3868 1 1 5 2 67. 4n l.°426 '4 3 ? 3 46.7? 1.3B52 1 724 67.57 1.9091 1? 630 47. 5Q 1.3752 1 543 63,1^ 1.8761 ^ 432 48.4F< 004 49.37 1.3503 p 1? 2 1 69.57 1.^443 2 5 1 5 70.17 9 1 1 49.41 1.3401 1 1.8430 1 650 l.r-402 '4 3 1 2 49.4^ 1.3386 1 70*26 1.3P71 ^v 452 70.96 1.8322 o 6 1 3 49.7? 1.3264 p 634 71.00 1 .P. 19** 3 041 50.09 1.2R71 12 2 2 73.52 1.R099 1 4 1 50.3^ 1 1 1.2804 525 73.97 1.8056 r> 204 50.^0 1 1.2711 1 1132 74.60 1.7^80 1 532 R1.04 1.2678 1 3 5 74.83 1.7*22 3 2 u 1 SI .?? 1 10QO 51.57 1.2583 1 652 75.49 1.7709 1 1.2340 1 061 77. ?S 1.7556 P 2 1 4 52.05 1,2037 1 306 79.57 1.7457 1 1 3 3 52.37 1.1965 1402 BO. IS 1 .7387 P 3 4 1 B2.59 1 1 .1890 1 P 4 3 R0.76 1.7361 1 902 S?,.6« 1 .177R p 852 81.69 1.7281* 440 52.93 1 1.1523 1 12 0 4 R3.90 1.7140 1 3 1 4 S3. 41 1.1461 12 4 1 R4.46 1.7025 ^ 4 0 4 53. BO I 1.6R77 i 6 ? 3 54.31

1 .6*28 3 441 54.48 1.6*16 p 333 54.53 1.6784 ot 10 \ 1 54.64 1.6657 p 1 4 2 55. 0^ 1.6i*8? p 1 ? 4 55.7?

1.6358 1 504 56.19 1 .6097 1 342 57. IP 1.5939 1 3 ? 4 57.80 1.5652 ? 10 2 1 58.96 1.5506 1 424 59.57

1.5124 c. ^32 61.23 1.5080 I 633 61.43 1.5052 1 9 1 3 61.56 1.4997 1 524 61.81 1.4922 4 0 u 3 62.15

1.4903 2 704 62.24 1.4771 1 741 62. R6 1.4757 1 12 0 0 62.9^ 1.4715 1 243 63.13 1.4692 P 1022 63.24

1.4667 1 1 5 1 63.36 1.4480 1 12 1 0 64.28 1.4467 3 343 64.34 1.4457 1 10 3 0 64.39 1.4430 2 1 1 5 64.53 1

95 Potassium Oxalate Perhydrate, K2C 20 4 *H 202

Structure Monoclinic, C2/c (15),Z=4, The structure Calculated Pattern (Peak heights) was determined by Pedersen [1967]. £0O 0 d(A) / fefel A = 1.54056 A Lattice parameters a=8.969, b=6.532, c=10.955Jl, 8=108.4° 5.193 in 002 17.06 [ibid.] 5.041 53 -1 1 1 17.58 4.316 1 1 1 1 20.56 4.255 16 200 20. R6 Density 4.081 21 -1 12 21.76 (calculated) 2.184 g/cm3 3.962 14 -202 22.42 3.361 5 1 3 2 26.50 Thermal parameters 3.266 2 0 2 0 27.28 Isotropic: K 3.03 3.175 34 -1 1 3 28. OB 01 3.15 3.116 57 0 2 1 28.62 Op 3.80 2.877 7? 202 31.06 02 2.89 2.766 9 0?2 32.34 C 2.91 2.715 20 -3 1 1 32.96 2.654 53 -3124- 33.74 2.63b 31 -2 2 1 33.^8 Scattering factors K°, C°, O"1 [3.3.1A] 2.615 9 -204 34. ?6 2.599 72 310 + 34.43 2.525 54 -1 1 4 35.52 Scale factor 2.520 100 -222 35.60 (integrated intensities) 1.490 x 104 2.4075 u 2 2 1 37.32 2.376B 19 023 37. B2 Reference 2.3696 1? 3 1 1 37.94 Pedersen, B.F. (1967). Acta Chem. Scand. 2.2^74 3 -? 2 3 39.16 21, 779. 2.1*12 <3 -3 1 4 41.36 2.1592 17 222 + 41. BO

2.1272 7 400 42.46 2.1092 13 1 3 0 42. B4 2.0961 7 3 1 2 43.12 2.0724 7 -1 1 5 43.64 2.0360 4 131 + 44.46

2.0103 Tt -132 45,06 1.9R12 21 -404 45.76 1.9171 7 -3 1 b 47.33 1.9065 15 223 47.66 1.9035 21 1 3 2 47.74

1.8675 2 -1 3 3 48.72 1.8406 3 313 + 49.48 1.B172 1 -206 50.16 1.R131 4 1 1 5 50.28 1.7991 1 -2 ? 5 50.70

1.7892 3 -<* 2 3 51.00 1.7B27 5 420 51.20 1.7597 3 -331 51.92 1.7540 4 0£5 52.10 1.7471 3 -1 1 6 52.32

1.7428 3 -332 + 52.46 1.7096 ? -511 53.56 1.7043 4 -1 3 ^ + 53.74 1.6846 U 421 54.42 1.6BOO 3 P P 4 + 54. 58

96 Potassium Oxalate Perhydrate, K2C 20 4 -H 20 2 - continued

26(°) d(A) / hkl Calculated Pattern (Integrated) A = 1.54056 A d (A) / hkl 26( c) 1.6190 3 3 1 4 56.82 X = 7 .54056 A 1.6133 ? 041 57.04 1.5878 4 -226 58.04 11 002 1.5858 4 -3 3 4 58.12 5.197 17.05 55 -111 1.5784 2 1 3 4 58.42 5.040 17. 5P 4.318 1 1 1 1 20.55 17 200 1.5745 4 -425 58.58 4.255 20.86 24 -1 1 2 21.75 1.5552 1 5 1 1 59.38 4.083 1.5336 2 -241 60.30 16 -202 1.5096 3 -P 4 2 61.36 3.P62 22.42 6 1.5061 5 -1 1 7 61.52 3.361 1 1 2 ?6.50 3.266 2 020 27. 2P 42 1.4934 5 -602 62.10 3.176 -1 1 3 28.07 71 021 1.4891 3 225 62.30 3.116 23.63 1.4844 1 241 62.52 1.4577 1 -243 63.80 2.877 89 202 31.06 11 1.4524 3 206 64.06 2.765 022 32.35 2.716 26 -3 1 1 32.95 46 1.4487 ? -426 + 64.24 2.655 -3 1 2 33.74 27 1.4391 1 333 64.72 2.654 1 1 3 33.74 1.4344 2 3 I 5 64.96 1.4105 2 -227 66.20 2.636 36 -2 2 1 33.90 5 -204 1.3843 4 -532 + 67.62 2.615 34.26 2.602 59 3 1 0 34.44 55 004 1.3603 2 117 + 68.98 2.599 34.48 3 1.3538 1 -623 69.36 2.591 220 34. 59 1.3403 2 -621 + 70.16 49 1.3376 ? 5 1 3 70.32 2.526 -1 1 4 35.52 100 -222 1.3346 2 -534 70.50 2.520 35.5^ 2.4077 5 2 P 1 37.32 25 1.3265 I -a 2 7 71.00 2.3766 023 37. B? 1.3216 3 -118 + 71.30 2.367R p 3 1 1 37.97 ? 1.3168 424 71.60 -223 1.3076 ? -4 0 8 72.18 2.2975 4 39. 1M l n -3 1 4 1.2901 3 1 3 6 73.32 2.1815 41.35 2.1624 I 1 1 4 41 .74 2? 1.2P23 1 -625 73.84 2. 159C 222 41.81 in 400 42.45 1.2740 2 1 5 1 74.40 2.1276 ! 1.2705 o 602 74.64 2.1094 17 130 42.84 1.2562 I 4 4 1 75.64 o 1.2293 1 -153 77.60 2.0964 3 1 2 43.11 2.0720 1>> -1 1 5 43.65 5 1.2266 ? 532 2.0364 1 3 1 44.4^ 77.80 ? 1.2243 1 -626 77.98 2.0335 024 44.52 1.2169 1 -536 78.54 3 -132 1.2146 1 -246 78.72 2.0101 45. OF, 31 -4Q4 1.2049 I 425 79.48 1.9810 45.76 1.9173 l -3 1 5 47.37 17 1.1969 1 -3 5 1 80. 12 1.9066 223 47.66 1.1934 1 2 ? 7 80.40 1.9033 23 1 3 2 47.74 1.1914 1 -3 1 9 80.56 -133 1.0936 1 060 90.06 1 .8679 3 48.71 p 1.C741 1 I 5 5 91.64 1.8405 313 49. 4^ 1.8400 p -421 49. 5n -206 1 .0614 1 730 93.06 1.8174 1 50.15 1.0603 1 -823 93.13 1.8128 5 1 1 5 50.29 1.0498 1 -5 5 3 94.40 -225 1.0122 1 551 + 99.10 1.7990 1 50. 7n 1.7894 3 -423 51.00 1.7827 q 420 SI. 20 1.7594 5 -3 3 1 51. Q 3 '4 1.7538 025 52.11

97 Potassium Oxalate Perhydrate, - continued

26(°) 20O d (A) / hkl d(A) / hkl X = 1.54056 A \ - 1.54056 A

1.747? U -1 1 6 ^P.3P 1.2562 p 441 75. 64 1.7424 P -332 52.47 1.2420 1 -7 1 4 76.66 -153 1.7422 1 1 3 3 52. 4P 1.2294 3 77.59 1.7095 o -5 1 1 53.56 1.2268 P 532 77.79 1.70143 '4 -134 53.74 1.2244 1 -626 77.97 -536 1 .7029 2 -5 1 3 53.7Q i.?i?n 1 78.53 -246 1 .6R414 5 4 P 1 54.43 1.2147 1 78.71 1 .6804 1 2 ? 4 54.^7 1.2051) 1 4?5 79.47 1.6801 1 -3 3 3 54. 5R 1.1^69 2 -3 5 1 80.1? 1.619? 5 3 3 4 56.81 1.1932 1 227 80.41

1.613? p 0 t| 1 57.04 1.1913 1 -3 1 9 BO. 57 1.5PR1 5 -2 2 6 58.0^ 1.1677 1 -7 1 6 8?. 55 -334 1.585P 4 58.1? 1.1477 1 7 1 1 84.31 -247 1-5785 ?. 1 3 4 58.4? 1.1295 1 85. 9 Q 1.5747 R -4 ? 5 58.57 1.1163 I 633 87.27

1.5550 o 5 1 1 59.3^ 1.1129 1 -^29 R7.60 -355 1.533b 3 -2 4 1 60. 3C 1.0 Q 47 1 R9.44 1.5098 i* -242 61.3^ 1.0887 1 060 90.07 i 1.5063 5 -1 1 7 61 .51 1.0840 1 1 9 ^0.57 1.4933 R -602 62.10 1.0795 1 444 PI. 05

1.4879 1 225 62.36 1.07m 1 1 5 5 91.64 1.4845 5 2 4 1 62.51 1.0615 1 7 3 0 93.05 1.477? 1 043 62.86 1.0604 1 -* 2 3 93. 18 1.4576 -P 4 3 63. 8H 1.055B 1 -8 P 4 03.70 1 -553 1.4524 4 206 64.06 1.049^ ? Q4.40 -426 1.4486 1 64. 2S 1.015,3 1 4^5 93.6^» 1.4479 1 5 1 2 64. ?P 1.0122 1 551 99.10 1.4393 1 333 64.71 1.0115 1 8 2 0 99. ?n 1.4343 3 3 l 5 64.97 1.0000 1 -7 1 9 100.76 1.4106 3 -? 2 7 66.19 .9775 1 -3 3 10 104.00 -244 1.3851 1 67,57 1.3B44 7 -532 67.6] 1.3609 P -336 68.94 1.3600 9 1 1 7 69.00 1.3538 1 -6 2 3 69.36

1.3410 1 530 70.1? 1.3407 1 243 70.13 1.3396 o -6 ? 1 70.20 1.3376 1 5 1 3 70.3? 1.3346 p -534 70.50 "427 1.3265 1 71.00 1.3219 1 -5 1 7 71.29 1.3217 3 -1 1 B 71.29 -606 1.3207 1 71.36 1.3166 3 424 71.61 -408 1.3076 3 72.18 1 .2902 6 136 73.31 1.2824 p -625 73.83 1.2740 4 1 5 1 74.40 1.2703 2 602 74.66

98 Potassium Sulfate, K2S20 7

Structure Pattern (Peak heights) Monoclinic, C2/c (15), 2=4 [Lynton and Calculated Truter, 1960] 2*D c / hkl d(A) A = 1.54056 A Lattice parameters a-12.35±.005, b=7.3l±.005, c=7 . 6.28 10 1 1 0 14.09 P = 93°7 / ±4.5 / [ibid.] 6.16 5 200 14.36 4.82 45 -1 1 1 1H.40 4.687 25 1 1 1 IP. 92 Density 3.654 47 020 24.34 (calculated) 2.58 g/cm3 [ibid.] 3.630 10 o n 2 24.50 3 . 5 8 1 5 3 1 0 24.8'4 Thermal parameters 3.?64 100 0 ^ 1 + 27.30 Isotropic: K 1.77 3,204 77 "202 27.82 S 1.12 3.153 15 3 1 1 28.28 0(1) 1.97 3 , 1 4 4 220 28.36 0(2) 2.00 14 3.083 75 4 n o 28.9=4 0(3) 2.02 3.056 gp 202 29.20 0(4) 1.34 2.915 44 -2 P 1 30.64 2. 855 23 2 2 1 31.30

Polymorphism 2.612 15 -3 1 2 34.30 Hahle[1968] described a high-temperature 2.576 1 022 34.80 polymorph called the o--form, and con 2.491 7 3 1 2 36.02 firmed a transition temperature of 330°C. 2.415 5 -4 0 2 37,20 2.390 5 1 3 0 37,60

Scattering factors 2.356 14 4 ? 0 38.16 K"1", 0° [Berghuis et al., 1955] 2.345 19 ? 2 2 38.36 S° [Tomiie and Stam, 1958] 2.277 4 -113 + 39.54 "421 2.270 20 39.66 2.237 6 1 1 3 40.28 Scale factor [integrated intensities] 2.999 x 104 2.2J5 P 4 P 1 40.70 2.191 1^ 5 1 1 41 .16 2.096 1? 330 43.12 Additional patterns 2.055 3 600 44.02 2,051 -3 l 3 44.12 1. PDF card 1-717 [Hanawalt et al.,1938] 3 2. PDF 21-683 [Bazarova et al., 1968] 2. 018 5 023 44,88 -132 3. Hahle and Meisel, [1968] 2. 006 2 45.16 1.999 10 3 3 1 45.32 1.987 3 1 3 2 45.62 Reference 1.943 28 -223 46.70 Bazarova, Zh.G., G.K.Boreskov, L.M.Kefeli, L.G. Karakchiev, and A.A. Ostan'kovich. 1.940 24 422 46.80 223 48.04 (1968). Proc.Acad.Sci. USSR, Phys. Chem. 1.P.92 11 1.837 4 -3 3 2 49.58 Sect. (English Transl.) 180, 421. 1.B32 3 -6 o 2 49.72 Berghuis, J., IJ. M. Haanapel, M. Potters, 1.814 2 004 50.24 B.O. Loopstra, C.H. MacGillavry, and A. L. Veenendaal (1955). Acta Cryst. 8,478. 1.7°! •2 620 50.94 Hahle,S. and A.Meisel (1968). z. Chem.8, 1.772 1 041 51.52 241. 1.767 2 -2 n 4 51.63 -621 + 51.96 Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.758 ? 1.748 602 52.26 (1938). Ind. Eng. Chem. Anal. Ed.10,457. 6 Lynton, H. and M.K. Truter(1960). J. Chem. 1.734 4 530 + 52.76 Soc. 1960, 5112. 1.726 6 -513 + 53.02 Tomiie,Y. and C.H. Stam (1958). Acta Cryst. 1.720 R 621 53.20 11, 126. 1.709 p -P u 1 53. 5B 1.697 1 2 4 1 53.98

99 Potassium Sulfate, K2S20 7 - continued

d (A) / hkl 26>n A = L54056 A Calculated Pattern (Integrated) 20(°) 1 .687 ? d(A) / fcfeZ -7 1 1 54.34 A = 1.54056 A 1.672 ? 5 3 1 54.88 1.654 3 423 55.50 1.632 1 0 4. 2 56.32 6.29 9 1 1 0 14.07 1.602 b -404 57.46 6.17 4 200 14.35 4.82 44 -1 1 1 18.39 l.bRB 4 -532 + 58.04 4.689 25 1 1 1 IB. 91 1.577 3 6 ? 2 58.43 3.655 51 020 24.33 1.573 2 440 58.66 1 .569 1 2 4 2 58.82 3.630 7 002 24.51 1.563 1 333 5^.04 3.5B3 6 3 1 0 ?4.83 3.275 23 -3 1 1 27.21 1.553 1 3.265 97 021 -> 2 ? 4 59.46 27.30 1.545 -441 59.80 3.205 85 -202 27. Bl 1.541 5 532 59.96 1.528 3 441 + 60.56 3.182 1 -112 28.0? 1.473 ? -623 63.04 3.154 15 3 1 1 28.27 3.144 6 220 38.36 1.470 ^ -5 1 4 63.18 3. 083 62 400 2B.94 1.45B 3 0 14 3 63.76 3.056 100 202 29.20 1.448 1 -A o 2 64.30 1.438 1 1 3 4 64.78 2.915 51 -2 2 1 30.65 1.430 4 -? 4 3 65.20 2.856 27 2 2 1 31.29 2.613 18 -312 34.30 1.428 4 730 2.575 p 022 34. Bl '4 65,30 1.425 -151 fv5.42 2.4 Q 2 8 3 1 2 36.02 1.409 7 ? U 3 + 66.30 -402 1.368 1 -3 1 5 68.52 2.415 5 37.19 1.364 S 7 1 3 68.74 2.390 7 1 3 0 37.60 2.357 17 420 3B.16 1.358 1 -351 69.12 2.345 21 222 38.36 -113 1.351 s -641 + 69.52 2.280 P 39.50 1.349 •3 -732 + 69.64 r; -131 1.345 1 5 2 69.86 2.27S 2 39.53 -421 1.335 1 -443 70.46 2.269 24 39.69 2.259 3 -5 1 1 39. BB 1.312 :> Q 1 1 71.92 2.236 7 1 1 3 40.27 1.301 1 8 ? 2 72.62 2.215 2 4 ? 1 40.7} !.? 620 50.93 1.172 1 4 4. 4 + 82.16 ;> 1.151 1 -^ 3 2 84.04 1.772 0 t* 1 51.53 -204 1.148 1 026 84.28 1.767 2 51.6* -2 -621 1.759 SI. 95 1.757 1 -114 52-01 1.748 9 602 52.2°

100 Potassium Sulfate, K2S207 - continued

20(°) d(A) 7 hkl 2en d(A) / hkl A = 1.54056 A A - 1.54056 A

-352 1.733 5 530 52.77 1.296 2 72.95 1.2R8 1 044 73.48 1.731 1 1 1 4 52.85 -534 1.726 -513 1.278 1 74.1? 5 53.01 -244 1.724 5 -423 53.06 1.270 1 74.65 1.720 7 6 2 1 53.20 1.263 1 642 75.14 1.713 1.263 3 -5 1 5 75.18 1 710 53.46 -425 1.709 2 -241 53.57 1.260 3 75.39 1.697 1 241 53, 9R 1.258 1 550 75.54 2 9 1 2 76.72 1.687 2 -7 1 1 54.34 1.241 -> 1.672 3 531 54.88 1.233 551 77.29

1.654 5 423 55.50 1.230 1 534 77.53 1.632 1 042 56.32 1.218 2 060 78.43 1.607 1 -333 57.30 1.214 1 7 1 4 78.77 1.603 8 -404 57.i*6 1.214 4 425 78.78 1.5R8 ~ 3 -532 58.04 1.204 3 -9 1 3 79.51 -206 1.588 3 -242 58.05 1.200 ?_ 79.90 1.577 it- 622 58.47 1.194 14 930 80.32 1.572 1 440 58.68 1.188 I 353 RO.R5 1.568 1 242 58. R? 1.175 1 206 81.91 1.563 1 333 59.05 1.172 1 4 H 4 82.16

1.553 1.171 1 643 82.23 1 224 59.46 -932 1.545 3 -4 4 1 59. RO 1.151 1 R4.03 1.541 5 532 S9.96 1.149 ] 0 ? 6 P4.23 1.140 1 -226 85.03 1.528 2 404 60.54 -262 1.528 3 4 t| 1 60.56 1.139 ? R5.1?

-623 1.138 5 -7 1 5 R5.24 1.M74 3 63.03 -154 1.471 ? -514 63.1* 1.137 1 85.27 1.458 ? 043 63.77 1.137 4 0 U 5 85.31 1.447 2 -P 0 2 64.31 1.133 3 460 85.66 1.438 1 1 3 4 64.77 1.132 3 262 R5.7° 1.430 5 -243 1.130 2 154 85.93 65.20 -553 1.428 5 730 65.31 1.129 1 86.06 1.425 ?_ -151 65.4? 1.119 1 932 87.0? 1.409 o 243 66. 2P 1.118 3 -7 5 1 87.13 1.408 ? 623 66.3? 1.100 1 11 1 0 88.07 •> 1.407 -821 66.37 1.104 2 -11 1 1 88.46 1.368 1 -3 1 5 68.5? 1.099 1 734 89.02 1.364 7 7 1 3 68.75 1.358 1 -3

1.351 5 -641 69.5? 1.351 1 -152 69.5? 1.349 5 025 69.6? 1.349 7 -7 3 2 69.64 1.349 1 351 69.65

1.345 1 1 5 2 69.38 1.335 I -4 '4 3 70.46 1.324 I 3 1 5 71.16 1.312 4 911 71.93 1.301 1 822 72.63

101 Rubidium Oxalate Perhydrate, Rb2C 204 -H 20 2

Structure Monoclinic, C2/c (15),Z=4. The structure Calculated Pattern (Peak heights) was determined by Pedersen [1967]. d(A) / hkl 2$n o A = 1.54056 A Lattice parameters a=9.251, b=6.808, 0=11 , 13=107.45' 5.388 19 1 1 0 16.11 [ibid.] 5,211 2? -i i i 17.00 1.191 77 i i i 19.71 1.111 16 ? n o 20.10 Density 1.199 33 -l l 2 21.11 (calculated) 2.892 g/cm3 1.051 66 -202 21.92 3.188 2 1 1 2 25.52 Thermal parameters 3.101 1? 0 2 0 26.16 3.257 85 -1 1 3 27.36 Isotropic: Rb 3.95 3.213 ion 0 2 1 27.18 01 4.61 Op 5.04 2.990 83 202 29.86 02 3.72 2.870 3 022 31.11 C 4.30 2.808 52 -3 1 1 31.81 2. 718 17 1 1 3 32.56 3. 735 55 -? ? 1 + 32.72 Scattering factors 2.701 3^ 310 + 33.11 001 + C°, Rb0 , O- 1 [3.3.1A] 2.671 50 33.52 2.606 56 -2 ? 2 31.38 2. 589 3? -111 31.62 Scale factor 2.b06 Q ? 2 1 35.80 (integrated intensities) 4.195 x 10 4 2.1610 21 0 ? 3 + 36.18 2.3681 Q -223 37.96 2.2962 1 -102 39.20 2.2168 17 2 ? 2 10.10 2.2308 8 -3 1 1 10.10 Reference 2.2D67 11 100 10.86 Pedersen, B.F. (1967). Acta Chem. Scand. 2.1971 19 1 3 0 11.01 21, 779. 2.1802 1 3 1 2 11.38 2.1213 5 -115 + 12.52 2.mos 5 021 13.02

2.0878 7 -132 13.30 2.0P1B 20 -101 11.72 1.9812 36 132 + 15.76 1.9585 13 -3 1 b 16.32 1.Q361 1 -133 16.86

1.9133 6 3 1 3 17.18 1.9073 5 -121 17.61 1.8725 7 I 1 5 18.58 -206 1.8553 5 19.06 1.8511 10 120 + 19.18

1.6169 8 -225 19.30 1.8131 3 -123 19.10 1.8271 ;> -331 19.86 1.8098 7 025 50.38 1.B058 7 -332 50.50

1.7971 5 330 50.76 1.7919 i* -1 1 6 50.92 1.7816 1 -5 1 2 51.11 1.7692 2 -5 1 1 51,62 1.7628 7 -131 51.82

102 Rubidium Oxalate Perhydrate, Rb2C204 -H202 - continued

Calculated Pattern (Integrated)

1.7515 1 .740*4 1.7197 1.6*12 1.635Q 16.43 5.212 17.00 4.4Q3 19.74 4.413 20.11 4.198 21.14 4.050 3.488 3.404 3.253 3.243

2.990 29. 2.871 M.13 2.808 31.84 1.5021 2.749 1.4951 2.735 1.4682 1.4793 2.732 1.4467 2.700 2.695 33.21. 1.4336 2.671 1.4026 65.00 33.5? 66.62 2.666 1.3993 33.5fl 1.3956 66.80 67.00 2.606 1.3916 34. 67.22 2.589 34.63 2.507 35. 7° 1.3879 2.4620 36.46 1.3786 2.4607 1.3757 36.48 1.3686 2.3679 37.97 2.2966 39.19 1.3F55 •> 2.2465 40.11 -1 1 8 69.26 2.2306 40.40 1.3497 3 -517 + 1.3460 69.60 2.2063 40.87 2 -2 4 5 + 1.3446 o 6Q.R2 -^43 69.90 1.3356 4 136 + 41.03 70.44 1804 41.38 1.3323 2.1241 42.52 3 -^08 + 2.1217 1.3278 70.64 42.57 3 1 5 1 70.92 2.1013 43.01 1.3203 1 6 0 2 1.316P 9 71.38 *> -6 p 5 7.1.60 2.0881 1.3076 4 it i 43.29 72.18 2.0310 .5R 2.0251 1.2781 2 -153 + 44.71 1.2764 74.12 1.9816 45.75 3 532 + 74.24 1.9811 1.2545 -626 + 45.76 1.2520 75.76 <4 2 5 75. Q4 1.9584 1.2503 -536 46.32 76,06 1.9361 46.89 1.9131 47.49 1.2475 -4 4 5 1.9068 1.2456 76.26 47.65 -3 5 1 76.40 1.8724 1.2431 -7 1 5 48.59 1.2347 76.56 2 2 7 1.2172 77.20 1.8556 49.05 • -3 1 9 78.52 1.8526 49.14 1.8514 49.17 1.8472 49.29 1.8435 49.40 103 Rubidium Oxalate Perhydrate, Rb2C 20 4 -H 20 2 - continued

20O 26(°) / hkl c d (A) / hkl d(A) \ = 1.54056 A X = 7.54056 A

-331 49.86 1.3669 3 424 68.49 1.8275 2 -427 025 50.38 1.3572 2 69.16 1.8097 9 69.26 -332 50.49 1.3555 2 -1 1 8 1.8060 5 -606 69.58 1.796B •S 330 50.77 1.3501 2 -5 1 7 69.62 1.7Q13 3 -1 1 6 50.94 1.3494 3 69.7? 51.14 1.3476 1 440 1.7846 1 -5 1 2 -245 69.8? 1.7691 2 -5 1 1 51.62 1.3460 1 p -4 4 3 69.90 1.7629 10 -134 51.8? 1.3445 -241 57.7? 1.2520 p 4 ? 5 76.06 1.5691 4 -242 58.80 1.2502 1 -5 3 6 -445 76.25 1.5^66 3 ? 4 i 59.74 1.2476 1 76.41 1.5445 7 -1 1 7 59.8^ 1.2455 p -3 5 1 76.58 1.5425 1 225 59.9? 1.2431 { -7 1 5 1.5413 7 -602 59.97 1-2347 ? 227 77. 2H 78.52 1.5356 p 043 60.21 1.2171 1 -3 1 9 80.?^ 1.5123 3 -2 H 3 61 .24 1.1952 1 3 1 7 i 80.53 1.5055 5 1 2 61.55 1.1918 7 1 1 2 -138 81.41 1.5023 ^ 206 61. 6 n 1.1811 1 1.4951 o 404 62.0? 1.1650 1 -? 4 7 82.78 ^ 62.35 1.1610 P 623 83.13 1.4881 3 1 5 -429 1 .4792 i 2 4 2 62.77 1.1378 1 85.21 85.51 1.4709 1 600 63.16 1.1347 1 0 ft 0 1.4465 4 -227 64.35 1.1333 1. -3 5 5 R5.63 -734 86.10 1.4370 1 -1 3 b 64.83 1.1284 1 86.49 1.4353 1 044 64.91 1.1243 1 353 1.4335 7 -532 65.00 1. 1?09 1 0 ? 9 86-8?

1.4041 1 -6 ? 2 66.54 1.1171 1 1 1 9 R7.1P 1.4H27 2 1 1 7 66.6? 1.1159 2 155 R7.30 1 .3^94 3 -336 66.79 1.1033 1 -5 3 3 88.55 1.3963 -^ 2 3 66. 9e 1.1021 p 730 88. 6R i -823 1.3954 ^ ? 4 3 67.01 1.0 Q 49 1 R9.4P -645 67.17 1.0939 1 89.5?. 1.303? i 530 -553 1.3910 p 5 1 3 67.?^ 1.0836 o 90.0^ 1.3879 4 -621 67.4? 1.0608 1 262 Q3.1? 1.3785 3 33^ 67.94 1.0559 1 445 93.69 1.3760 p -534 68.06 1.0535 1 5 ^ 1 03.96

104 Sodium, Na

Structure Cubic, Im3m (229),Z=2. The structure was Calculated Pattern (Peak heights) determined by Hull [1917]. 26( c) d(A) / hkl A = 1.54056 A Lattice parameters a = 4.2908 A ± .0005. (published value, 3.0335 100 1 1 0 29.42 15 42.08 a = 4.2906 A ±,0005) [Aruja and Perlitz, 2.1455 200 1.7515 23 2 1 1 52.18 1939]. 1.5172 5 220 61.02 1.3568 6 3 1 0 + 69.18 Density (calculated) 0.966 g/cm3 1.2387 1 ? 2 2 76.90 1.1467 4 321 + 84.40 1.0113 2 411 + 99.22 Thermal parameters .9595 1 420 + 106.80 Isotropic, overall B=2.0 .8415 1 431 + 132.52

.7834 1 5 ? 1 + 159.00 Polymorphism Sodium.has a face-centered cubic struc ture at -195 °C [Barrett, 1948].

Scattering factors Calculated Pattern (Integrated) Na° [3.3.1A] 2B(°) d(A) I hkl X = 1.54056 A Scale factor (integrated intensities) 0.09447 x 104 3.0341 100 1 I 0 29.41 2.1454 1^ 200 42.08 Additional patterns 1.7517 29 2 1 1 52.17 1. PDF card 1-850 [Hanawalt et al.,1938] 1.5170 3 220 61.03 2. Hull [1917] 1.3569 4 3 1 0 69. IP 1.3569 4 013 69, 1R 1.2386 2 222 76.91 1.1460 14 3 2 1 84.40 1.1468 4 123 84.40 Reference 1.0113 1 330 99. 2? Aruja, E.and H. Perlitz (1939). Z. Krist. 100, 195. 1.0113 o 4 1 1 99.22 Barrett, C.S. (1948), Am. Mineralogist 33, .9594 i 4 2 0 106.80 1 06.80 749. .9594 i 024 .9148 1 332 114.71 and L.K. Frevel Hanawalt, J.D., H.W. Rinn, .8759 i 4 2 2 IP3.15 (1938). Ind. Eng. Chem. Anal.Ed.10, 457. Hull, A. W. (1917). Phys. Rev. 10, 661. .B41b i 431 132.52 .8415 i 1 3 4 132.5? .7834 2 1 2 5 159.01 .7834 ? 5 2 1 159.01

105 Sodium Calcium Carbonate Hydrate, pirssonite, Na2 Ca(C0 3)2 *2H 20

Structure Orthorhombic, Fdd2 (43), Z=8. The struc Calculated Pattern (Peak heights) ture was determined by Corazza and Sa- 200 o d(A) / hkl belli [1967]. A = 1.54056 A

Lattice parameters 5.1?. 100 l l 1 17.30 a=11.32±0.02, b=20.06±0.02, c=6.00±0.02i 5.01 iin 0 (4 0 17.68 [Evans, 1948] 4.93 74 220 17.98 4.15 14 1 3 1 21.38 3.75 3 240 23.63 Density (calculated) 2.360 g/cm3 3.20 40 151 27.86 3.16 56 3 1 1 28.26 2.8P 4^ 3 3 1 + 31.00 2.88 41 022 31.08 Thermal parameters 2.83 7 400 31.58 Isotropic [Corazza and Sabelli,1967] 2.72 53 420 32.86 2.65 91 202 33.78 Scattering factors 2.56 93 222 34.98 H°,Na°,Ca°,C°,0° [Cromer and Waber,1965] 2.52 33 171 35.58 2.51 77 0 B 0 35.78

2.50 81 351 35.90 Scale factor o (integrated intensities) 6.393 x 104 2.34 242 36.38 2.29 2* 2 R 0 39.26 2.23 4 062 40.36 Additional patterns 2.16 12 460 41.78 PDF card 2-1051 [Dow Chemical Co., 1. 2.13 5^ 3 7 1 42.34 Midland, Michigan] 2.11 36 5 1 1 42.90 2. PDF card 22-476 [Fahey and Mrose, 2. OR 3 262 43.54 1962] 2.05 IS 1 9 1 44.04 2.02 64 4 2 2 + 44.92

Reference 1.960 1 1 1 3 46.28 Corazza,E. and C. Sabelli(1967).Acta Cryst, 1.890 21 2 10 04- 48.10 23, 763. 1.977 10 480 48.46 Acta 1.873 g 551 48.58 €romer, D 0 T. and J.T. Waber (1965). 1.854 12 620 49.10 Cryst. 18, 104. Evans, H.T.,Jr. (1948). Am. Mineralogist 1.827 5 391 49.86 33, 261. 1.321 30 2 B 2 50.04 Fahey, J.Jo and M.E. Mrose (1962). U.S. 1.768 43 153 + 51.66 Geol. Surv. Profess. Paper 405, 1. 1.763 28 3 1 3 51.82 1.753 8 462 52.14

1.725 4 1 11 1 53.06 1.708 13 333 53.60 1.704 17 571 53.76 1.668 9 0 10 2 55.02 1.643 4 660 55.92

1.636 4 4 10 0 56.16 1.623 5 1 7 3 56.66 1.603 3 2 12 0 57.44 1.599 7 2 10 2 57.58 1.597 4 602 57.68

1.591 2 482 57.90 1.584 1 3 11 1 58.20 1.577 3 622 58.46 1.557 6 7 1 1 59.32 1.535 5 591 60.22

106 Sodium Calcium Carbonate Hydrate, pirssonite, Na7Ca(CO,)9 ©2H 70 - continued

26(°) 26(°) d(A) / fcfeZ d (A) / hkl X s 1.54056 A A - 1.54056 A

1.522 13 642 + 60.82 1.100,0 ? 355 B9.92 1.507 2 6 P, 0 61.46 1.0^3 1 793 89.39 1.504 6 373 61.62 1.093 p 21^ 0 P9.58 1.500 5 004 61.78 l.ORO 1 8 12 0 91.00 1.463 6 533 63.56 1 .078 3 o 9 i 91 .26

1.455 p 7 5 1 63.92 1.075 ? 5 13 3 91.54 I.f441 5 662 64.62 1.063 \ 9 1 3 92.84 1.437 11 4 10 2 + 64.84 1.062 1 375 92.98 1.^-15 3 P 0 0 + 65.96 1.059 1 1002 93.32 1.393 P 244 67.14 1.047 2 535 94.72

1.389 7 3 13 1 67.34 1.058 4 a 12 4 95.76 1.386 4 393 67.54 1.036 4 10 d 2 + 96.06 1.382 2 5 11 1 67.74 1.031 p 5 17 1 96.70 1.371* p 6 10 0 68. IB 1.029 1 953 96.92 1.371 9 7 7 1 68.36 1 .028 1 2 1A 2 97.04

1.362 3 840 68,90 1.020 I 9 11 1 98.04 1.330 2 264 70.76 1.019 1 2 14 4 98.18 1.314 4 424 71.78 1.013 2 11 1 1 + 99.00 1.297 6 1 15 1 + 72.88 1.010 2 10 6 2 99.44 1.287 1 0 B 4 73.50 1.008 5 844 99.62

1.2*1 4 444 73.90 1.003 2 3 19 1 + 100.40 1.279 n 7 Q 1 + 74.08 .998 1 5 15 3 101.04 1.269 1 3 11 3 74.74 .995 1 026 101.44 l.?60 P 2 14 2 7S.34 ,9P5 1 206 102. P2 1.255 3 7 1 3 75.72 .9R3 1 11 5 1 103.12

1.254 ? n 16 0 75. PO .980 3 4 18 2 + 103.62 1.247 1 5 13 1 76.28 .976 1 10 8 2 104.23 1.244 P 593 76.52 .975 1 7 13 3 104.40 t .236 1 733 77.12 .962 2 0 16 4 + 106.38 1.2^4 3 3 15 1 77.23 .^60 1 6 18 0 106.78

1.232 3 464 77. 38 .957 1 595 + 107.14 1.229 <4 9 1 1 77.64 .955 1 1171 107.34 1.215 5 1 13 3 78.72 .955 2 8 14 2 107.60 1.200 2 753 79.88 .952 1 884 108.00 1.1^5 3 R 6 2 80.26 .945 1 5 19 1 109.24

1.186 2 7 11 1 81.00 .944 I 1 13 5 109.38 1.176 p 4 m 2 81.86 .941 P 7 17 1 109.80 1.175 2 2 10 4 81.90 .940 1 1 21 1 110.04 1.172 p 4 8 ^ 82.20 .Q39 1 426 110.26 1.166 1 624 82.68 .933 1 2 20 2 110.38

1.162 ? 3 13 3 83.02 .936 1 10 10 2 110.68 1.158 2 5 11 3 83.40 .919 1 3 13 5 + 113.94 1.155 4 6 12 2 83.63 .917 3 286 + 114.36 1.152 3 773 83.96 .908 p 6 14 4 + 116.04 1.146 1 4 16 0 84.44 .906 1 9 15 1 116.52

1.144 4 155 + 64.68 .896 1 12 2 2 118.50 1.141 3 6 14 0 + 84.92 .895 p 0 10 6 + 116.80 1.133 2 2 16 2 85.64 .B90 1 1 15 5 119.80 1.127 4 335 86.22 .886 1 11 11 1 120.70 1.106 4 1 15 3 + 88.24 .886 1 6 20 0 120.86

107 Sodium Calcium Carbonate Hydrate, pirssonite, Na2Ca(C0 3)2 > 2H 20 - continued

20C) Calculated Pattern (Integrated) d(A) / fcfe/ A = 1.54056 A 2 BO d(A) / hkl A = 1.54056 A 1.564 1 3 11 1 58.21 1.577 4 622 58.47 9 711 59.31 5.13 90 37.2^ 1.557 1 1 1 6 591 60.22 5.01 34 040 17.67 1.535 24 642 60.82 4.93 64 2 ? 0 17.9? 1.532 4.15 13 1 3 1 ?1.37 731 60.87 3.75 3 240 ?3.6* 1.521 1 1.508 1 6 8 0 61.45 373 61.61 3.20 41 1 5 1 ?7.86 1.50*4 7 004 3.15 61 3 1 1 28.27 1.500 4 61.80 2. 88 47 3 3 1 31.00 1.463 9 533 63.56 2.88 3 260 31.04 751 2.87 12 022 31.09 1.455 2 63.92 1.441 7 662 64.62 2.83 p, 4 p 0 31.59 1.437 3 0 4 4 64.82 2.7? 55 4 ? 0 3?. 86 1.437 11 4 10 2 64.84 2.65 202 33.79 1.435 4 224 64.93 1 9'-}0 1 2.56 P 2 2 34.9^ 2.52 31 1 7 1 35.58 1.415 4 BOO 65.96 1.414 1 2 12 2 66.02 2.51 74 n B o 35.78 1.393 3 244 67.15 2.50 6n 351 35.91 1.389 9 3 13 1 67.34 2.34 q ? 4 2 "S8.3R 1.335 1 393 67. 6C 2.29 3> 2 R 0 39.27 3 5 11 1 67.75 2.23 4 062 40.36 1.382 ** 1.374 6 10 0 68.18 1 771 68.36 2.36 14 460 41. 7R 1.371 1.362 5 8 4 0 68. 8P 2.13 61 3 7 1 42.34 2.11 40 5 1 1 42. 9P 1.338 1 1 11 3 70.29 2.08 3 ? 6 2 43.54 264 70.77 2.05 17 1 9 1 44.04 1.330 5 1.3J4 5 424 71.78 1.298 I 4 12 2 72.8? 2.02 IT 44. 8^ 5 3 1 a 2.0? 6^ 422 44. 93 1.297 1 15 1 72.89 -> 1 .960 1 1 3 46. 2* 1.287 2 0 P 4 73.51 1.891 16 2 10 0 48. OR 5 4 4 4 73.90 1.^89 l r> 1 3 3 48. 1? 1.2R1 1.279 1^ 791 74.07 1.R77 4 R 0 48.46 1.278 1 4 14 0 74.11 11 i 1.873 4 551 48.56 1.269 3 1] 3 74.74 1.854 14 6?0 49.0^ 1.260 3 P 14 2 75.34 1.P2B 4 391 49.85 1 .b?2 3^ ? R 2 50.03 1.255 4 7 1 3 75.7? 1.254 ? 0 16 0 75.81 6") 76. 2R 1.768 1 S 3 51.66 1.247 2 5 13 1 p 593 76.53 1.766 1 640 51.7? 1.244 0 733 1.760 4 3 1 3 51.90 1.236 77.11 1.753 o 462 52.13 1.724 5 1 11 1 53.06 1.234 4 3 15 1 77.28 1.232 r> 464 77.3° 1.708 16 333 53.60 1.229 5 9 1 1 77.64 *} 78.71 1.703 15 571 53.77 1.215 1 13 3 753 1.668 11 0 10 2 55.0? 1.200 4 79.87 1.643 5 6 6 0 55.91 1.637 5 4 10 0 56.16 1.195 4 * 6 2 80.25 1.1 86 3 7 11 1 81.00 1.176 ?_ 4 14 2 R1.64 1.623 7 1 7 3 56.66 ? 2 10 1.603 3 2 12 0 57.43 1.175 4 81.91 p 4 R 4 1.600 7 2 10 2 S7.57 1.172 82.20 1.597 2 602 ^7.67 1.591 2 4 P 2 S7.Q1

108 Sodium Calcium Carbonate Hydrate, pirssonite, Na7Ca(CO,)3'27 -2H 90 - continued

20(°) 2e(°) d(A) / hkl d(A) / hkl A = 1.54056 A A = 7.54056 A

1.166 p 624 82. 6P .980 2 226 103.62 1.162 4 3 13 3 83.01 .976 1 10 R 2 104.28 1.158 3 5 11 3 R3.40 .975 1 7 13 3 104.41 1.155 ^ 6 12 2 83. 6P .969 1 3 11 5 105.3? 1.152 2 773 P3.97 .966 1 246 105.72

1.146 1 4 16 0 84.44 .963 1 7 1 5 106.31 1.144 4 1 5 5 R4.67 .962 1 9 13 1 106.35 1.143 2 644 84.72 .962 p 0 16 4 106.40' 1.142 1 3 1 5 R4.86 .960 1 6 18 0 106.79 1.141 1 6 14 0 P4.92 .958 1 066 107.03

1.133 3 2 16 2 P5.63 .957 1 595 107.1? 1.127 6 335 86.21 .956 2 11 7 1 107.34 1.116 1 0 12 4 P7.25 .954 3 8 m 2 107.61 1.108 3 664 88.11 .952 1 P R 4 107.00 1.107 3 3 17 1 88.20 .945 1 5 19 1 109.21

1.106 5 1 15 3 A8.2 C> .944 3 1 13 5 109.37 1.106 1 4 10 4 88.31 .941 p 7 17 1 109.81 1.100 p 355 88.9? .940 1 1 21 1 110.04 1.095 p 793 89.39 .939 1 426 1 10.2^ 1.093 P 2 18 0 89.57 .938 1 2 20 2 110.30

1.080 p B 12 0 90.90 .937 1 10 10 2 1 10.66 1.079 1 8 10 2 91.11 .927 1 5 17 3 1 12.36 1.078 5 991 91.26 .923 1 1191 113.10 1.075 1 5 13 3 91. 52 .919 1 9 11 3 113.80 1.063 1 9 1 3 92.85 .91 9 1 3 13 5 113.94

1.062 1 375 P2.9R .917 p 5 11 5 1 14.36 1.059 ? 10 0 2 93.3? .917 3 286 1 14.36 1 .053 1 10 ? 2 94.00 .016 1 7 15 3 114.45 1.047 ^ 535 04.71 .908 3 6 14 4 1 16.03 1.039 7 4 12 4 95.75 .907 2 466 116.17

1 .036 4 10 4 2 06.03 .906 1 0 15 1 116.5? 1.035 p 7 11 3 96.1fS .900 1 10 2 4 117.73 1.031 4 5 17 1 06. 7P .896 2 12 ? 2 11 8. SO 1 .029 1 953 96.^2 .895 3 0 10 6 118.79 1.027 1 ? IB 2 07.14 .895 p 10 1? 2 1 1 8 . P 5

1.024 1 824 07.58 .890 1 1 15 5 1 19.70 1.020 2 9 11 1 98.04 .8P9 1 1044 120.04 1.019 1 2 14 4 08.19 .«R6 1 11 11 1 120.68 1.013 2 11 1 1 09. on .886 1 6 20 0 1?O.P6 1.012 1 1 17 3 09. in .R84 1 ? 18 4 121.33

1.010 p 1062 09.44 .883 3 12 K 0 1?1.4^ 1.008 10 8 U 4 09.6? .876 p 8 1? 4 1P3.01 1.003 I 0 20 0 1.00.34 .B75 p 7 19 1 1^3.46 1.003 1 11 31 100.37 .874 1 5 13 5 1?3.6U 1.002 p 3 19 1 100.4? .872 3 10 6 4 124.03

.998 1 5 15 3 101.05 .^70 4 646 1 24.56 .995 1 026 1 01 .45 .869 3 3 15 5 1P4.81 .985 2 206 102.93 .869 1 12 6 2 124.86 .983 1 11 5 1 103.13 .867 1 9 1 5 125.25 .980 4 4 18 2 103.6? .863 1 5 lo 3 126. 3S

109 Sodium Molybdenum Oxide, Na2Mo20 7

Structure 20D o d (A) 7 hkl Orthorhombic, Cmca (64), Z=8. The struc A = 1.54056 A ture was determined by Seleborg [1967] 0 2.599 11 2 ? 3 34.48 2.566 1° 204 34. P4 Lattice parameters 2.534 13 043 35.40 e=7. 164±0.006, b=ll.837±0.004 , c=14.7l4± 2.5-18 11 1 3 4 35.62 0.002A.(published value: c=14.7l3±.002A) 2.452 3 006 36.62

2.354 1 224 38.20 Density 2.305 21 044 39.04 2.265 3 026 39.76 3.725 g/cms (calculated) 2.254 6 2 4 1 39.96 2.231 4 3 1 2 40.40

Thermal parameters 2.222 3 1 5 1 40.56 Isotropic [ibid.] 2.149 16 1 5 2 42.00 2. 122 6 225 42.56 2.113 ?. 3 1 3 42.76 Scattering factors 2.087 5 0 r* 5 43.32 Na+ , Mo3+ , O' 1 [3.3.1A]. The values for Na+ and Mo3+ were corrected for the real 2.069 10 243 43.72 2.043 2 153 44.30 part of the dispersion correction, using *^ 2.024 c,. 331 + 44.74 Af=-0.5 for the sodium and £f=0.1 and 1.9R8 2 1 1 7 45.60 molybdenum respectively. 1 .980 q 027 45.78

Scale factor 1.975 24 314 + 45,92 1.969 15 332 46.06 (integrated intensities) 32.52 x 104 1.939 1 244 46.82 1.915 13 226 47.44 Reference 1.906 4 062 47.68 Seleborg, M. (1967). Acta Chem. Scand.21, 499. 1.P86 1 333 48.22 1.839 p 008 49.52 1.803 13 245 50.58 1.796 A 1 3 7 50.74 1.7^1 18 400 50.94 Calculated Pattern (Peak heights) 26(°) 1.787 15 334 51.08 d(A) / hkl A = 1.54056 A 1.762 5 1 1 8 51.86 1.757 6 026 52.02 1.734 ? 227 52.76 7.36 30 002 12.02 1.714 3 0 14 7 + 53.42 5.92 1? 020 14.96 5.65 '4 1 1 1 15.66 1.703 5 421 53.80 5.43 100 021 16.14 1.682 16 262 54.50 4.706 91 1 1 2 1 Q-.R4 1.670 2Q 246 + 54.92 1.639 5 352 56.08 a. 609 44 022 19.24 1.636 7 208 56,18 3.828 3 1 1 3 23.22 3.776 54 0 2 3 23.54 1.632 4 263 56,34 3.678 6 004 24. IB 1.624 6 1 3 B 56.64 3.363 2 1 3 1 26. 4B 1.618 7 423 56.84 1.610 2 404 57.16 3.220 68 202 27.68 1.606 7 172 57.32 3.153 66 1 1 4 28. 2B 3.125 a? 024 + 28.54 1.576 1 029 58.52 3.064 92 220 29.12 1.564 7 264 + 59.00 3.000 36 ? 2 1 29.76 1.554 Q 424 59.44 1.546 6 247 59.78 2.959 Q 040 30.16 1.537 13 066 60.14 2.901 15 041 30.80 2.829 1 222 31.60 1.529 3 354 60.50 2.746 10 042 32.58 1.524 4 4 u 1 60.72 2.635 14 025 34.00 1.502 3 174 61,70 no Sodium Molybdenum Oxide, Na2Mo20 7 - continued

26(°) o d(A) / hkl Calculated Pattern (Integrated) A = 7.54056 A 2 0(*) d (A) 7 fcteZ 1.500 4 442 X = 7.54056 A '* 61. *0 1.481 '* ? 5 + ft?. 68 7.36 2ft 002 12.0? 3 1.472 n 9 1 63.10 5.9? 11 020 14.96 3 443 1.463 63.56 5.ftft 3 1 1 1 15.6*. 1.450 3 0 8 2 64.16 5.40 95 021 36.13 1.4U6 7 3184 64. 3b 4.709 90 1 1 2 18. P3 1.443 7 P ? 9 64.54 i*. 611 43 0 ? 2 19.23 1.431 3 1 1 10 *- 65.14 3 1 1 3 ?3.21 1.427 P 3.e?9 n 2 10 65.32 3.77b 55 023 ?3.5'4 1.423 3 1 5 3 65.52 3.678 6 004 ?**. 17 1.414 4 444 66.00 3.365 2 131 ?6.47 1.405 1 4 P 6 66.50 3.2?1 73 ? C, 2 ?7.6? 1.397 p 5 1 2 66.94 3.154 71 1 1 4 ?8.?7 1.373 1 n R 4 6P.?6 3.12B 4S 132 28.51 1.367 5 3384 68.60 3.12** 57 n ? 4 P8.55 5 ? 0 10 4 1.361 68.92 3.0ft** ion 2 2 0 ?9.1? 1.358 3 4 14 5 69.1?

•2 3.000 39 2 2 1 ?9.7 r- 1.356 vj 372 6Q.?0 in n u o ?. 2.P59 30.18 1.354 1 3 10 69.36 P. 901 17 n i* i 30. 7P 1.328 4 4 ? 7 4 70.83 2.829 1 2 ? 2 31.60 1.326 o 4604 71.02 2.7^5 1? ^ 4 2 32.5° 1.326 ft 532 71.04 2.635 15 025 33.9^ 1.317 3 ? fl 3 *• 71 .56 2.599 12 ? ? 3 34. 4P 1.305 ?. 4624 7?. 36 5.566 2? 204 34.93 1.292 p 374 73.18 P. 534 15 ^43 35. 4r 1.283 1 403 73.73 2.519 12 134 35.61 1.271* 2 1 9 2 74.40 2.452 4 006 36.61 1.265 1 534 75.04 2.354 1 224 38.19 1.259 3 ? 6 8 75.42 2.306 2b 044 39.03 1.254 o 4 ? 8 75.80 2.?ft6 4 0 ? 6 •^9.7^ 1.246 1 3 1 10 76.38 2.254 7 241 39.9ft 1.241 ? 3584 76.74 2.231 4 3 1 2 40.40 p 1.238 4 14 7 76.96 2.222 3 1 S 1 40.57 1.231 1 1 5 10 77.46 2.150 2n 1 5 2 41.99 1.226 4 0 0 1? 4 77.84 2*123 q 2 2 5 42.56 l.??0 1 194 73.28 2.113 1 3 1 3 42.77 1.219 1 0 U 11 78.38 2. 087 5 0 (4 5 43.33 1.209 P 5524 79.14 2.069 1?. ? 4 3 43.7? 1.1944 6 286 + 80.32 2.043 P 1 5 3 44. 2 Q 1.1786 1 602 81.62 2.024 1 331 44.75 1.177? 1 448 81.74 2.024 1 206 44.75 1.1704 2 6 ? 0 82.32 1.9«B 2 1 1 7 45.59 1.1664 7 4664 82.66 1.961 10 0 ? 7 45.77 1.1539 1 2 411 83.76 1.975 24 3 1 4 45.91 1.1507 1 0 10 3 84.04 1.973 7 060 45.96 1.1334 5 2 2 12 4 85.16 1.968 5 332 46.07 1.1356 4 604 85.42 1.939 o 244 46.8? 1.1328 ?. 0 412 85.68 1.918 4 1 5 4 47.36 1.1271 2 4 A 2 4 86.22 1.915 15 226 47.44 1.1240 p 2 10 0 66.52 1.906 3 062 47. 6^ 1.686 1 333 48.21

111 Sodium Molybdenum Oxide, Na2Mo20 7 - continued

20O 20(°) d (A) / hkl d(A) I fcfeJ A = 1.54056 A A = 1.54056 A

1.P39 ? 008 49. 5? 1.367 7 338 63.60 1.P03 17 245 50. 5P 1.362 3 2 e i 68.90 1.796 1 1 3 7 50.80 1.361 4 2 0 10 68.94 1.791 23 400 50.95 445 '•} 1.359 2 69.05 1.786 334 51.10 1.356 3 372 69.21 -•) 1.762 1 1 B 51.86 1.354 ?. 1 3 10 69.36 1.756 5 028 52.0? 1.329 1 249 70.85 1.733 3 ? P 7 52.77 1.328 4 427 70.8ft 1.716 1 261 53.33 1.327 3 514 70.99 1.714 1 420 53.40 1.326 4 460 71.02

1.714 3 047 53.42 1.325 4 532 71.11 1.703 o 421 53.70 1.318 1 0 410 71.56 1.682 ?^ 262 54.50 283 71.57 3 C* 1.317 3 1.670 246 54.9? 1.305 2 462 72.35 1.670 4 422 54. 9R 1.305 1 0 2 11 72.37 S 1.639 3 S 2 56.07 1.292 3 374 73.19 1.636 ft 208 ^6.17 1.2*3 1 408 73.78 1.630 1 263 56.41 1.274 3 1 9 2 74.40 f\ 1.624 1 3 8 56.64 1.265 1 534 75.05 1.618 * 423 56.85 1.259 5 268 75.41

1.610 ? 404 57.16 1.254 3 428 75.80 n 1.606 172 57.3? 1.246 1 3 1 10 76.39 1.576 1 0?9 58.5? 1.241 3 358 76.74 LJ 1.564 264 59.01 1.240 1 285 76.79 1.562 P 0 14 B 59.0^ 1.238 ? 447 76.94

1.554 ir 424 59.44 1.231 p 1 5 10 77.46 1 .546 R 247 59.77 1.226 4 0 0 12 77.84 1.537 19 066 60.15 1.226 P 2 2 11 77.8^ 1 .529 3 354 60.50 1.220 2 1 9 4 78. 2R 1.524 6 4 4 1 60.72 1.219 1 0 411 78. 3P

1.502 ^ 174 61.69 1.210 1 0 8 7 79.08 1 .500 6 442 61.8-n 1.209 3 552 79.15 1.481 5 425 62.67 1.1944 2 P 6 ^0.32 o in 1 .480 0 B 0 62.74 1.1940 1 3 3 10 80.35 1.472 4 n a i 63. IH 1.1831 l 429 81.24 1 .463 4 443 63.56 1 .1786 p 602 81.62 t| OQ2 1.451 64.15 1.1772 3 448 81.73 'i 1 .446 406 64.36 1.1704 3 6 P 0 A2.31 1 .446 ;> 3 1 8 64.36 1.1687 1 0 10 2 S2.46 1.44? 6 ? 2 9 64.55 1.1667 0 621 82.63 1.431 0 049 65.13 •7 1.1664 a? 466 «2.65 1.431 1 1 10 65.15 1.1539 i 2 4 11 83.75 1 .428 1 0210 65.29 1.1507 i 0 10 3 R4.04 1.423 ^ 158 65.52 1.1463 i 2 8 7 R4.44 1.417 1 0«3 65.P.R 1.1394 i 623 85.16

1.414 5 444 65.99 1.1384 7 2 2 12 85.16 1.405 1 426 66.49 1.1382 2 392 85.13 1.397 3 5 1 2 66.95 1.1373 p 4 B 1 85.27 1.373 1 084 68.27 1.1357 3 604 05.42 1.368 3 2 ? 0 68.56 1.172B 1 0 4 12 R5.69

112 Trimethylammonium Chloride, (CH,),NHCI

Structure Monoclinic, P2 X /m (11),Z=2 [Lindgren and Calculated Pattern (Peak heights) Olovsson, 1968] 20(°) d(A) / hkl A = 1.54056 A Lattice parameters a=6.088±.003,b=7.033±.002,c=7.031±.002JL, 6.054 <* 100 14.62 p= 95.73°±.04° [ibid.] 4.957 1 0 1 1 17. R8 4.5PO 100 1 1 0 19.32 3.976 4 -1 1 1 22.34 Density 3.711 1 1 1 1 23.96 (calculated) 1.060 g/cm3 [ibid.] 3.515 15 0 ? 0 ?5.32 3.498 41 002 ?5.44 Thermal parameters 3.131 3 012 + 2*. 48 3.042 a 1 2 0 ?9.34 Isotropic: H 6.00 [ibid.] 3.029 10 200 29.46 Cl 5.68 N 5.04 2.906 2 1 (i 2 30.74 C(l) 6.08 2. 890 20 -112 + 30.92 C(2) 7.56 2.641 7 -1 2 1 31 .46 2. 781 1 210 32.16 2.740 7 1 2 1 32.66 Scattering factors 2.685 Q 112 + 33.34 H°, C° . N°, Cl~ [3.3.1A] 2.671 6 -2 1 1 33.5? 2.507 1 2 1 1 35.78 Scale factor 2.479 4 0 ? 2 36.20 2.412 P -? 0 2 37.24 (integrated intensities) 0.5674 x 104 2.354 1 -122 38.20 2.295 1 ? ? 0 39.22 2.240 ? 1 2 2 40.22 2.222 ? 031 40.56 2. IPS 3 202 + 41.28 Reference i Lindgren, J. and I. Olovsson (1968). Acta 2.146 -L -1 1 3 42.08 -131 Cryst. B24, 554. 2.103 I 42.86 2.018 1 1 1 3 44.89 1.989 1 -? 2 2 45.56 1.941 P 3 ] 0 46.76 -132 1.885 1 48.24 1.874 1 -2 1 3 4*. 54 1 .854 1 2^0 49.10 1.R25 1 3 1 1 4^.92 1.820 1 -? 3 1 50.08

1.765 1 2 n 3 51.76 1.758 1 040 51.96 1 .751 1 320 52.20 1.749 \ 004 52.26 1.677 1 -1 1 4 54.f>3

113 Trimethylammonium Chloride, (CH3)3NHCI « continued

Calculated Pattern (Integrated) 28(°) d(A) 7 hkl A = 1.54056 A

6*058 7 loo 14.61 4.960 1 0 1 1 17.87 4.5^0 100 1 1 0 IP. 3? 3.978 4 -1 1 1 22.33 3.711 1 1 1 1 23.96 3.516 1-4 020 ^5.31 3.1*98 4^ 002 25.44 3.142 1 021 28.38 3.132 4 012 28.48 3.041 10 1 2. 0 29.34

3.029 Q 200 29.47 2,906 ? 1 0 2 30.74 2.889 2? -1 1 2 30. Q2 2.887 1 -201 30.95 2.842 ft -1 2 1 31.46

2.782 1 2 1 0 32.15 2.739 « 1 2 1 32.66 2.6*6 7 1 1 2 33.33 2.684 b 2 0 1 33.36 2.670 f> -211 33.53

2.507 1 2 1 1 35. 7P 2.480 5 022 36.19 2.412 3 -2 0 2 37.25 2.354 1 -122 38.20 2.2^5 p 2 ? 0 •^9.22

2.240 2 1 2 2 40.2? 2.223 2 0 3 1 40.55 2.186 2 1 3 0 41.26 2.184 ? 202 41. 3P 2.146 1 -1 1 3 42. OR

2.133 1 221 42.33 2.109 2 -131 42.85 2.013 1 1 1 3 44.87 1.989 1 -2 2 2 45.57 1.941 2 3 1 0 46.77

1.897 1 -123 47.91 1.8R5 1 -132 43.25 1.674 1 -2 1 3 43.55 1.854 1 230 49.10 1.826 1 3 1 1 49.91

1.820 1 -2 3 1 50.08 1.771 1 *3 1 2 51.57 1.765 1 203 51.77 1.758 1 040 51.96 1.751 1 320 52.19

1.749 1 0 o 4 52.26 1.677 1 -1 1 4 54.68

114 CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, 4, 5, 6, 8, and 9s Vol. or Vol. or sec. Page sec. Page 4—Acetyl-2 '-fluorobiphenyl, C 14HnOF ..... 8m 91 Ammonium fluogermanate, (NH4)2GeFft ...... 6 8 4-Alanine, C 3H7O2N ...... 8m 93 Ammonium fluosilicate (cryptohalite), Aluminum, Al ...... 1 11 (NH4)2SiF6 ...... 5 5 Aluminum antimony, AlSb...... 4 72 Ammonium gallium sulfate dodecahydrate, Aluminum calcium sulfate hydrate (ettring- NH4Ga(SO4)2- 12H2O ...... 6 9 ite), Al203-6Ca0.3S03 .31H20...... 8 3 Ammonium iodide, NH41 ...... 4 56 Aluminum chloride, A1C13 ...... 9m 61 Ammonium iron fluoride, (NH4)3FeFft ...... 9m 9 Aluminum chloride hexahydrate (chlor- Ammonium iron sulfate dodecahydrate, aluminite), A1C1S -6H5O ...... 7 3 NH4Fe(S04)2- 12H20 ...... 6 10 Aluminum fluosilicate, topaz, Al2SiO4(F,OH)2 1m 4 Ammonium magnesium chromium oxide hydrate, Aluminum metaphosphate, A1(PO3)3 ...... 2m 3 (NH4)2Mg(CrO4) 2 -6H2O ...... 8m 10 Aluminum nickel, AINi ...... 6m 82 Ammonium manganese sulfate, (NHA Mn, (SO*), 7m 8 Aluminum orthophosphate (berlinite), A1PO4 Ammonium manganese sulfate hydrate, (trigonal)...... 10 (NH 4) 2Mn(SO 4) 2.6H 2O ...... 8m 12 Aluminum orthophosphate, A1PO4 (ortho- Ammonium manganese(II) trifluoride, NH4MnF3 5m 8 rhombic) ...... 10 4 Ammonium mercury chloride, NH4HgCl3 Aluminum oxide, (corundum), alpha A12O, .... 9 3 (revised) ...... 8m 14 .Aluminum oxide monohydrate (bohmite), alpha Ammonium metavanadate, NH4VO3 ...... 8 9 A1203-H20 ...... 38 Ammonium nickel chromium oxide hydrate, Aluminum oxide monohydrate, diaspore, beta (NH4)2Ni(Cr04V6H 20 ...... 8m 16 A1203-H20 ...... 3 41 Ammonium nickel (II) trichloride, NH4NiCl3 6m 6 Aluminum silicate (mullite) 3Al2O3-2SiO2 .... 3m 3 Ammonium nitrate (ammonia-niter), NH4NO3 . . 7 4 Ammonium acetate, NH4-CH 3CO 2 ...... 8m 95 Ammonium oxalate monohydrate (oxammite), Ammonium aluminum fluoride, (NH4)3A1F6 .... 9m 5 (NH4)2C204.H20 ...... 7 5 Ammonium aluminum selenate hydrate, .Ammonium perchlorate, NH4C1O4 (ortho- NH4A1 (Se04)2.12H20 ...... 9m rhombic) ...... 7 6 Ammonium aluminum sulfate dodecahydrate Ammonium perrhenate, NH4ReO4 ...... 9 7 (tschermigite), NH4A1(SO4)3 .12H2O ...... 6 3 Ammonium phosphomolybdate tetrahydrate, Ammonium azide, NH4N 3 ...... 9 4 (NH4)sP04(MoOs )12.4H20...... 8 10 Ammonium bicarbonate (teschemacherite), Ammonium sulfate (mascagnite), (NH4)2SO4 (NH4)HC03 ...... 9 5 (revised) ...... 9 8 Ammonium bromide, NH4Br...... 2 49 Ammonium yttrium oxalate hydrate, Ammonium bromoosmate, (NH4)2OsBr6 ...... 3 71 NH4Y(C204)2 .H20 ...... 8m 97 Ammonium bromoplatinate, (NH4)3PtBrfi ...... 9 6 Ammonium zinc fluoride, NH4ZnF3 ...... 8m 18 Ammonium bromoselenate, (NH4)2SeBr6 ...... 8 4 Ammonium zirconium fluoride, (NH4)sZrF7 .... 6 14 Ammonium bromotellurate, (NH4)2TeBr6 ...... 8 5 Antimony, Sb ...... 3 14 Ammonium cadmium sulfate, (NH4),Cd?(SOA 7m 5 Antimony(III) fluoride, SbF3 ...... 2m 4 Ammonium cadmium sulfate hydrate, Antimony(IU) iodide, Sbls ...... 6 16 (NH4)2Cd(SO4 ) 2 .6H2O ...... 8m 5 Antimony(III) oxide (senarmontite), Sb2Os Ammonium cadmium trichloride, NH4CdCl3 . . . 5m 6 (cubic)...... 3 31 Antimony(III) oxide, valentinite, Sb2Os Ammonium calcium sulfate, (NH4)2 Ca2(SO4)3 8m 7 Ammonium chloride (sal-ammoniac), NH 4C1. . . i 59 (orthorhombic) ...... 10 6 Antimony(IV) oxide (cervantite), Sb2O4 ...... 10 8 Ammonium chloroiridate, (NH4),IrClrt ...... 3 6 Antimony(V) oxide, Sb2Os ...... Ammonium chloroosmate, (NH4)2OsClft ...... ,T1 6 10 10 Ammonium chloropalladate, (NH4)2PdClfi ..... 8 7 Antimony scandium, SbSc...... 4m 44 Ammonium chloropalladite, (NH4)2PdCl4 ..... 6 6 .Antimony selenide, Sb2Se3 ...... 3m 7 Ammonium chloroplatinate, (NH4),PtClA ...... 5 3 Antimony (in) sulfide (stibnite), Sb2Ss ...... 5 6 Ammonium chlorostannate (NH4)2SnClo ...... 5 4 Antimony telluride, Sb2Tes ...... 3m 8 Ammonium chlorotellurate, (NH4)2TeCl6 ...... 8 8 Antimony terbium, SbTb ...... 5m 61 Ammonium chromium sulfate dodecahydrate, Antimony thorium, SbTh ...... 4m 44 NH4Cr(S04)2 .12H20 ...... 6 7 Antimony thulium, SbTm...... 4m 45 Ammonium cobalt fluoride, NH4CoF3 ...... 8m 9 Antimony ytterbium, SbYb ...... 4m 45 Ammonium cobalt (II) trichloride, NH4 CoCl3 6m 5 Antimony yttrium, SbY ...... 4m 46 Arsenic acid, H Ammonium copper chloride, NH4 CuCl,...... 7m 7 s AssOlo ...... 7m 84 Ammonium copper chloride hydrate, Arsenic, As ...... 3 6 (NH4)2CuCl4.2H20 ...... 9m 8 Arsenic(III) iodide, AsI3 ...... 6 17 Ammonium dihydrogen phosphate, NH4H2PO4 4 64 Arsenic trioxide (arsenolite), As2O, (cubic) . . 1 51 Ammonium fluoberyllate, (NH4)2BeF4 ...... 3m 5 Arsenic trioxide, claudetite, As2Os (mono- Ammonium fluoborate, NH4BF4 ...... 3m 6 clinic) ...... 3m 9 't—Ascorbic acid, CgHiO6 ...... 8m 99 'Further work on this program is in progress, and it is antic Azobenzene, C 12H 16N2 ...... 7m 86 ipated that additional sections will be issued. Therefore, the ac Barium aluminum oxide, BaAl,O4 ...... 5m 11 cumulative index here is not necessarily the concluding index for Barium arsenate, Ba3(AsO4)2 ...... 2m 6 the project. Barium, Ba ...... 4 7 m—Monograph 25. Barium borate, BaB.O,...... 7m 10 Barium boron A mineral name in ( ) indicates a synthetic sample. oxide, high form, BaB2O4 ..... 4m 4 115 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Barium boron oxide, BaB4O7 ...... 4m 6 Bismuth trioxide (bismite), alpha Bi2O3 ...... 3m 16 Barium bromate hydrate, Ba(BrO3),-H 2O ..... 8m 19 Cadmium, Cd ...... 3 10 Barium bromide monohydrate, BaBr2 -H2O..... 3m 10 Cadmium bromide, CdBr2 ...... 9 17 Barium calcium tungsten oxide, Ba2CaWO6 . .. 9m 10 Cadmium carbonate (otavite), CdCO3 ...... 7 11 Barium carbonate (witherite), BaCOs (ortho- Cadmium cerium, CdCe...... 5m 63 rhombic) ...... 2 54 Cadmium chloride, CdCl2 ...... 9 18 Barium carbonate, BaCOs(cubic) at 1075 °C . . 10 11 Cadmium chromite, CdCr2O4 ...... 5m 16 Barium chlorate hydrate, Ba(Clo 3)2 -H2O ..... 8m 21 Cadmium cyanide, Cd(CN)2 ...... 2m 8 Barium chloride, BaCl2 , (orthorhombic) ...... 9m 11 Cadmium imidazole nitrate, Barium chloride, BaCl2 , (cubic) ...... 9m 13 Cd(CsH4N2)6(N03 )2 ...... 8m 23 Barium fluoride, BaF2 ...... 1 70 Cadmium iron oxide, CdFe2O4 ...... 9m 16 Barium fluosilicate, BaSiFft ...... 4m 7 Cadmium lanthanum, CdLa...... 5m 63 Barium molybdate, BaMoO4 ...... 7 7 Cadmium molybdate, CdMoO4 ...... 6 21 Barium nitrate (nitrobarite), Ba(NOa )3 ...... 1 81 Cadmium nitrate tetrahydrate, Barium oxide, BaO ...... 9m 63 Cd(NCM.,'4H,O ...... 7m 93 Barium perchlorate trihydrate, Ba(ClO4)2-3H2O 2m 7 Cadmium oxide, CdO...... 2 27 Barium peroxide, BaO2 ...... 6 18 Cadmium oxide, CdO (ref. standard) ...... 8m 2 Barium selenide, BaSe ...... 5m 61 Cadmium perchlorate hexahydrate, Barium stannate, BaSnO, ...... 3m 11 Cd(C104)2.6H20 ...... 3m 19 Barium sulfate (barite), BaSO4 ...... 3 65 Cadmium praseodymium, CdPr...... 5m 64 Barium sulfide, BaS ...... 7 8 Cadmium selenide, CdSe (hexagonal)...... 7 12 Barium titanate, BaTiO,...... 3 45 Cadmium sulfate, CdSO4 ...... 3m 20 Barium titanium silicate (fresnoite), Cadmium sulfate hydrate, 3CdSO4 «8H2O ..... 6m 8 BaaTiSiaOs ...... 9m 14 Cadmium sulfate monohydrate, CdSO4*H2O ... 6m 10 Barium tungstate, BaWO4 ...... 7 9 Cadmium sulfide (greenockite), CdS...... 4 15 Barium zirconate, BaZrO3 ...... 5 8 Cadmium telluride, CdTe ...... 3m 21 Beryllium, alpha, Be ...... 9m 64 Cadmium tungstate, CdWO4 ...... 2m 8 Beryllium aluminum oxide (chrysoberyl), Calcium, Ca ...... 9m 68 BeAl204 ...... 9 10 Calcium aluminate, 12CaO-7;Al,O, ...... 9 20 Beryllium aluminum silicate, beryl, Calcium aluminum germanate, Ca3Al2(GeO4)3 10 15 Be,Al2(SiOs )« ...... 9 13 Calcium bromide hexahydrate, CaBr2-6H2O ... 8 15 Beryllium calcium oxide, Be,,Ca,.,O,* ...... 7m 89 Calcium carbonate (aragonite), CaCO3 Beryllium chromium oxide, BeCr2O4 ...... 10 12 (orthorhombic) ...... 3 53 Beryllium cobalt, BeCo ...... 5m 62 Calcium carbonate () CaCO3 (hexagonal) 2 51 Beryllium germanate, Be2GeO4 ...... 10 13 Calcium chromate, CaCrO4 ...... 7 13 Beryllium lanthanum oxide, Be 2 La2Os ...... 9m 65 Calcium chromium germanate, Ca3Cr2(GeO4)3 10 16 Beryllium niobium, Be,Nb...... 7m 92 Calcium chromium silicate (uvarovite), Beryllium orthosilicate, phenacite, BeSi2O4 ., 8 11 CasCr2(Si04)3 ...... 10 17 Beryllium oxide (bromellite), BeO ...... 1 36 Calcium fluoride (fluorite), CaF2 ...... 1 69 Beryllium palladium, BePd ...... 5m 62 Calcium fluoride phosphate (fluorapatite), Bis (o-dodecacarborane), C4B20H22 ...... 6m 7 Cas F(PO4)3 ...... 3m 22 Bismuth, Bi ...... 3 20 Calcium formate, Ca(HCO2)2 ...... 8 16 Bismuth cerium. BiCe ...... 4m 46 Calcium gallium germanate, Ca3Ga2(GeO4)3 . . . 10 18 Bismuth dysprosium, BiDy ...... 4m 47 Calcium hydroxide (portlandite), Ca(OH)2 .... 1 58 Bismuth erbium, BiEr ...... 4m 47 Calcium iron germanate, CasFe,(GeO4),...... 10 19 Bismuth fluoride, BiF, ...... 1m 7 Calcium iron silicate (andradite), Bismuth holmium, BiHo ...... 4m 48 Ca3Fe2Si3Q 2 ...... 9 22 Bismuth(III) iodide, Bils ...... 6 20 Calcium magnesium silicate (diopside), Bismuth lanthanum, BiLa...... 4m 48 CaMg(SiOs)2 ...... 5m 17 Bismuth neodymium, BiNd ...... 4m 49 Calcium molybdate (powellite), CaMoO4 ..... 6 22 Bismuth orthophosphate, BiPO4 (monoclinic) 3m 11 Calcium nitrate, Ca (NOS)2 ...... 7 14 Bismuth orthophosphate, BiPO4 (trigonal).... 3m 1.3 Calcium oxide, CaO ...... 1 43 Bismuth orthovanadate, low form, BiVO4 Calcium phosphate, beta-pyro-, Ca,P,O7 ..... 7m 95 (tetragonal)...... 3m 14 Calcium selenide, CaSe ...... 5m 64 Bismuth orthovanadate, high form, BiVO4 Calcium sulfate (anhydrite), CaSO4 ...... 4 65 (monoclinic)...... 3m 14 Calcium sulfide (oldhamite), CaS ...... 7 15 Bismuth oxybromide, BiOBr...... 8 14 Calcium telluride, CaTe...... 4m 50 Bismuth oxychloride (bismoclite), BiOCl .... 4 54 Calcium titanium oxide (perovskite), Bismuth oxyiodide, BiOI ...... 9 16 CaTi03 ...... 9m 17 Bismuth praseodymium, BiPr...... 4m 49 Calcium tungstate, scheelite, CaWO4 ...... 6 23 Bismuth sulfide (bismuthinite), Bi2S3 (revised) 5m 13 Calcium tungsten oxide, Ca 3WO6 ...... 9m 19 Bismuth telluride, BiTe ...... 4m 50 tri-Calcium aluminate, 3CaO-Al2O3 ...... 5 10 Bismuth telluride (tellurobismuthite), Bi2Te, 3m 16 Carbon, diamond, C...... 2 5 Cerium, antimony CeSb...... 4m 40 m—Monograph 25- Cerium arsenate, CeAsO4 ...... 4m 8 A mineral name in ( ) indicates a synthetic sample, Cerium arsenide, CeAs...... 4m 51 116 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Cerium(III) chloride, CeCl3 ...... 1m 8 Cesium magnesium sulfate hexahydrate, Cerium copper, CeCu*...... 7m 99 Cs2Mg(SO4),-6H7O...... 7m 18 Cerium(III) fluoride, CeFa ...... 8 17 Cesium manganese sulfate hexahydrate, Cerium magnesium, CeMg ...... 5m 65 Cs,Mn(SOJ,-6H,O...... 7m 20 Cerium magnesium nitrate 24-hydrate, Cesium mercury chloride, CsHgCl, ...... 7m 22 Ce2Mg3(N03 ) l2 -24H20 ...... 10 20 Cesium nickel sulfate hexahydrate, Cerium niobium titanium oxide (eschynite), Cs,Ni(SQJ,'6H,0 ...... 7m 23 CeNbTi06 ...... 3m 24 Cesium nickel (II) trichloride, CsNiCl, ...... 6m 12 Cerium nitride, CeN ...... 4m 51 Cesium nitrate, CsNO3 ...... 9 25 Cerium(IV) oxide (cerianite), CeO,...... 1 55 Cesium perchlorate, CsClO4 , (orthorhombic) 1m 10 Cerium phosphide, CeP ...... 4m 52 Cesium strontium trichloride, CsSrCl3 ...... 6m 1.3 Cerium(III) vanadate, CeVO4 ...... 1m 9 Cesium sulfate Cs2SO4 ...... 7 17 Cerium zinc, CeZn ...... 5m 65 Cesium vanadium sulfate dodecahydrate, Cesium aluminum sulfate dodecahydrate, CsV(S04 )2-12H20 ...... 1m 11 CsAl(S04V 12H20 ...... 6 25 Cesium zinc sulfate hexahydrate, Cesium beryllium fluoride, CsBeF 3 ...... 9m 69 Cs,Zn(SO,),-6H,0...... 7m 25 Cesium bromate, CsBrOs ...... 8 18 Chromium, Cr ...... 5 20 Cesium bromide, CsBr ...... 3 49 Chromium fluoride, Cr,F,...... 7m 108 Cesium bromoosmate(IV), Cs2OsBr6 ...... 2m 10 Chromium(III) fluoride trihydrate, CrF3 -3H2O 5m 25 Cesium bromoplatinate, Cs2PtBr6 ...... 8 19 Chromium iridium 3:1, Crjr ...... 6m 14 Cesium bromoselenate, Cs2SeBr6 ...... 8 20 Chromium orthophosphate, alpha, CrPO4 ..... 2m 12 Cesium bromotellurate, Cs2TeBr6 ...... 9 24 Chromium orthophosphate, beta, CrPO4 ...... 9 26 Cesium cadmium trichloride, CsCdCl3 Chromium(III) oxide, Cr2O3 ...... 5 22 (hexagonal)...... 5m 19 Chromium rhodium 3:1, Cr3 Rh ...... 6m 15 Cesium calcium fluoride, CsCaF 3 ...... 8m 25 Chromium silicide, Cr3Si ...... 6 29 Cesium calcium sulfate, Cs,Ca,(SQJ,...... 7m 12 Cobalt, Co (cubic)...... 4m 10 Cesium calcium trichloride, CsCaCl3 ...... 5m 21 Cobalt aluminum oxide, CoAl2O4 ...... 9 27 Cesium cerium chloride, Cs9CeClft...... 7m !01 Cobalt antimony oxide, CoSb2O6 ...... 5m 26 Cesium chlorate, CsCIO, ...... 8 20 Cobalt arsenide (skutterudite), CoAs3 ...... 10 21 Cesium chloride, CsCl ...... 2 44 Cobalt(II) carbonate (spherocobaltite), Cesium chloroosmate(IV), Cs2OsCl6 ...... 2m 11 CoCO3 ...... 10 24 Cesium chloroplatinate, Cs2PtClrt ...... 5 14 Cobalt chromium oxide, CoCr 2 O4 ...... 9m 21 Cesium chlorostannate, Cs2SnCl6 ...... 5 16 Cobalt diarsenide, CoAs2 (revised) ...... 4m 10 Cesium chromate, Cs2CrO4 ...... 3m 25 Cobalt fluosilicate hexahydrate, Cesium chromium sulfate dodecahydrate, CoSiF6 .6H2O...... 3m 27 CsCr(S04)2- 12H2 0 ...... 8 2i Cobalt gallate, CoGa2O4 ...... 10 27 Cesium cobalt (II) trichloride, CsCoCl3 .... 6m 11 Cobalt germanate, Co2 GeO4 ...... 10 27 Cesium copper sulfate hexahydrate, Cobalt iodide, CoI2 ...... 4m 52 Cs,Cu(SO4V6H,O...... 7m 14 Cobalt iron arsenide (safflorite), CoFeAs4 ... 10 28 Cesium copper(II) trichloride, CsCuCl3 ..... 5m 22 Cobalt iron oxide, CoFe2O4 ...... 9m 22 Cesium dichloroiodide, CsICl2 ...... 3 50 Cobalt mercury thiocyanate, Co[Hg(CNS)J ... 2m 13 Cesium fluoantimonate, CsSbFft ...... 4m 9 Cobalt(II) oxide, CoO ...... 9 28 Cesium fluoborate, CsBF4 ...... 8 22 Cobalt(II, III) oxide, Co3O4 ...... 9 29 Cesium fluogermanate, Cs2GeF6 ...... 5 17 Cobalt perchlorate hexahydrate, Cesium fluoplatinate, Cs^PtF, ...... 6 27 Co(ClO4)2.6H2O ...... 3m 28 Cesium fluoride, CsF ...... 3m 26 Cobalt silicate, Co2SiO4 (orthorhombic)...... 4m 11 Cesium fluosilicate, Cs2SiF6 ...... 5 19 Cobalt sulfate, beta, CoSO4 ...... 2m 14 Cesium gallium sulfate dodecahydrate, Cobalt Utanate, CoTiO, ...... 4m 13 CsGa(S04V 12H20 ...... 8 23 Cobalt tungstate, CoWO4 ...... 4m 13 Cesium iodine bromide, CsI,Br...... 7m 10 3 Copper, Cu ...... 1 15 Cesium iodide, Csl ...... 4 47 Copper antimony oxide, CuSb2O6 ...... 5m 27 Cesium iron sulfate dodecahydrate, Copper(I) bromide, CuBr ...... 4 36 CsFe(S04 )2. 12H20 ...... 6 28 Copper carbonate, basic, azurite, Cesium iron sulfate hexahydrate, CU3(OH)2(C03 )2 ...... 10 30 Cs,Fe(SO.V6H,0...... 7m lg Copper carbonate, basic, (malachite), Cesium lead fluoride, CspbF3 ...... 8m 26 CU2(OH)2C03 ...... 10 31 Cesium lead(II) trichloride, CsPbCl3 Copper (I) chloride (nantokite), CuCl ...... 4 35 (tetragonal)...... 5m 24 Copper glutamate dihydrate, Cesium lithium fluoride, CsLiF2...... 7m 105 CuC,H7NO.-2H,0 ...... 7m 110 Cesium magnesium chromium oxide, Copper(I) iodide (marchite), Cul ...... 4 38 Cs2Mg2(CrO4)3 ...... 8m 27 Copper (I) oxide (cuprite), Cu2O ...... 2 23 Cesium magnesium chromium oxide hydrate, Copper(II) oxide (tenorite), CuO ...... 1 49 Cs2Mg(CrO4)2 '6H2O ...... 8m 29 Copper phosphate, alpha-pyro-, Cu,P,O7 . .... 7m 113 Copper pyrazole chloride, Cu(C 3H4N2 )4Cl2 ... 8m 31 m—Monograph 25. Copper sulfate (chalcocyanite), CuSO4 ...... 3m 29 A mineral name in ( ) indicates a synthetic sample. Copper(II) sulfide (covellite), CuS ...... 4 13 117 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Dibenzoy 1methane, C^H^O,...... 7m 115 Gold vanadium 1:3, AuV3 ...... 6m 18 Dysprosium antimony, DySb...... 4m 41 Hafnium, Hf ...... 3 18 Dysprosium arsenate, DyAsO4 ...... 3m 30 Hexam ethyl en ediammonium adipate, Dysprosium arsenide, DyAs...... 4m 53 7m 121 Dysprosium gallium oxide, Dy3Ga7(GaO4)3 ... 2m 15 Holmium arsenate, HoAsO4 ...... 3m 34 Dysprosium nitride, DyN ...... 4m 53 Holmium ethylsulfate nonahydrate, Dysprosium sesquioxide, Dy2 O3 ...... 9 30 Hot(CaH§ )SOj s -9HaO ...... 1m 18 Dysprosium telluride, DyTe...... 4m 54 Holmium nitride, HoN ...... 4m 58 Dysprosium vanadate, DyVO4 ...... 4m 15 Holmium selenide, HoSe ...... 4m 59 Erbium antimony, ErSb ...... 4m 41 Holmium sesquioxide, Ho2O3 ...... 9 32 Erbium arsenate, ErAsO4 ...... 3m 31 Holmium vanadate, HoVO4 ...... 4m 18 Erbium arsenide, ErAs ...... 4m 54 Hydrogen borate, beta, HBO2 ...... 9m 71 Erbium gallium oxide, Er3Ga2(GaO4}3 ...... 1m 12 Hydrogen iodate, HI3O8 ...... 8m 104 Erbium manganite, ErMnO, ...... 2m 16 Hydroquinone, gamma, C 6H6O2 ...... 8m 107 Erbium nitride, ErN ...... 4m 55 Imidazole nickel nitrate, (C,H4N,)ANi(NO,),. . 7m 27 Erbium phosphate, ErPO4 ...... 9 31 Imidazole zinc chloride, (C,H4N2)2 ZnCl, .... 7m 123 Erbium sesquioxide, Er2O3 ...... 8 25 Indium, In ...... 3 12 Erbium telluride, ErTe ...... 4m 55 Indium antimony, InSb ...... 4 73 Erbium vanadate, ErVO4 ...... 5m 29 Indium arsenide, InAs ...... 3m 35 Europium arsenate, EuAsO4 ...... 3m 32 Indium oxide, In2O3 ...... 5 26 Europium(III) chloride, EuCl5 ...... 1m 13 Indium phosphate, InPO4 ...... 8 29 Europium gallium oxide, Eu,Ga2(GaO4) s ...... 2m 17 lodic acid, HIO3 ...... 5 28 Europium nitride, EuN ...... 4m 56 Iodine, I2 ...... 3 16 Europium oxide, EuO ...... 4m 56 Iridium , Ir ...... 4 9 Europium oxychloride, EuOCl ...... 1m 13 Iridium dioxide, IrO2 ...... 4m 19 Europium(III) vanadate, EuVO4 ...... 4m 16 Iridium niobium 1: 3, IrNb3 ...... 6m 19 Gadolinium antimony, GdSb ...... 4m 42 Iridium titanium 1:3, IrTi3 ...... 6m 20 Gadolinium arsenate, GdAsO4 ...... 4m 17 Iridium vanadium 1:3, IrV3 ...... 6m 21 Gadolinium arsenide, GdAs ...... 4m 57 Iron, alpha Pe ...... 4 3 Gadolinium chloride hexahydrate, Iron arsenide, FeAs ...... 1m 19 GdCl,-6H,O...... 7m 118 Iron arsenide (loellingite), FeAs2 ...... 10 34 Gadolinium fluoride, GdF3 ...... 1m 14 Iron bromide, FeBr2 ...... 4m 59 Gadolinium gallium oxide, Gd3Ga2(GaO4) s .... 2m 18 Iron iodide, FeI2 ...... 4m 60 Gadolinium indium, Gdln ...... 5m 67 Iron(II,III) oxide (magnetite), Fe3O4 ...... 5m 31 Gadolinium nitride, GdN ...... 4m 57 iron sulfate hydrate (melanterite), FeSO4-7H2O 8m 38 Gadolinium oxide, Gd2O, ...... 1m 16 Iron sulfide (pyrite), FeS2 ...... 5 29 Gadolinium oxychloride, GdOCl ...... 1m 17 bis-(N-lsopropyl-3-ethylsalicylaldiminato) Gadolinium titanium oxide, Gd2TiOs ...... 8m 32 palladium, (Cf ,H fRNO),Pd...... 7m 144 Gadolinium vanadate, GdVO4 ...... 5m 30 Lanthanum antimony, LaSb ...... 4m 42 Gallium, Ga ...... 2 9 Lanthanum arsenate, LaAsO4 ...... 3m 36 Gallium antimonide, GaSb ...... 6 30 Lanthanum arsenide, LaAs ...... 4m 60 Gallium arsenide, GaAs ...... 3m 33 Lanthanum borate, LaBO, ...... 1m 20 Gallium oxide, alpha, Ga2O3 ...... 4 25 Lanthanum chloride, LaCla ...... 1m 20 Gallium phosphate hydrate, GaPO4-2H2O .... 8m 34 Lanthanum fluoride, LaF3 ...... 7 21 Gallium phosphate («-quartz type), GaPO4 . .. . 8 27 Lanthanum magnesium, LaMg ...... 5m 69 Germanium, Ge ...... 1 18 Lanthanum magnesium nitrate 24-hydrate, Germanium dioxide, GeO2 (hexagonal) La2Mg3(NO3)12 .24H20 ...... 1m 22 (low form) ...... 1 51 Lanthanum niobium titanium oxide, LaNbTiOfi 3m 37 Germanium dioxide, GeO2 (tetragonal) Lanthanum nitrate hydrate, La(NO3 )3 *6H2O ... 8m 40 (high form) ...... 8 28 Lanthanum nitride, LaN ...... 4m 61 Germanium iodide, GeI2 ...... 4m 58 Lanthanum oxide, La2O3 ...... 3 33 Germanium(IV) iodide, GeI4 ...... 5 25 Lanthanum oxychloride, LaOCl ...... 7 22 Glyoxime, H 2C 2(NOH)2 ...... 8m 102 Lanthanum phosphide, LaP ...... 5m 69 Gold, Au ...... 1 33 Lanthanum selenide, LaSe ...... 4m 61 Gold antimony 1:2 (aurostibite), AuSb2 ...... 7 18 Lanthanum zinc, LaZn ...... 5m 70 Gold(I) cyanide, AuCN ...... 10 33 Lead, Pb ...... 1 34 Gold dysprosium, AuDy ...... 5m 66 Lead boron oxide, PbB4O7 ...... 4m 19 Gold holmium, AuHo ...... 5m 68 Lead bromide, PbBr2 ...... 2 47 Gold magnesium, AuMg...... 6m 83 Lead carbonate (cerrussite), PbCO3 ...... 2 56 Gold niobium 1:3, AuNb, ...... 6m 16 Lead chloride (cotunnite), PbCl2 ...... 2 45 Gold potassium cyanide, AuK(CN)2 ...... 8m 36 Lead formate, Pb(HCO2 )2 ...... 8 30 Gold tin, 1:1 AuSn...... 7 19 Lead fluochloride (matlockite), PbPCl ...... 1 76 Gold titanium 1:3, AuTi3 ...... 6m 17 Lead fluoride, alpha PbP2 (orthorhombic) .... 5 31 Lead fluoride, beta PbF2 (cubic) ...... 5 33 m—Monograph 25. Lead(II) iodide, Pbl, ...... 5 34 A mineral name in ( ) indicates a synthetic sample. Lead molybdate (wulfenite), PbMoO4 ...... 7 23 118 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Lead monoxide (litharge), PbO (red) tetrag Magnesium bromide, MgBr2 ...... 4m 62 onal ...... 2 30 Magnesium carbonate (magnesite), MgCO,.... 7 28 Lead monoxide (massicot), PbO (yellow) Magnesium chloride dodecahydrate, (orthorhombic) ...... 2 32 MgCl,*12H,O...... 7m 135 Lead nitrate, Pb(NOs)2 ...... 5 36 Magnesium chromite (picrochromite), Lead(U, .III) oxide (minium), PbsO4 ...... 8 32 MgCr2O4 ...... 9 34 Lead oxybromide, Pb3O2Br2 ...... 5m 32 Magnesium fluoride (sellaite), MgF2 ...... 4 33 Lead phosphate hydrate, Pb5 (PO4)sOH ...... 8 33 Magnesium gallate, MgGa,O4 ...... 10 36 Lead selenide (clausthalite), PbSe ...... 5 38 Magnesium germanate, MgjGeC^ (cubic)...... 10 37 Lead sulfate (anglesite), PbSO, ...... 3 67 Magnesium germanate, Mg2GeO4 (ortho- Lead sulfide (galena), PbS ...... 2 18 rhombic) ...... 10 38 Lead titanate, PbTiOs ...... 5 39 Magnesium hydrogen phosphate trihydrate, Lead tungstate (stolzite), PbWO4 (tetragonal) newberyite, MgHPO,-3H,O ...... 7m 139 (revised) ...... 5m 34 Magnesium hydroxide (brucite), Mg(OH)2 ..... 6 30 Lead uranium oxide, pb3UO6 ...... 8m 109 Magnesium molybdate, MgMoO,...... 7m 28 Lithium aluminum fluoride, alpha, Li 3AlF fi ... 8m 111 Magnesium oxide (periclase), MgO ...... 1 37 Lithium arsenate, Li3AsO4 ...... 2m 19 Magnesium perchlorate hexahydrate, Lithium azide, LiN3 ...... 8m 113 Mg(C10J,-6H,0 ...... 7m 30 Lithium barium trifluoride, LiBaF,...... 5m 35 Magnesium phosphate, alpha, Mg2 P2O7 ...... 9m 73 Lithium beryllium fluoride, Li,BeFA...... 7m 126 Magnesium selenide, MgSe...... 5m 70 Lithium borate, Li2B4O7 ...... 8m 114 Magnesium selenite hydrate, MgSeo 3'6H 2o ... 8m 116 Lithium bromide, LiBr ...... 4 .30 Magnesium silicate, enstatite, MgSiO3 ...... 6 32 Lithium carbonate, Li2CO3 ...... 8m 42 Magnesium silicate (forsterite), Mg2SiO4 ..... 1 83 Lithium chloride, LiCl ...... 1 62 Magnesium silicate fluoride (norbergite), Lithium fluoride, Li F ...... 1 61 MgaSiO,-MgF2 ...... 10 39 Lithium iodate, LiIO3 ...... 7 26 Magnesium silicate fluoride (humite), Lithium molybdate, Li2MoO4 (trigonal)...... 1m 23 3Mg2SiO4-MgF2 ...... 1m 30 Lithium niobate, LiNbO3 ...... 6m 22 Magnesium sulfate heptahydrate (epsomite), Lithium nitrate, LiNO, ...... 7 27 MgS04.7H20 ...... 7 30 Lithium oxide, Li2O ...... 1m 25 Magnesium sulfide, MgS ...... 7 31 Lithium perchlorate trihydrate, LiClO4 .3H7O 8 34 Magnesium sulfite hydrate, MgSOs.6H2O ..... 9m 26 Lithium phosphate, low form (lithiophos- Magnesium tin, Mg2Sn ...... 5 41 phate), Li3PO4 (orthorhombic) revised ..... 4m 21 Magnesium titanate (geikielite), MgTiO, ..... 5 43 Lithium phosphate, high form, Li3PO4 ...... 3m 39 Magnesium tungstate, MgWO4 ...... 1 84 Lithium rubidium fluoride, LiRbF,...... 7m 128 Manganese, alpha, Mn...... 7m 142 Lithium sodium aluminum fluoride, Manganese aluminate (galaxite), MnAl2O4 .... 9 35 cryolithionite, Li3Na3Al2F12 ...... 9m 23 Manganese bromide, MnBr2 ...... 4m 63 Lithium sodium sulfate, LiNaSO4 ...... 6m 24 Manganese(II) carbonate (rhodochrosite), Lithium sulfate, Li2SQ4 ...... 6m 26 MnC03 ...... 7 32 Lithium sulfate monohydrate, Li2SO4-H2O .... 4m 22 Manganese chloride (scacchite), MnCl2 ...... 8m 43 Lithium trimetaphosphate trihydrate, Manganese chloride hydrate, MnCl2.4H2O .... 9m 28 LisP3O,.3H2O ...... 2m 20 Manganese cobalt oxide, MnCo,O4 ...... 9m 30 Lithium tungstate, Li2WO4 (trigonal) ...... 1m 25 Manganese ferrite (jacobsite), MnFe2O4 ...... 9 36 Lithium tungstate hemihydrate, Li2WO4.y2H2O 2m 20 Manganese iodide, Mnl2 ...... 4m 6.3 Lithium uranium fluoride, LiUF, ...... 7m 131 Manganese(II) oxide (manganosite), MnO ..... 5 45 Lutetium arsenate, LuAsO4 ...... 5m 36 Manganese(III) oxide (partridgeite), Mn2O3 ... 9 37 Lutetium gallium oxide, LuaGa,(GaOJ, ...... 2m 22 Manganese selenide, MnSe...... 10 41 Lutetium manganite, LuMnO3 ...... 2m 23 Manganese sulfide (alabandite), alpha MnS. . . 4 11 Lutetium nitride, LuN...... 4m 62 Manganese(II) tungstate (huebnerite), MnWO4 2m 24 Lutetium oxide, Lu2O, ...... 1m 27 Manganese vanadiun oxide, Mn2V2O7 ...... 9m 75 Lutetium vanadate, LuVO4 ...... 5m 37 Mercury(I) bromide, Hg2Br2 ...... 7 33 Magnesium, Mg...... 1 10 Mercury(I) chloride (calomel), Hg2Cla ...... 1 72 Magnesiun aluminum oxide (spinel), Mercury(ll) chloride, HgCl2 ...... 1 73 MgAl2O4 (revised) ...... 9m 25 Mercurydl) cyanide, Hg(CN)2 ...... 6 35 Magnesium aluminum silicate (pyrope), Mercury(II) fluoride, HgF2 ...... 2m 25 Mg,Al2(Si04 )3 ...... 4m 24 Mercury(I) iodide, Hgl...... 4 49 Magnesium aluminum silicate (low cordi- Mercury iodide, HgI2 (tetragonal) (revised) ... 7m 32 erite), Mg^Al4Sig O18 (orthorhombic)...... 1m 28 Mercury magnesium, HgMg ...... 6m 84 Magnesium aluminum silicate (high cordi- Mercurydl) oxide (montroydite) HgO (revised) 9 39 erite), Mg2Al 4Sis O 18 (hexagonal) ...... 1m 29 Mercury(II) selenide (tiemannite), HgSe ...... 7 35 Magnesium ammonium phosphate hexahy- Mercurydl) sulfide (cinnabar), HgS (hex drate (struvite), MgNH4PO4-6H2O...... 3m 41 agonal) ...... 4 17 Magnesium boron oxide, Mg2B2O5 (triclinic) . . 4m 25 Mercury(II) sulfide (metacinnabar), HgS (cubic)...... 4 21 m—Monograph 25. Mercury sulfide chloride, alpha, HgsS2Cl 2 .... 8m 118 A mineral name in ( ) indicates a synthetic sample. Metabolic acid, HBO2 (cubic) ...... 4m 27 119 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Methanesulfonanilide, C fiH 5 -NH-SO2CH3 ..... 9m 78 Plutonium telluride, PuTe ...... 4m 66 N-methylphenazLnium tetracyanoquinodi- Potassium acid phthalate, methanide, C,, H,, N,...... 7m 146 C6H4(COOH) (COOK) ...... 4m 30 Molybdenum, Mo...... 1 20 Potassium aluminum sulfate, KA1 (SO4 )2 ..... 9m 31 Molybdenum disulfide (molybdenite), MoS2 ... 5 47 Potassium aluminum sulfate dodecahydrate, Molybdenum osmium 3:1, Mo,Os ...... 6m 28 (alum), KA1(SO4)2 - 12H2O ...... 6 36 Molybdenum trioxide (molybdite), MoO3 ...... 3 30 Potassium barium nickel nitrite, 2-Naphthylamine, n-phenyl-, C1ftH13N ...... 6m 29 KaBaNi (N02 )6 ...... 9m 32 Neodymium antimony, NdSb ...... 4m 43 Potassium borohydride, KBH4 ...... 9 44 Neodynium arsenate, NdAsO4 ...... 4m 28 Potassium bromate, KBrO3 ...... 7 38 Neodymium arsenide, NdAs ...... 4m 64 Potassium bromide, KBr ...... 1 66 Neodymium borate, NdBO, ...... 1m 32 potassium bromide chloride, KBr0.5 Cl0. 5 .... 8m 46 Neodymium chloride, NdCl, ...... 1m 33 Potassium bromoplatinate, K2PtBr6 ...... 8 40 Neodymium ethylsulfate nonahydrate, Potassium bromoselenate, K,SeBrfi ...... 8 41 NdL(C2Hs )S04]3 .9H20 ...... 9 41 Potassium cadmium fluoride, KCdP3 ...... 8m 47 Neodymium fluoride, NdP3 ...... 8 36 Potassium cadmium sulfate, K,Cd, (SO4), .... 7m 34 Neodymium gallium oxide, Nd3 Ga2(GaO4)3 .... 1m 34 Potassium cadmium trichloride, KCdCl3 ..... 5m 38 Neodymium oxide, Nd7O, ...... 4 26 Potassium calcium carbonate (fairchildite), Neodymium oxychloride, NdOCl ...... 8 37 K2Ca(CO3 )2 ...... Neodymium selenide, NdSe ...... 5m 71 8m 48 Neodymium vanadate, NdVO4 ...... 4m 30 Potassium calcium chloride (chlorocalcite), Neptunium nitride, NpN ...... 4m 64 KCaCl,...... 7m 36 Nickel, Ni ...... 1 13 potassium calcium fluoride, KCaF3 ...... 8m 49 Nickel aluminate, NiAl2O4 ...... 9 42 Potassium calcium magnesium sulfate, Nickel arsenic 1:2 (rammelsbergite), NiAs2 . . . 10 42 K,CaMg(SO.),...... 7m 37 Nickel arsenic sulfide (gersdorffite). NiAsS . . 1m 35 Potassium calcium nickel nitrite, Nickel(II) carbonate, NiCO5 (trigonal) ...... 1m 36 K2CaNi(NO2)fi ...... 9m 33 Nickel chloride, NiCl2 ...... 9m 81 Potassium calcium sulfate, K,Ca, (SO4),..... 7m 39 Nickel ferrite (trevorite), NiFe2O4 ...... 10 44 Potassium chlorate, KC1O3 ...... 3m 42 Nickel fluosilicate hexahydrate, NiSiF6-6H2O 8 38 Potassium chloride (sylvite), KC1 ...... 1 65 Nickel gallate, NiGa2O4 ...... 10 45 Potassium chloroplatinate, K2PtCl6 ...... 5 49 Nickel germanate, Ni2GeO4 ...... 9 43 Potassium chlororhenate, K3ReClfi ...... 2m 28 Nickel(II) oxide (bunsenite), NiO ...... 1 47 Potassium chlororuthenate(IV), K2RuCl6 ..... 10 46 Nickel phosphide, Ni 12 P5 ...... 9m 83 Potassium chlorostannate, K2SnClfi ...... 6 38 Nickel pyrazole chloride, Ni(C3H4N 2)4Cl2 .... 8m 44 Potassium chromium sulfate dodecahydrate, Nickel sulfate, NiSO4 ...... 2m 26 KCr(S04 )2-12H20 ...... 6 39 Nickel sulfate hexahydrate (retgersite), Potassium cobalt (II) sulfate, K2Co2 (SO4)3 ... 6m 35 NiS04-6H20 ...... 7 36 Potassium cobalt (II) trifLuoride, KCoF3 ..... 6m 37 Nickel sulfide, millerite, NiS ...... 1m 37 Potassium cobaltinitrite, K3Co(NO2 )6 ...... 9 45 Nickel tungstate, NiWO4 ...... 2m 27 Potassium copper chloride, KCuCl^ ...... 7m 41 Niobium osmium 3:1, Nb3Os...... 6m 30 Potassium copper chloride hydrate Niobium oxychloride, NbOCl,...... 7m 148 (mitscherlichite), K2CuCl4.2H2 O ...... 9m 34 Niobium platinum 3:1, Nb3Pt ...... 6m 31 Potassium copper (II) trifluoride, KCuF3 ..... 6m 38 Niobium silicide, NbSi2 ...... 8 39 Potassium cyanate, KCNO ...... 7 39 Osmium, Os ...... 4 8 Potassium cyanide, KCN ...... 1 77 Osmium titanium, OsTi...... 6m 85 Potassium hydrogen diformate KH (HCOO)2 .. 9m 93 Palladium, Pd ...... 1 21 Potassium dihydrogen arsenate, KH^AsO4 .... 1m 38 Palladium hydride, PdH0.70fi ...... 5m 72 Potassium dihydrogen phosphate, KH2PO4 ... 3 69 Palladium oxide, PdO ...... 4 27 Potassium fluogermanate, K2GeF6 ...... 6 41 Palladium vanadium 1:3, PdV3 ...... 6m 32 Potassium fluoplatinate, K2PtF6 ...... 6 42 Phosphorus bromide, PBr7 ...... 7m 150 Potassium fluoride, KF ...... 1 6.4 Phosphorus oxide (stable form I), P2O5 , Potassium fluosilicate (hieratite), K2SiF6 .... 5 50 (orthorhombic) ...... 9m 86 Potassium fluotitanate, K2TiFfi ...... 7 40 Phosphorus oxide (stable form II), P2O5 , Potassium heptafluozirconate, K,ZrF7 ...... 9 46 (orthorhombic) ...... 9m 88 Potassium hydroxide, KOH at 300 °C ...... 4m 66 Phosphorus oxide (metastable form), P4O10 , Potassium hydroxy-chlororuthenate, (rhombohedral) ...... 9m 91 K4RU2C1 I0O.H 20 ...... 10 47 Pimelic acid, C,H,,O, ...... 7m 153 Potassium iodide, KI ...... 1 68 Platinum, Pt...... 1 31 Potassium iron cyanide, K3Fe (CN)fi ...... 9m 35 Platinum titanium 1:3, PtTi3 ...... 6m 33 Potassium iron fluoride, K3FeF6 ...... 9m 37 Platinum vanadium 1:3, PtV3 ...... 6m 34 Potassium iron (II) trifluoride, KFeF3 ...... 6m 39 Plutonium arsenide, PuAs ...... 4m 65 Potassium lithium sulfate, KLiSO4 ...... ,3m 43 Plutonium phosphide, PuP...... 4m 65 potassium magnesium chloride hydrate (carnallite), KMgCl3 -6H2O ...... 8m 50 m—Monograph 25. Potassium magnesium chromium oxide, A mineral name in ( ) indicates a synthetic sample. K2Mg2(Cr04)3 ...... 8m 52

120 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Potassium magnesium sulfate (langbeinite), Rubidium cadmium trichloride, low form, K2Mga (SO4)3 ...... 6m 40 RbCdCla (orthorhombic) ...... 5m 41 potassium magnesium sulfate hydrate Rubidium calcium chloride, RbCaCl,...... 7m 47 (picromerite), K2Mg(SO4)2 -6H 2O ...... 8m 54 Rubidium calcium fluoride, RbCaP3 ...... 8m 57 Potassium magnesium trifluoride, KMgP3 .... 6m 42 Rubidium calcium sulfate, Rb0 Ca,(SOJ,..... 7m 48 Potassium manganese (II) sulfate Rubidium chlorate, RbClOs ...... 8 47 (manganolangbeinite), K2Mn2(SO4)3 ...... 6m 43 Rubidium chloride, RbCl ...... 4 41 Potassium manganese (II) trifluoride, KMnF3 6m 45 Rubidium chloroplatinate, Rb2PtCl6 ...... 5 53 Potassium nickel fluoride, KNiF,...... 7m 42 Rubidium chlorostannate, Rb2SnCl6 ...... 6 46 Potassium nickel (II) sulfate, K2Ni2(SO4)3 .... 6m 46 Rubidium chlorotellurate, Rb2TeCl6 ...... 8 48 Potassium niobium fluoride, K2NbF7 ...... 8m 120 Rubidium chromate, Rb2CrO4 ...... :3m 46 Potassium nitrate (niter), KNOS ...... 3 58 Rubidium chromium sulfate dodecahydrate, Potassium nitrite, KNO2 ...... 9m 38 RbCr(S04)2 .12H20 ...... 6 47 Potassium nitroso chlororuthenate, Rubidium cobalt fluoride, RbCoP 3 ...... 8m 58 K2RuCl 5 NO...... 2m 29 Rubidium cobalt sulfate, Rb2Co2(SO4) 3 ...... 8m 59 Potassium oxalate hydrate, K2C2O4.H2O ..... 9m 39 Rubidium cobalt (II) trichloride, RbCoCl, .... 6m 57 Potassium oxalate perhydrate, K2C2O4.H2O2 .. 9m 96 Rubidium copper sulfate hydrate, Potassium perchlorate, KC1O4 ...... 6 43 Rb2Cu(SO4 )2 -6H2O ...... 8m 61 Potassium perchromate, K3CrOt ...... 3m 44 Rubidium fluoplatinate, Rb2PtF6 ...... 6 48 Potassium periodate, KIO4 ...... 7 41 Rubidium fluoride, RbP ...... 8m 63 Potassium permanganate, KMnO4 ...... 7 42 Rubidum fluosilicate, Rb2SiP6 ...... 6 49 Potassium perrhenate, KReO4 ...... 8 41 Rubidium iodide, Rbl ...... 4 43 Potassium phosphomolybdate tetrahydrate, Rubidium iron sulfate hydrate, K2P04(Mo03)12.4H20 ...... 8 43 Rb2Fe(SO4)2*6H2O ...... 8m 64 Potassium selenate, K-jSeC^ ...... 9m 41 Rubidium magnesium chromium oxide, Potassium sodium aluminum fluoride Rb2Mg2(CrO4X ...... 8m 66 (elpasolite), K5NaAlF...... 9m 43 Rubidium magnesium chromium oxide hydrate, Potassium sodium sulfate, KNaSO4 ...... 6m 50 Rb2Mg(CrO4 )2 -6H2O ...... 8m 68 Potassium sodium sulfate, K,67Na1 .33SO4 .... 6m 48 Rubidium magnesium sulfate, Rb,Mg,(SO4), .. 7m 50 Potassium sodium sulfate (aphthitalite), Rubidium magnesium sulfate hydrate, K3Na(S04)2 ...... 6m 52 Rb2Mg(SO4)2'6H 2O ...... 8m 70 Potassium sulfate, K2S2 O7 ...... 9m 99 Rubidium manganese sulfate, Rb2Mn,(SO4), .. 7m 52 Potassium sulfate (arcanite), K2SO4 ...... 3 62 Rubidium manganese(II) trifluoride, RbMnF,. . 5m 44 Potassium thiocyanate, KCNS...... 8 44 Rubidium nickel sulfate, Rb2Ni2(SO4)3 ...... 8m 72 Potassium vanadium oxide, KV 3O8 ...... 8m 56 Rubidium nickel sulfate hydrate, Potassium zinc decavanadate 16 hydrate, Rb2Ni(SO4V6H2O ...... 8m 74 K2 Zn2V ie028 - 16H20 ...... 3m 45 Rubidium nickel (II) trichloride, RbNiCl3 .... 6m 58 Potassium zinc fluoride, KZnP, ...... 5 51 Rubidium nitrate, RbNO, (trigonal)...... 5m 45 Potassium zinc sulfate hexahydrate, Rubidium oxalate perhydrate, Rb2C2O4.H2O2 .. 9m 102 K,Zn(SOJ,-6H,0...... 7m 43 Rubidium perchlorate, RbClO4 ...... 2m 30 Potassium zinc sulfate, K2Zn2(SO4)3 ...... 6m 54 Rubidium periodate, RbIO4 ...... 2m 31 Praseodymium antimony, PrSb...... 4m 43 Rubidium potassium chloride, Rb0.5 K0, 5 C1 .. 8m 76 Praseodymium arsenate, PrAsO4 ...... 4m 32 Rubidium selenate, Rb2SeO4 ...... 9m 44 Praseodymium arsenide, PrAs...... 4m 67 Rubidium strontium chloride. RbSrCl, ...... 7m 54 Praseodymium chloride, PrCl3 ...... 1m 39 Rubidium sulfate, Rb2SO4 ...... 8 48 Praseodymium fiuoride, PrF3 ...... 5 52 Rubidium zinc fluoride, RbZnF,...... 7m 57 Praseodymium oxychloride, PrOCl ...... 9 47 Rubidium zinc sulfate hexahydrate, Praseodymium sulfide, PrS ...... 4m 67 Rb,Zn(SO.)^6H,O...... 7m 55 Praseodymium vanadate, PrVO4 ...... 5m 40 Ruthenium, Ru...... 4 5 Praseodymium zinc, PrZn ...... 5m 72 Ruthenium titanium, RuTi ...... 6m 86 Reserpine, C33H40N2O9 ...... 8m 123 Samarium arsenate, SmAsO4 ...... 4m 33 Rhenium, Re...... 2 13 Samarium arsenide, SmAs...... 4m 68 Rhodium, Rh...... 3 9 Samarium chloride, SmCl3 ...... 1m 40 Rhodium vanadium 1:3, RhV3 ...... 6m 56 Samarium fluoride, SmFs ...... 1m 41 Rubidium aluminum sulfate dodecahydrate, Samarium gallium oxide, Sm^Ga,(GaOJ,...... 1m 42 RbAl(S04 V 12H20 ...... 6 44 Samarium oxide, Sm2Os (cubic) ...... 4m 34 Rubidium amide, RbNH2 ...... 5m 7.3 Samarium oxychloride, SmOCl ...... 1m 43 Rubidium bromate, RbBrO3 ...... 8 45 Samarium tin oxide, Sm2Sn2O7 ...... 8m 77 Rubidium bromide, RbBr...... 7 43 Samarium vanadate, SmVO4 ...... 5m 47 Rubidium bromotellurate, Rb3TeBr6 ...... 8 46 Scandium arsenate, ScAsO4 ...... 4m 35 Rubidium cadmium sulfate, Rb0Cd0(SO^, .... 7m 45 Scandium arsenide, Sc.As ...... 4m 68 Rubidium cadmium trichloride, high form, Scandium oxide, Sc2Os ...... 3 27 RbCdCl3 (tetragonal)...... 5m 43 Scandium phosphate, ScPO4 ...... 8 50 Scandium silicate (thortveitite), Sc7Si2O7 .... 7m 58 m—Monograph 25. Selenium, Se...... 5 54 A mineral name in ( ) indicates a synthetic sample. Selenium oxide (selenolite), SeO-, (revised). 7m 60 121 CUMULATIVE INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Silicon, Si ...... 6 Sodium calcium beryllium aluminum fluorosili- Silicon dioxide, alpha or low quartz, SiO2 cate, meliphanite, (Na0. 63Cau37)Be(Al0-13 (hexagonal) ...... 24 Slo .7) (0 6 25 F 0 75 ) ...... 8m 135 Silicon dioxide (alpha or low cristobalite), Sodium calcium beryllium fluorosilicate, SiO2 (tetragonal) (revised) ...... 10 48 leucophanite, NaCaBeFSi2O6 ...... 8m 138 Silicon dioxide (beta or high cristobalite), Sodium calcium carbonate hydrate, pirssonite, SiO2 (cubic) ...... 1 42 Na2Ca (C03 )2.2H20 ...... 9m 106 Silver, Ag ...... 1 23 Sodium calcium sulfate (glauberlte), Silver, Ag (reference standard) ...... 8m 2 Na,Ca(S04)2 ...... 6m 59 Silver antimony sulfide, AgSbS2 (cubic) ...... 5m 48 Sodium carbonate monohydrate (thermonatrite), Silver antimony sulfide (miargyrite), Na2COa.H20 ...... 8 54 ,AgSbS2 (mono clinic) ...... 5m 49 Sodium chlorate, NaClOs ...... 3 51 Silver antimony sulfide (pyrargyrite), Ag3SbS3 Sodium chloride (halite), Nad ...... 2 41 (trigonal) ...... 5m 51 Sodium chromium oxide, Na2CrO4 ...... 9m 48 Silver antimony telluride, AgSbTe2 ...... 3m 47 Sodium chromium oxide hydrate, Silver arsenate, Ag, AsO4 ...... 5 56 NaaCrO4 .4H3O ...... 9m 50 Silver arsenic sulfide, xanthoconite, Ag3AsS3 8m 126 Sodium cobalt (II) sulfate tetrahydrate, Silver bromate, AgBrO, ...... 5 57 Na2Co(S04)2 .4H20 ...... 6m 61 Silver bromide (bromyrite), AgBr ...... 4 46 Sodium cyanate, NaCNO ...... 2m ;33 Silver carbonate, Ag2COs ...... 1m 44 Sodium cyanide, NaCN (cubic) ...... 1 78 Silver chlorate, AgClO3 ...... 1 44 Sodium cyanide, NaCN (orthorhombic) at 6 ° C 1 79 Silver chloride, (cerargyrite), AgCl ...... 4 44 Sodium dichromate dihydrate, Na,Cr,O,-2H,O 7m 62 Silver cyanide , AgCn ...... 9m 46 Sodium fluoride (villiaumite), NaF ...... 1 63 Silver dysprosium, AgDy ...... 5m 66 Sodium hexametaphosphate hexahydrate, Silver erbium, AgEr ...... 5m 67 5m 54 Silver gadolinium, AgGd ...... 6m 87 Sodium hydrogen silicate tetrahydrate, Silver holmium, AgHo ...... 5m 68 Na,H,SiO,-4H, O ...... 7m 163 Silver iodide (iodyrite), Agl (hexagonal) ..... 8 51 Sodium hydrogen sulfate hydrate, Silver iodide, gamma, Agl (cubic) ...... 9 48 NaHSO4.HaO ...... 9m 52 Silver molybdate, Ag2MoO4 ...... 1 45 Sodium hydroxide, NaOH at 300 ° C ...... 4m 69 Silver neodymium, AgNd ...... 5m 71 Sodium iodate, NaIOs ...... 7 47 Silver nitrate, AgNO3 ...... 5 59 Sodium iodide, Nal ...... 4 31 Silver nitrite, AgNO2 ...... 5 60 Sodium iron fluoride, Na3FeF 6 ...... 9m 54 Silver oxalate, Ag2C 2O4 ...... 9m 47 Sodium lanthanum fluosilicate, Silver oxide, Ag2O ...... 1m 45 (Na.La.) (SiOAF, ...... 7m 64 Silver(II) oxynitrate, AgTO.NOs ...... 4 61 Sodium magnesium aluminum boron hydroxy Silver periodate, AgIO4 ...... 9 49 silicate, dravite, NaMg3 Al6B5Si6O27(OH)4 . . 3m :47 Silver permanganate, AgMnO4 ...... 7m 155 Sodium magnesium sulfate tetrahydrate, Silver perrhenate, AgReO4 ...... 8 53 bloedite, Na2Mg(SO4)2 -4H2O ...... 6m 63 Silver phosphate, Ag,PO4 ...... 5 62 Sodium manganese (II) trifluoride, NaMnF3 . . . 6m 65 Silver potassium cyanide, AgK(CN)± ...... 8m 78 Sodium mercury (II) trichloride dihydrate, Silver samarium. AgSm ...... 5m 73 NaHgCl3 .2H2O ...... 6m 66 Silver selenate, Ag2SeO4 ...... 2m 32 Sodium molybdate, Na2MoO4 ...... 1m .46 Silver sodium chloride, Ag0 .5 Na0.5 Cl ...... 8m 79 Sodium molybdenum oxide, Na2Mo2O7 ...... 9m 110 Silver subfluoride, Ag7F ...... 5m 53 Sodium neodymium fluosilicate, Silver sulfate, Ag2SO4 ...... 7 46 (Na,Nd.) (Si04),F, ...... 7m 66 Silver sulfide (argentite), Ag,S ...... 10 51 Sodium nickel (II) sulfate tetrahydrate, Silver terbium, AgTb ...... 5m 74 .NaaNi(SO4)a r4H2O ...... 6m 68 Silver thulium, AgTm ...... 5m 74 Sodium nitrate (soda-niter), NaNOs ...... 6 50 Silver yttrium, AgY ...... 5m 75 Sodium nitrite, NaNO, ...... 4 62 Sodium, Na ...... 9m 105 Sodium orthotungstate(IV) dihydrate, Sodium acid fluoride, NaHF2 ...... 5 63 2m 33 Sodium aluminum chloride silicate, sodalite, Sodium oxalate, Na2C2O4 ...... 6m 70 7m 158 Sodium perchlorate, NaClO4 (orthorhombic). . . 7 49 Sodium azide, alpha, NaN3 , at— 90 to— 100° 8m 129 Sodium periodate, NaIO4 ...... 7 48 Sodium azide, beta, NaN 3 ...... 8m 130 Sodium praseodymium fluosilicate, Sodium borate, Na,B.O, t...... 7m 160 (Na, Pr.) (Si04)ftF2 ...... 7m 68 Sodium borohydride, NaBH4 ...... 9 51 Sodium selenate , Na2SeO4 ...... 9m 55 Sodium bromate, NaBrOa ...... 5 65 Sodium silicate, alpha (III), NajSiaOs ..... 8m 141 Sodium bromide, NaBr ...... 3 47 Sodium sulfate (thenardite), Na2SO4 ...... 2 59 Sodium calcium aluminum fluoride hydrate, Sodium sulfite, Na2SO5 ...... 3 60 thomsenolite, NaCaAlF6-H 2O ...... 8m 132 Sodium te tram etaphosp hate tetrahydrate, alpha, Na4P4O l2-4H2O (monoclinic) ...... 10 52 Sodium tetrametaphosphate tetrahydrate, beta, m—Monograph 25. Na4P4012.4H2O (triclinic) ...... 2m 35 A mineral name in ( ) indicates a synthetic sample. Sodium tin fluoride, NaSn,F,...... 7m 166 122 CUMULATIVE INDEX—Continued

Vol. or sec. Page Vol. or Sodium trimetaphosphate, Na,P3O, ...... 3m 49 sec. Page Sodium trimetaphosphate monohydrate, Thallium(I) chloride, T1C1 ...... 4 51 NaaP1Ot-HaO ...... 3m 50 Thallium chloroplatinate, Tl2 PtCls ...... 5 70 Sodium tungstate, Na2WO4 ...... 1m 47 Thallium chlorostannate, Tl2SnCl6 ...... 6 54 Sodium zinc sulfate tetrahydrate, Thallium chromate, Tl2CrO4 ...... 3m 54 Na>Zn(SO4)2 -4H20 ...... 6m 72 Thallium chromium sulfate do decahy drate, Sodium zinc trifluoride, NaZnF3 ...... 6m 74 TlCr(SO4)2 .12H20...... 6 55 Sodium zirconium fluoride, Na7Zr6F31 ...... 8m 144 Thallium cobalt sulfate, Tl 2Co 2(SO4) 3 ...... 8m 85 Strontium arsenate, Srs(AsO4)2 ...... 2m 36 Thallium cobalt sulfate hexahydrate, Strontium azide, Sr(N 3 )2 ...... 8m 146 Tl5Co(SQ4 )7-6H2O...... 7m 70 Strontium boron oxide, SrB^ ...... 3m 53 Thallium copper sulfate hexahydrate, Strontium boron oxide, SrB4O7 ...... 4m 36 T19 Cu(SQJ,-6H,O ...... 7m 72 Strontium bromide hexahydrate, SrBr2 -6H3O . . . 4 60 Thallium fluosilicate, Tl2SiF6 ...... 6 56 Strontium carbonate (strontianite), SrCOs .... 3 56 Thallium gallium sulfate dodecahydrate, Strontium chloride, SrCl2 ...... 4 40 TlGa(S04)3 .12H20 ...... 6 57 Strontium chloride hexahy drate, SrCla -6H2O . . 4 58 Thallium(I) iodate, TlIOa ...... 8 62 Strontium fluoride, SrP2 ...... 5 67 Thallium(I) iodide, Til (orthorhombic) ...... 4 53 Strontium formate, Sr (CHO2 )2 ...... 8 55 Thallium iron sulfate hydrate, Strontium formate dihydrate, Sr(CHO2 )2 -2H2O Tl2Fe(SO4V6H2O ...... 8m 87 (orthorhombic) ...... 8 56 Thallium magnesium chromium oxide, Strontium indium hydroxide, Sr3In2(OH)12 ..... 6m 76 Tl2Mg2(Cr04) 3 ...... 8m 89 Strontium iodide hexahy drate, SrI2 .6H2O ..... 8 58 Thallium magnesium sulfate hexahydrate, Strontium molybdate, SrMoO4 ...... 7 50 Tl2Mg(S04)a.6HaO...... 7m 74 Strontium nitrate, Sr(NO,)2 ...... 1 80 Thallium manganese sulfate, Tl2Mn,(SO4)s ... 7m 76 Strontium oxide, SrO ...... 5 68 Thallium nickel sulfate hexahydrate, Strontium peroxide, SrO2 ...... 6 52 TlaNi(SO4)2.6HaO ...... 7m 78 Strontium scandium oxide hexahydrate, Thallium(I) nitrate, T1NO, ...... 6 58 Sr3Sc2O6.6H2O ...... 6m 78 Thallium(III) oxide, T12O3 ...... 2 28 Strontium sulfate (celestite), SrSO4 ...... 2 61 Thallium(I) perchlorate, T1C1O4 ...... 2m 38 Strontium sulfide, SrS ...... 7 52 Thallium(I) phosphate, T13PO4 ...... 7 58 Strontium telluride, SrTe ...... 4m 69 Thallium(III) phosphate, T1PO4 ...... 7 59 Strontium tin oxide, SrSno3 ...... 8m 80 Thallium(I) sulfate, T12SO4 ...... 6 59 Strontium titanate, SrTiOs ...... 3 44 Thallium(I) thiocyanate, T1CNS ...... 8 63 Strontium tungstate, Sr\VO4 ...... 7 53 Thallium(I) tungstate, T12WO4 ...... 1m 48 Strontium zirconate, SrZrO3 ...... 9 51 Thallium zinc sulfate hexahydrate, Sulfamic acid, NH3SOS ...... 7 54 Tl.Zn (SO4)9.6H,0 ...... 7m 80 Sulfur, S (orthorhombic) ...... 9 54 Thorium arsenide, ThAs...... 4m 70 Tantalum, Ta ...... 1 29 Thorium oxide (thorianite), ThOa ...... 1 57 d-Tartaric acid, C4H6O,s ...... 7m 168 Thulium arsenate, TmAsO4 ...... 3m 56 Tantalum silicide, TaSi, ...... 8 59 Thulium arsenide, TmAs ...... 4m 71 Tellurium, Te ...... 1 26 Thulium nitride, TmN ...... 4m 71 Tellurium(IV) oxide (paratellurite), TeO5 Thulium sesquioxide, Tm2O3 ...... 9 58 (tetragonal)...... 56 Thulium telluride, TmTe ...... 4m 72 Tellurium(IV) oxide, paratellurite, TeO2 Thulium vanadate, TmVO4 ...... 5m 57 (tetragonal)...... 10 55 Tin, alpha, Sn (cubic)...... 2 12 Tellurium(IV) oxide, tellurite, TeO2 (ortho- Tin, beta, Sn (tetragonal)...... 1 24 rhombic) ...... 9 57 Tin arsenide, SnAs ...... 4m 37 Terbium arsenate, TbAsO4 ...... 3m 54 Tin(II) fluoride, SnF2 ...... 3m 51 Terbium arsenide, TbAs ...... 5m 75 Tin(IV) iodide, SnI4 ...... 5 71 Terbium nitride, TbN ...... 4m 70 Tin(U) oxide, SnO ...... 4 28 Terbium phosphide, TbP ...... 5m 76 Tin(IV) oxide (cassiterite), SnO2 ...... 1 54 Terbium selenide, TbSe ...... 5m 76 Tin sulfide (berndtite), beta, SnS2 ...... 9m 57 Terbium sulfide, TbS ...... 5m 77 Tin(II) telluride, SnTe ...... 7 61 Terbium telluride, TbTe ...... 5m 77 Titanium, Ti...... 3 1 Terbium vanadate, TbVO4 ...... 5m 56 Titanium dioxide, brookite, TiO2 (ortho- Thallium aluminum sulfate dodecahydrate, rhombic) ...... 3m 57 T1A1(SO4 V 12H20 ...... 6 53 Titanium oxide (anatase), TiO9 (revised) .... 7m 82 Thallium(I) arsenate, Tl»AsO4 ...... 2m 37 Titanium oxide (rutile), TiO7 (revised) ...... 7m 83 Thallium azide, TlN 3 ...... 8m 82 Titanium(IH) oxide, TiO,. sls ...... 9 59 Thallium(I) bromate, TlBrO3 ...... 8 60 Titanium silicide, Tis Si3 ...... 8 64 Thallium bromide, TIBr ...... 7 57 Titanium sulfide, TiS2 ...... 4m 72 Thallium cadmium sulfate, Tl2Cd 2(SO4) 3 .... 8m 83 Titanium sulfide, Ti2S ...... 8m 149 Thallium(I) chlorate, T1C1O3 ...... 8 61 Trimethylammonium chloride, (CH3 )3NHC1 ... 9m 113 2,4,6—Trinitrophenetole, C 2H5 OCftH,(NO5)*. . . 8m 152 m—Monograph 25. Tungsten, \V ...... 1 28 A mineral name in ( ) indicates a synthetic sample. Tungsten, W (reference standard) ...... 8m 2 123 CUMULATIVE INDEX—Continued

Vol. or Vol. or ,ec. Page sec. Page Tungsten sulfide (tungstenite), WS2 . . . 8 65 Zinc carbonate, smithsonite, ZnCO, ...... 8 69 Uranium dioxide (uraninite), UO2 ..... 2 33 Zinc chromium oxide, ZnCr2O4 ...... 9m 59 Uranium oxide, UO ...... 5m 78 Zinc cyanide, Zn(CN) 2 ...... 5 73 Uranium selenide, USe ...... 5m 78 Zinc fluoride, ZnF2 ...... 6 60 Uranium telluride, UTe ...... 4m 73 Zinc fluosilicate hexahydrate, ZnSiF6*6H2O .. 8 70 Urea, CO(NH2) 7 ...... 7 61 Zinc germanate, Zn2GeO4 ...... 10 56 Uric acid, C 5 H4N4O3 ...... 8m 154 Zinc glutamate dihydrate, ZnC«H,N(V2H,,O 7m 170 Vanadium, V ...... 9m 58 Zinc iodide, ZnI2 ...... 9 60 Vanadium(V) oxide, V,O, ...... 8 66 Zinc iron oxide (franklinite), ZnFe2 O4 ...... 9m 60 Ytterbium arsenate, YbAsO4 ...... 4m 38 Zinc molybdate, Zn,Mo,O. I...... 7m 173 Ytterbium arsenide, YbAs ...... 4m 73 Zinc orthosilicate (willemite), ZnaSiO4 ...... 7 62 Ytterbium gallium oxide, Yb,Ga3(GaO4), 1m 49 Zinc oxide (zincite), ZnO ...... 2 25 Ytterbium nitride, YbN ...... 4m 74 Zinc pyrosilicate hydrate, hemimorphite, Ytterbium oxide, Yb2O3 ...... 6m 80 Zn4(OH)2Si207.H20...... 2 62 Ytterbium selenide, YbSe...... 5m 79 Zinc selenide, ZnSe...... 3 23 Ytterbium telluride, YbTe ...... 5m 79 .Zinc sulfate (zinkosite), ZnSO4 ...... 7 64 Ytterbium(III) vanadate, YbVO4 ...... 5m 58 .Zinc sulfate heptahydrate (goslarite), Yttrium arsenate, YAsO4 ...... 2m 39 ZnS04 .7H20 ...... 8 71 Yttrium arsenide, YAs ...... 4m 74 Zinc sulfide (wurtzite), alpha ZnS (hexag- Yttrium gallium oxide, Y,Ga,(GaO4), .. 1m 50 onal) ...... 2 14 Yttrium oxide, Y2O3 ...... 3 28 Zinc sulfide (sphalerite), beta ZnS (cubic).. . 2 16 Yttrium oxychloride, YOGI...... 1m 51 Zinc telluride, ZnTe...... 3m 58 Yttrium phosphate (xenotime), YPO4 . . 8 67 Zinc tungstate (sanmartinite), ZnWO4 ...... 2m 40 Yttrium sulfide, YS ...... 5m 80 Zirconium, alpha, Zr...... 2 11 Yttrium telluride, YTe ...... 4m 75 Zirconium dihydride, ZrH2 ...... 5m 60 Yttrium vanadate, YVO4 ...... 5m 59 Zirconium iodate, Zr(IO3)4 ...... 1m 51 Zinc, Zn ...... 1 16 Zirconium nitride, ZrN ...... 5m 80 .Zinc aluminate (gahnite), ZnAl2O4 2 38 Zirconium oxide, ZrO ...... 5m 81 Zinc antimony oxide, ZnSb2O4 ...... 4m 39 Zirconium phosphide, ZrP ...... 4m 75 Zinc borate, ZnB7O4 ...... 1 83 Zirconium silicate, zircon, ZrSiO4 ...... ,.., 4 68 Zirconium sulfate tetrahydrate, Zr(SO4)2 -4H2O 7 66

m—Monograph 25. A mineral name in ( ) indicates a synthetic sample. 124 CUMULATIVE MINERAL INDEX

Vol. or Vol. or sec Page sec. Page Alabandite, MnS...... 11 Ettringite, Al2O3 .6CaO.3SO3 .31H2O ...... 8 3 Alum, KA1(S04)2 .12H20 ...... 36 Fairchildite, K 2Ca(CO 3)2 ...... 8m 48 Ammonia-niter, NH4NOa ...... 7 4 JFluorapatite, Cas F(PO4)3 ...... 3m 22 Anatase, TiO, (revised) ...... 7m 82 Fluorite, CaF2 ...... 1 69 Andradite, Ca,Fe2Si SO12 ...... 9 22 Porsterite, Mg2SiO4 ...... 1 83 Anglesite, PbSO4 ...... 3 67 Franklinite , ZnFe2O4 ...... 9m 60 Anhydrite, CaSO4 ...... 4 65 Fresnoite , Ba2TiSi2Os ...... 9m 14 Aphthitalite, K3Na(SO4)2 ...... 6m 52 Galaxite, MnAl2O4 ...... 9 35 Aragonite, CaCO3 ...... 3 53 Galena, PbS ...... 2 18 Argentite, Ag2S ...... 10 51 Gahnite, ZnAl2O4 ...... 2 38 Arcanite, K2SO4 ...... 3 62 Geikielite, MgTiO3 ...... 5 43 Arsenolite, As2O3 ...... 1 51 Gersdorffite, NiAsS ...... 1m 35 Aurostibite, AuSb2 ...... 7 18 Glauberite, NaaCa(SO4)a ...... 6m 59 "Azurite, Cu3(OH)2(CO3)2 ...... 10 30 Goslarite, ZnSO4 -7H2O ...... 8 71 Barite, BaSO4 ...... 3 65 Greenockite, CdS ...... 4 15 Berlinite, A1PO4 ...... 10 3 Halite, NaCl ...... 2 41 Berndtite, SnS2 ...... 9m 57 "Hemimorphite, Zn4(OH)2Si2O7-H2O ...... 2 62 'Beryl, BesAl2(SiO3) 6 ...... 9 13 Hieratite, K2SiF6 ...... 5 50 Bismite, (alpha) Bi2O3 ...... 3m 17 Huebnerite, Mn\VO4 ...... 2m 24 Bismoclite, BiOCl...... 4 54 Humite, 3Mg2SiO4 -MgF2 ...... 1m 30 Bismuthinite, Bi2S3 (revised)...... 5m 13 lodyrite, Agl ...... 8 51 'Bloedite, Na^Mg(SO4)2 ..4H2O...... 6m 6.3 Jacobsite, MnFe2O4 ...... 9 36 Bohraite, A12O3.H2O...... 3 38 Langbeinite, K2Mg2(SO4)3 ...... 6m 40 Bromellite, BeO ...... 1 36 *Leucophanite, NaCaBeFSi2O6 ...... 8m 138 Bromyrite, AgBr...... 4 46 Litharge, PbO (red) ...... 2 30 *Brookite, TiO2 ...... 3m 57 Lithiphosphate, Li3PO4 ...... 4m 21 Brucite, Mg(OH)2 ...... 6 30 lioellingite, FeAs2 ...... 10 34 Bunsenite, NiO ...... 1 47 Magnesite, MgCO3 ...... 7 28 Calcite, CaCO3 ...... 2 51 Magnetite, Fe3O4 ...... 5m 31 Calomel, Hg2Cl2 ...... 1 72 Malachite, Cu2(OH)2CO3 ...... 10 31 Carnallite, KMgCl3 -6H2O ...... 8m 50 Manganolangbeinite, K2Mn2(SO4)3 ...... 6m 43 Cassiterite, SnO2 ...... 1 54 Manganosite, MnO ...... 5 45 Celestite, SrSO4 ...... 2 61 Marshite, Cul ...... 4 38 Cerargyrite, AgCl ...... 4 44 Mascagnite, (NH4)2SO4 (revised) ...... 9 8 Cerianite, CeO2 ...... 1 56 Massicot, PbO (yellow) ...... 2 32 Cerussite, PbCO, ...... 2 56 Matlockite, PbFCl ...... 1 76 Cervantite, Sb2O4 ...... 10 8 Melanterite, FeSO4-7H2O ...... 8m 38 Chalcocyanite, CuSO4 ...... 3m 29 *Meliphanite, Na.^Ca! 37BeAl. 13Si ..7O6 .25 F47s 8m 135 Chloraluminite, A1C13-6H2O ...... 7 3 Metacinnabar, HgS ...... 4 21 Chlorocalcite, KCaCl,...... 7m 36 Miargyrite, AgSbS2 ...... 5m 49 Chrysoberyl, BeAl2O4 ...... 9 10 *Millerite, NiS ...... 1m 37 Cinnabar, HgS ...... 4 17 Minium, Pb3O4 ...... 8 32 *Claudetite, As2O3 ...... 3m 9 Mitscherlichite, K3CuCl4.2H2O ...... 9m 34 Clausthalite, PbSe ...... 5 38 Molybdenite, MoS, ...... 5 47 Cordierite, Mg^A^SijO^ (orthorhombic) .. 1m 28 Molybdite, MoOs ...... 3 30 Cordierite, Mg^lJSigO^-(hexagonal)..... 1m 29 Montroydite, HgO (revised) ...... 9 39 Corundum, A12O3 ...... 9 3 Mullite, 3Al2Os.2Si02 ...... 3m 3 Cotunnite, PbCl2 ...... 2 45 Nantokite, CuCl ...... 4 35 Covellite, CuS ...... 4 13 'Newberyite, MgHPO4-3H2O ...... 7m 139 Cristobalite, (alpha or low) SiO2 (revised) 10 48 Niter, KNOS ...... 3 58 Cristobalite, (beta or high) SiO2 ...... 1 42 Nitrobarite, Ba(NO3)2 ...... 1 81 *Cryolithionite, Li 3Na3Al2F 12 ...... 9m 23 Norbergite, Mg2SiO4-MgF2 ...... 10 39 Cryptohalite, (NH4)2SiF6 ...... 5 5 Oldhamite, CaS ...... 7 15 Cuprite, Ci^O ...... 2 23 Otavite, CdCO3 ...... 7 11 *Diamond, C...... 2 5 Oxammite, (NH4)2C2O4-H2O ...... 7 5 *Diaspore, A12O3-H2O ...... 3 41 *Paratellurite, TeO2 ...... 10 55 Diopside, CaMg(SiO3)2 ...... 5m 17 Paratellurite, TeO2 ...... 7 56 "Dravite, NaMg3Al6B3Si6O27(OH)4 ...... 3m 47 Partridgeite, Mn2O3 ...... 9 37 Elpasolite, K2NaAlF6 ...... 9m 43 Periclase, MgO ...... 1 37 *Enstatite, MgSiO3 ...... 6 32 Perovskite , CaTiO3 ...... 9m 17 Epsomite, MgSO4-7H2O ...... 7 30 *Phenacite, Be2SiO4 ...... 8 11 Eschynite, CeNbTiO6 ...... 3m 24 Picrochromite, MgCr2O4 ...... 9 34 Eskolaite, C r2O3 ...... 5 22 Picromerite, K2Mg(SO4)2-6H2O ...... 8m 54 'Pirssonite, Na2Ca (CO3 )2.2H2O ...... 9m 106 * Natural mineral, Portlandite, Ca(OH)2 ...... 1 58 M-Monagraph 25. Powellite, CaMoO4 ...... 6 22 125 CUMULATIVE MINERAL INDEX—Continued

Vol. or Vol. or sec. Page sec. Page Pyrargyrite, Ag3SbS3 ...... 5m 51 Struvite, MgNH4PO4-6H2O....,,.. 3m 41 Pyrite, FeS2 ...... 5 29 Sylvite, KCl ...... 1 65 Pyrope, Mg,Al,(SiOA ...... 4m 24 *Tellurite, TeO2 ...... 9 57 * Quartz, SiO2 (alpha or low) 3 24 Tellurobismuthite, Bi2Tes ...... 3m 16 Rammelsbergite, NiAs3 ..... 10 42 Tenorite, CuO ...... 1 49 Retgersite, NiSO4-6H2O .... 7 36 Teschemacherite, NH4HCO3 ...... 9 5 Rhodochrosite, MnCO, ..... 7 32 Tschermigite. NH4A1(SO4V12H,O 6 3 Rutile, TiO2 (revised)...... 7m 83 Thenardite, Na2SO4 ...... 2 59 Safflorite, CoFeAs4 ...... 10 28 Thermonatrite, NajCOj-HjO ...... 8 54 Sal-ammoniac, NH4C1 ...... 1 59 *Thomsenolite, NaCaAlP6.H2O ... 8m 132 Sanmartinite, ZnWO4 ...... 2m 40 Thorianite, ThO3 ...... 1 57 Scacchite, MnCl 2 ...... 8m 43 Thortveitite, Sc7Si,O7 ...... 7m 58 *Scheelite, CaWO4 ...... 6 23 Tiemannite, HgSe ...... 7 35 Selenolite, SeO, (revised) .. , 7m 60 * Topaz, Al2Si04(F,OH)2 ...... 1m 4 Sellaite, MgF2 ...... 4 33 Trevorite, NiFe2O4 ...... 10 44 Senarmontite, Sb^...... 3 31 Tungstenite, WS2 ...... 8 65 Skutterudite, CoAs3 ...... 10 21 Uraninite, UO2 ...... 2 33 *Smithsonite, ZnCO3 ...... 8 69 Uvarovite, CasCr2(SiO4)s ...... 10 17 *Sodalite, Na.SUAljD^Cl, . . 7m 158 *Valentinite, Sb2O3 ...... 10 6 Soda-niter, NaNO3 ...... 6 50 Villiaumite, NaF ...... 1 63 Sphalerite, ZnS ...... 2 16 Willemite, Zn?SiO4 ...... 7 62 Spherocobaltite, CoCO3 .... 10 24 Witherite, BaCO3 ...... 2 54 Spinel, MgAl2O4 ...... 2 35 Wulfenite, PbMoO4 ...... 7 23 Spinel, MgAl2O4 (revised) . . . 9m 25 Wurtzite, ZnS ...... 2 14 Stibnite, Sb2S3 ...... 5 6 *Xanthoconite, Ag3AsS3 ...... 8m 126 Stolzite, PbWO4 (revised). . . 5m 34 .Xenotime, YPO4 ...... 8 67 Strontianite, SrCO, ...... 3 56 Zincite, ZnO ...... 2 25 Zinkosite, 2nSO4 ...... 7 64 ^Zircon, ZrSi04 ...... 4 68

* Natural mineral. m—Monograph 25. 126 FORM HBS- -TtT U.S. DEPT. OF COMM. ^PUBLICATION OR REPORT NO. 3. Recipient s Accession No. BIBLIOGRAPHIC DATA ______SHEET_____ NBS-MN 25-9 4. TITLE AND SUBTITLE S. Publication Date Standard X-ray Diffraction Powder Patterns December. 1Q71 Section 9. ——— Data for 63 Substances 4. Perfooaia$ Or£aiu£ftti on Code

7. AUTHOR(S) Howard E. Swanson, Howard F. McMurdie, Marlene C. Morr ^Performing Organization ;loise H. Evans. B. Paretzkin, Johan H. deGroot & Simon J, Carmel 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Project/Task/Work Unit No. 3130162 NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE 11. Contract/Grant No. WASHINGTON, D.C. 20234

12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Final______14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

6. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) Standard x-ray diffraction patterns are presented for 63 substances. Forty of these patterns represent experimental data and 23 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings consistent with space group extinctions. The densities and lattice constant; were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities were reported for the calculated patterns.

17. KEY WORDS (Alphabetical order, separated by semicolons) Crystal structure; integrated intensities; lattice constants; peak intensities; powdei patterns; reference intensities; standard; x-ray diffraction 18. AVAILABILITY STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) 128 Ex] UNLIMITED. UNCLASSIFIED I I FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE 20. SECURITY CLASS 22. Price TO NTIS. (THIS PAGE) $1.25 UNCLASSIFIED

G6244-P71

NBS TECHNICAL PUBLICATIONS PERIODICALS NONPERIODICALS

JOURNAL OF RESEARCH reports National Applied Mathematics Series* Mathematical tables, Bureau of Standards research and development in manuals, and studies. physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details Building Science Series. Research results, test of the work, including laboratory data, experimental methods, and performance criteria of building ma procedures, and theoretical and mathematical analy terials, components, systems, and structures. ses. Illustrated with photographs, drawings, and charts. Handbooks. Recommended codes of engineering Published in three sections, available separately: and industrial practice (including safety codes) de veloped in cooperation with interested industries, professional organizations, and regulatory bodies. • Physics and Chemistry Special Publications. Proceedings of NBS confer Papers of interest primarily to scientists working in ences, bibliographies, annual reports, wall charts, these fields. This section covers a broad range of pamphlets, etc. physical and chemical research, with major emphasis on standards of physical measurement, fundamental Monographs. Major contributions to the technical constants, and properties of matter. Issued six times literature on various subjects related to the Bureau's a year. Annual subscription: Domestic, $9.50; $2.25 scientific and technical activities. additional for foreign mailing. National Standard Reference Data Series. • Mathematical Sciences NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, Product Standards. Provide requirements for sizes, numerical analysis, theoretical physics and chemis- types, quality, and methods for testing various indus ty? logical design and programming of computers trial products. These standards are developed co and computer systems. Short numerical tables. Issued operatively with interested Government and industry quarterly. Annual subscription: Domestic, $5.00; groups and provide the basis for common understand $1.25 additional for foreign mailing. ing of product characteristics for both buyers and sellers. Their use is voluntary.

• Engineering and Instrumentation Technical Notes. This series consists of communi cations and reports (covering both other agency and Reporting results of interest chiefly to the engineer NBS-sponsored work) of limited or transitory interest, and the applied scientist. This section includes many of the new developments in instrumentation resulting Federal Information Processing Standards from the Bureau's work in physical measurement, Publications. This series is the official publication data processing, and development of test methods. within the Federal Government for information on It will also cover some of the work in acoustics, standards adopted and promulgated under the Public applied mechanics, building research, and cryogenic Law 89-306, and Bureau of the Budget Circular A-86 engineering. Issued quarterly. Annual subscription: entitled, Standardization of Data Elements and Codes Domestic, $5.00; $1.25 additional for foreign mailing. in Data Systems.

TECHNICAL NEWS BULLETIN Consumer Information Series. Practical informa tion, based on NBS research and experience, covering The best single source of information concerning the areas of interest to the consumer. Easily understand Bureau's research, developmental, cooperative, and able language and illustrations provide useful back publication activities, this monthly publication is ground knowledge for shopping in today's technolog designed for the industry-oriented individual whose ical marketplace. daily work involves intimate contact with science and technology—for engineers, chemists, physicists, re NBS Special Publication 305, Supplement 1, search managers, product-development managers, and Publications of the NBS, 1968-1969. When order company executives. Annual subscription: Domestic, ing, include Catalog No. C13.10:305. Price $4.50; $3.00; $1.00 additional for foreign mailing. $1.25 additional for foreign mailing.

Order NBS publications from: Superintendent of Documents Government Printing Office Washington, D.C. 20402 U.S. DEPARTMENT OF COMMERCE WASHINGTON, D,C. 20230

OFFICIAL BUSINESS POSTAGE AND FEES PAID U.S. DEPARTMENT OP COM Ml

PENALTY FOR PRIVATE USE. $300