Section 9—Data for 63 Substances

Total Page:16

File Type:pdf, Size:1020Kb

Section 9—Data for 63 Substances iL BUREAU OF STANDARDS DEC 2 1971 Y\jCi"<- act (^t\00 UNITED STATES DEPARTMENT OF COMMERCE • Maurice H. Stans, Secretary 'OS'^io NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director Standard X-ray Diffraction Powder Patterns Section 9—Data for 63 Substances Howard E. Swanson, Howard F. McMurdie, Marlene C. Morris Eloise H. Evans, and Boris Paretzkin Assisted by Johan H. DeGroot and Simon J. Carmel Institute for Materials Research National Bureau of Standards Washington, D.C. 20234 National Bureau of Standards Monograph 25—Section 9 Nat. Bur. Stand. (U.S.), Monogr. 25—Section 9, 128 pages (Dec. 1971) CODEN: NBSMA Issued December 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.44:25/Sec. 9), Price Sl.25. Library of Congress Catalog Card Number: 53-61386 CONTENTS Page Page Introduction 1 Sodium Chromium Oxide Hydrate, Reference intensity values 4 Na^CrO^iH^O 50 Experimental patterns: Sodium Hydrogen Sulfate Hydrate, Ammonium Aluminum Fluoride, (NH^)2AIFg 5 NaHSO^-H^O 52 Ammonium Aluminum Selenate Hydrate, Sodium Iron Fluoride, Na^FeFg 54 NH^AI(SeO^)2-12H20 6 Sodium Selenate, Na^SeO^ 55 Ammonium Copper Chloride Hydrate, Tin Sulfide (berndtite), beta, SnS^ 57 (NH^)2CuCl4-2H20 8 Vanadium, V 58 Zinc Chromium Oxide, ZnCr^O^ Ammonium Iron Fluoride, (NH^)3FeFg 9 59 Zinc Iron Oxide Barium Calcium Tungsten Oxide, (franklinite), ZnFejO^ 60 Calculated patterns: Ba^CaWOg 10 Aluminum Chloride, AICI^ 61 Barium Chloride, BaCI^, (orthorhombic) 11 Barium Oxide, BaO 63 Barium Chloride, BaCI^, (cubic) 13 Beryllium, alpha, Be Barium Titanium Silicate (fresnoite), 64 Beryllium Lanthanum Oxide, Be^La^O^ BaJiSi^Og 14 65 Calcium, Ca 68 Cadmium Iron Oxide, CdFe^O^ 16 Cesium Beryllium Fluoride, CsBeF^ Calcium Titanium Oxide (perovskite), 69 Hydrogen Borate, beta, HBO^ CaTiOj 17 71 Magnesium Phosphate, alpha, Calcium Tungsten Oxide, Ca^WO^ 19 Mg^p^o^ 73 Manganese Cobalt Chromium Oxide, CoCr^O^ 21 Vanadium Oxide, Mn^V^O-, 75 Methanesulfonanilide, Cobalt Iron Oxide, CoFe^O^ 22 CgHj-NH-SO^CHj 78 Nickel Chloride, NiCI^ Lithium Sodium Aluminum Fluoride, 81 Nickel Phosphide, Ni^^P^ cryolithionite, LijNajAI^Fj^ 23 83 Phosphorus Oxide (stable form I), Magnesium Aluminum Oxide (spinel), P^Oj, (orthorhombic) 86 MgAI^O^ (revised) 25 Phosphorus Oxide (stable form II), Magnesium Sulfite Hydrate, P2O5, (orthorhombic) MgSOj-GH^O 26 88 Phosphorus Oxide (metastable form), Manganese Chloride Hydrate, MnCl2"4H20 28 P^Ojg, (rhombohedral) 91 Manganese Cobalt Oxide, MnCo^O^ 30 Potassium Aluminum Sulfate, KAKSO^)^ 31 Potassium Hydrogen Diformate, Potassium Barium Nickel Nitrite, KH(HC00)2 93 K2BaNi(N02)g 32 Potassium Oxalate Perhydrate, Potassium Calcium Nickel Nitrite, ^f^O^^^O^ 96 K2CaNi(N02)6 33 Potassium Sulfate, ^28,20^ 99 Potassium Copper Chloride Hydrate Rubidium Oxalate Perhydrate, (mitscherlichite), K2CuCI^'2H20 34 ^\i^C^O^-H^O^ 102 Potassium Iron Cyanide, K3Fe(CN)g 35 Sodium, Na 105 Potassium Iron Fluoride, K^FeFg 37 Sodium Calcium Carbonate Hydrate, Potassium Nitrite, KNO^ 38 Potassium Oxalate Hydrate, \{f,^0^-H^O 39 pirssonite, Na2Ca(C03)2-2H20 106 Potassium Selenate, K^SeO^ 41 Sodium Molybdenum Oxide, Na^Mo^O^ 110 Potassium Sodium Aluminum Fluoride Trimethylammon4um Chloride, (elpasolite), K^NaAIFg 43 (CH3)3NHCI 113 Rubidium Selenate, Rb^SeO^ 44 Cumulative index to Circular 539, Silver Cyanide, AgCN 46 Volumes 1 through 10, and Monagraph 25, Silver Oxalate, Ag^C^O^ 47 Sections 1 through 9 115 Sodium Chromium Oxiae, Na CrO, 48 Cumulative mineral index 125 iii ) Errata Monograph 25 Section 8, pg. 12; N„ should be 1.486 p Section 8, pgs. 36, 37, 46, 47, 58, 76. Data in the table headings should read: a=3. 16516 and A=l. 54056 Section 8, pg. 68; should be 1.6217 and N should be 1.6330 and N^=l .6435'^as given by Tutton Section 8, pg. 129; both tables are for hexagonal HaH^ and should appear on page 130. Section 8, pgs. 130-131; both tables are for monoclinic HaH^ and should appear on page 129 STANDARD X-RAY DIFFRACTION POWDER PATTERNS NBS Monograph 25, Sections 1, 2, 3 and NBS Circular 539, Volumes 1 thru 10 may be obtained from Mr. Howard E. Swanson, Room A221 , Materials Building, National Bureau of Standards. The following five volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. , 20402, as follows: NBS Monograph 25, Section 4, 55 cents; Section 5, 55 cents; Section 6, 60 cents; Section 7, $1.50; Section 8, $1.50. (Order by SD Catalog No. C 13.44:25/Sec.— Send orders with remittance for the above five Monographs to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C, 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage. Those wishing to be notified of future issues should send mailing address to the Government Printing Office. iv STANDARD X-RAY DIFFRACTION POWDER PATTERNS Section 9 - Data for 63 substances Howard E. Swanson, Howard F. McMurdie,' Marlene C. Morris/ Eloise H. Evans,^ and Boris Paretzkin^ Assisted by Johan H. deGroot^ and Simon J. Carmel standard x-ray diffraction patterns are presented for 63 substances. Forty of ttiese patterns represent experimental data and 23 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computer interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns. Key words: Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction. INTRODUCTION Optical data, color. A microscopic inspection for phase purity was also made on the non-opaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, with oils The Powder Diffraction File is a compilation of diffraction standardized patterns, gathered from many sources, produced, and published in sodium light, in the refractive index range 1.40 to 2.1. by the Joint Committee on Powder Diffraction Standards.^ The [Hartshorne and Stuart, I960]. The names of the File is used for identification of crystalline materials by sample colors were selected from the matching d-spacings and diffraction intensity measurements. ISCC-NBS Centroid Color Charts. Under the partial sponsorship of the Joint Committee, our program at the National Bureau of Standards contributes new Structure, lattice constants. The space groups data to this File. Our work also aids in the evaluation and are listed with short Hermann-Mauguin symbols as well as the revision of published x-ray data and in the development of space group numbers given in the International Tables for report presents information for diffraction techniques. This 63 X-ray Crystallography Vol. I [1952j. compounds (40 experimental and 23 calculated patterns), and Orthorhombic cell dimensions were arranged according to is the nineteenth of the series of "Standard X-ray Diffraction the Dana convention b>a>c [Palache et al., 1944]. Powder Patterns".* A computer program [Evans et al., 1963] assigned hke's and refined the lattice constants. Cell refinement was based EXPERIMENTAL POWDER PATTERNS only upon le values which could be indexed without ambi- guity. In indexing cubic patterns, multiple hkx's were not Sample. The samples used to make NBS patterns were reported; instead, we chose the single appropriate index obtained from a variety of sources or were prepared in small having the largest h. The number of significant figures reported quantities in our laboratory. Appropriate annealing, recrystal- for d-values varied with the symmetry and crystallinity of each lizing, or heating in hydrothermal bombs improved the quality sample. Unit cell constants and their standard errors were' of most of the patterns. A check of phase purity was usually based on least-squares refinement of the variance-covariance provided by indexing the x-ray pattern. matrix derived from the unweighted residuals. Densities. These were calculated from the NBS lattice constants, the Avogadro number (6.06252 x 10^^), and atomic Consultant and Research Associates, respectively, of the Joint Committee on weights based on carbon 12 [International Union, 1961]. Powder Diffraction Standards Associateship at the National Bureau of Standards. Interplanar spacings. For spacing determinations, a Joint Committee on Powder Diffraction Standards, 1601 Park Lane ,Swarthmore, shallow holder was packed with a sample mixed with an Pa. 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Society for Testing and Materials, the American Crystallo- internal standard (approximately 5 wt. percent tungsten graphic Association, The Institute of Physics, the National Association of powder). When tungsten lines were found to interfere, approxi- Corrosion Engineers, the American Ceramic Society, the Mineralogical Society mately 25 wt. percent powdered silver was used in place of of America, and the Canadian Mineralogical Society. tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid 'See previous page for listing of other published volumes. aberrations at the very top of the peak, the reading of le was taken at a position about 20 percent of the way down from the top, and in the center of the peak width. The internal standard powder did not flow readily, or was prone to orient ex- correction appropriate to each region was then applied to the cessively, approximately 50 volume percent of finely ground measured value of le. We have reported all data as K^j peaks silica-gel was added as a diluent.
Recommended publications
  • Material Safety Data Sheet ______1
    World Headquarters Page 1 Hach Company Date Printed 5/7/08 P.O.Box 389 MSDS No: M01321 Loveland, CO USA 80539 (970) 669-3050 MATERIAL SAFETY DATA SHEET _____________________________________________________________________________ 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Name: Liquid Nitrate Ionic Strength Adjustor Buffer Catalog Number: 2488349 Hach Company Emergency Telephone Numbers: P.O.Box 389 (Medical and Transportation) Loveland, CO USA 80539 (303) 623-5716 24 Hour Service (970) 669-3050 (515)232-2533 8am - 4pm CST MSDS Number: M01321 Chemical Name: Not applicable CAS No.: Not applicable Chemical Formula: Not applicable Chemical Family: Not applicable Hazard: May cause irritation. Date of MSDS Preparation: Day: 15 Month: July Year: 2007 _____________________________________________________________________________ 2. COMPOSITION / INFORMATION ON INGREDIENTS Demineralized Water CAS No.: 7732-18-5 TSCA CAS Number: 7732-18-5 Percent Range: 90.0 - 100.0 Percent Range Units: weight / weight LD50: None reported LC50: None reported TLV: Not established PEL: Not established Hazard: No effects anticipated. Other components, each CAS No.: Not applicable TSCA CAS Number: Not applicable Percent Range: < 1.0 Percent Range Units: weight / volume LD50: Not applicable LC50: Not applicable TLV: Not established PEL: Not established Hazard: Any ingredient(s) of this product listed as "Other component(s)" is not considered a health hazard to the user of this product. Silver Sulfate CAS No.: 10294-26-5 TSCA CAS Number: 10294-26-5 World Headquarters Page 2 Hach Company Date Printed 5/7/08 P.O.Box 389 MSDS No: M01321 Loveland, CO USA 80539 (970) 669-3050 Percent Range: 0.1 - 1.0 Percent Range Units: weight / volume LD50: None reported LC50: None reported TLV: 0.01 mg/m³ (Ag) PEL: 0.01 mg/m³ (Ag) Hazard: Toxic properties unknown.
    [Show full text]
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Iodination of 3,5-Dichloroanisole Using Silver Salts
    IODINATION OF 3,5-DICHLOROANISOLE USING SILVER SALTS By Alex L Fan A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2017 Approved by ____________________________ Advisor: Professor Daniell Mattern ____________________________ Reader: Professor Davita Watkins ____________________________ Reader: Professor Nathan Hammer © 2017 Alex L Fan ALL RIGHTS RESERVED ii ABSTRACT Iodination of 3,5-dichloroanisole using silver salts (under the direction of Daniell Mattern) A paper published by Joshi et al. showed lower than expected yields in mono- and di-iodination of 3,5-dichloroanisole in dichloromethane using silver salts. One possibility for this could be that the starting material was being tri-iodinated and precipitating out of the solution. We used similar reaction conditions in attempts to prepare and isolate tri- iodinated product, but attempts of recrystallization from ethanol, DMSO, and 2- methoxyethanol showed no signs of it. Removal of silver iodide from the solids formed during the reaction using aqueous potassium iodide resulted in complete dissolution of the entire crude product, suggesting no organic product as well. This reaction was then combined with the concept of a solvent-less reaction based on a paper published by Bose et al. involving electrophilic aromatic halogenation using a ball milling machine. Variation of reagent equivalents, heat, and time have shown various percent compositions of the products 3,5-dichloro-2-iodoanisole
    [Show full text]
  • Chemical Trends in Solid Alkali Pertechnetates † ‡ ‡ ‡ ‡ ‡ Jamie Weaver, , Chuck Z
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/IC Chemical Trends in Solid Alkali Pertechnetates † ‡ ‡ ‡ ‡ ‡ Jamie Weaver, , Chuck Z. Soderquist, Nancy M. Washton, Andrew S. Lipton, Paul L. Gassman, § ∥ † † ‡ ⊥ Wayne W. Lukens, Albert A. Kruger, Nathalie A. Wall, and John S. McCloy*, , , † Department of Chemistry, Washington State University, Pullman, Washington 99164, United States ‡ Pacific Northwest National Laboratory, Richland, Washington 99352, United States § Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States ∥ U.S. Department of Energy (DOE), Office of River Protection, Richland, Washington 99352, United States ⊥ Materials Science and Engineering Program and School of Mechanical & Materials Engineering, Washington State University, Pullman, Washington 99164, United States *S Supporting Information ABSTRACT: Insight into the solid-state chemistry of pure technetium-99 (99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses.
    [Show full text]
  • The Minerals and Rocks of the Earth 5A: the Minerals- Special Mineralogy
    Lesson 5 cont’d: The Minerals and Rocks of the Earth 5a: The minerals- special mineralogy A. M. C. Şengör In the previous lectures concerning the materials of the earth, we studied the most important silicates. We did so, because they make up more than 80% of our planet. We said, if we know them, we know much about our planet. However, on the surface or near-surface areas of the earth 75% is covered by sedimentary rocks, almost 1/3 of which are not silicates. These are the carbonate rocks such as limestones, dolomites (Americans call them dolostones, which is inappropriate, because dolomite is the name of a person {Dolomieu}, after which the mineral dolomite, the rock dolomite and the Dolomite Mountains in Italy have been named; it is like calling the Dolomite Mountains Dolo Mountains!). Another important category of rocks, including parts of the carbonates, are the evaporites including halides and sulfates. So we need to look at the minerals forming these rocks too. Some of the iron oxides are important, because they are magnetic and impart magnetic properties on rocks. Some hydroxides are important weathering products. This final part of Lesson 5 will be devoted to a description of the most important of the carbonate, sulfate, halide and the iron oxide minerals, although they play a very little rôle in the total earth volume. Despite that, they play a critical rôle on the surface of the earth and some of them are also major climate controllers. The carbonate minerals are those containing the carbonate ion -2 CO3 The are divided into the following classes: 1.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • Harmonized Tariff Schedule of the United States (2020) Revision 14 Annotated for Statistical Reporting Purposes
    Harmonized Tariff Schedule of the United States (2020) Revision 14 Annotated for Statistical Reporting Purposes SECTION VI PRODUCTS OF THE CHEMICAL OR ALLIED INDUSTRIES VI-1 Notes 1. (a) Goods (other than radioactive ores) answering to a description in heading 2844 or 2845 are to be classified in those headings and in no other heading of the tariff schedule. (b) Subject to paragraph (a) above, goods answering to a description in heading 2843, 2846 or 2852 are to be classified in those headings and in no other heading of this section. 2. Subject to note 1 above, goods classifiable in heading 3004, 3005, 3006, 3212, 3303, 3304, 3305, 3306, 3307, 3506, 3707 or 3808 by reason of being put up in measured doses or for retail sale are to be classified in those headings and in no other heading of the tariff schedule. 3. Goods put up in sets consisting of two or more separate constituents, some or all of which fall in this section and are intended to be mixed together to obtain a product of section VI or VII, are to be classified in the heading appropriate to that product, provided that the constituents are: (a) Having regard to the manner in which they are put up, clearly identifiable as being intended to be used together without first being repacked; (b) Entered together; and (c) Identifiable, whether by their nature or by the relative proportions in which they are present, as being complementary one to another. Additional U.S. Notes 1. In determining the amount of duty applicable to a solution of a single compound in water subject to duty in this section at a specific rate, an allowance in weight or volume, as the case may be, shall be made for the water in excess of any water of crystallization which may be present in the undissolved compound.
    [Show full text]
  • P'aturan Harga Satuan Standar BATAN-2009
    BADAN TENAGA NUKLIR NASIONAL PERATURAN KEPALA BADAN TENAGA NUKLIR NASIONAL NOMOR: 110/KA/VI/2008 VIII/2007 TENTANG HARGA SATUAN STANDAR BATAN TAHUN ANGGARAN 2009 DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN TENAGA NUKLIR NASIONAL, Menimbang : a. bahwa dengan Peraturan Kepala BATAN Nomor 122/KA/VIII/2007 telah ditetapkan Harga Satuan Standar BATAN Tahun Anggaran 2008; b. bahwa mengingat banyaknya perubahan jumlah maupun struktur biaya yang terjadi, akan berdampak terhadap pelaksanaan kegiatan Tahun Anggaran 2009; c. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Peraturan Kepala BATAN tentang Harga Satuan Standar BATAN Tahun Anggaran 2009; Mengingat : 1. Undang-Undang Nomor 17 Tahun 2003 tentang Keuangan Negara (Lembaran Negara Republik Indonesia Tahun 2003 Nomor 47, Tambahan Lembaran Negara Republik Indonesia Nomor 4286); 2. Undang-Undang Nomor 1 Tahun 2004 tentang Perbendaharaan Negara (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 5, Tambahan Lembaran Negara Republik Indonesia Nomor 4355); 3. Undang-Undang Nomor 25 Tahun 2004 tentang Sistem Perencanaan Pembangunan Nasional (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 104, Tambahan Lembaran Negara Republik Indonesia Nomor 4421); 4. Peraturan Pemerintah Nomor 21 Tahun 2004 tentang Penyusunan Rencana Kerja dan Anggaran Kementerian Negara/Lembaga (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 75, Tambahan Lembaran Negara Republik Indonesia Nomor 4406); BADAN TENAGA NUKLIR NASIONAL -2- 5. Peraturan Pemerintah Nomor 77 Tahun 2005 tentang Jenis dan Tarif Atas Jenis Penerimaan Negara Bukan Pajak Yang Berlaku Pada Badan Tenaga Nuklir Nasional (Lembaran Negara Republik Indonesia Tahun 2005 Nomor 163, Tambahan Lembaran Negara Republik Indonesia Nomor 4591); 6. Keputusan Presiden Nomor 103 Tahun 2001 tentang Kedudukan, Tugas, Fungsi, Kewenangan, Susunan Organisasi, dan Tata Kerja Lembaga Pemerintah Non Departemen sebagaimana telah beberapa kali diubah, terakhir dengan Peraturan Presiden Nomor 64 Tahun 2005; 7.
    [Show full text]
  • The Origins of Color in Minerals Four Distinct Physical Theories
    American Mineralogist, Volume 63. pages 219-229, 1978 The origins of color in minerals KURT NASSAU Bell Laboratories Murray Hill, New Jersey 07974 Abstract Four formalisms are outlined. Crystal field theory explains the color as well as the fluores- cence in transition-metal-containing minerals such as azurite and ruby. The trap concept, as part of crystal field theory, explains the varying stability of electron and hole color centers with respect to light or heat bleaching, as well as phenomena such as thermoluminescence. The molecular orbital formalism explains the color of charge transfer minerals such as blue sapphire and crocoite involving metals, as well as the nonmetal-involving colors in lazurite, graphite and organically colored minerals. Band theory explains the colors of metallic minerals; the color range black-red-orange- yellow-colorless in minerals such as galena, proustite, greenockite, diamond, as well as the impurity-caused yellow and blue colors in diamond. Lastly, there are the well-known pseudo- chromatic colors explained by physical optics involving dispersion, scattering, interference, and diffraction. Introduction The approach here used is tutorial in nature and references are given for further reading or, in some Four distinct physical theories (formalisms) are instances, for specific examples. Color illustrations of required for complete coverage in the processes by some of the principles involved have been published which intrinsic constituents, impurities, defects, and in an earlier less technical version (Nassau, 1975a). specific structures produce the visual effects we desig- Specific examples are given where the cause of the nate as color. All four are necessary in that each color is reasonably well established, although reinter- provides insights which the others do not when ap- pretations continue to appear even in materials, such plied to specific situations.
    [Show full text]
  • Cobalt Incorporation in Calcite: Thermochemistry of (Ca,Co)CO3 Solid
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositorio Institucional de la Universidad de Oviedo 1 Cobalt incorporation in calcite: thermochemistry of (Ca,Co)CO3 solid 2 solutions from density functional theory simulations 1 2 1 1 3 JORGE GONZALEZ-LOPEZ, SERGIO E. RUIZ-HERNANDEZ, ANGELES FERNANDEZ-GONZALEZ, AMALIA JIMENEZ, 2 3* 4 NORA H. DE LEEUW and RICARDO GRAU-CRESPO 1 5 Department of Geology, University of Oviedo, Calle Arias de Velasco s/n, Oviedo 33005, Spain 2 6 Department of Chemistry. University College London, 20 Gordon St. London WC1H 0AJ, UK. 3 7 Department of Chemistry. University of Reading, Whiteknights 8 Reading, RG6 6AD, UK. Email: [email protected] 9 (Submitted on 24 March, 201; revised version on 30 June 2014) 10 11 Abstract– The incorporation of cobalt in mixed metal carbonates is a possible route to the immobilization 12 of this toxic element in the environment. However, the thermodynamics of (Ca,Co)CO3 solid solutions are 13 still unclear due to conflicting data from experiment and from the observation of natural ocurrences. We 14 report here the results of a computer simulation study of the mixing of calcite (CaCO3) and spherocobaltite 15 (CoCO3), using density functional theory calculations. Our simulations suggest that previously proposed 16 thermodynamic models, based only on observed compositions, significantly overestimate the solubility 17 between the two solids and therefore underestimate the extension of the miscibility gap under ambient 18 conditions. The enthalpy of mixing of the disordered solid solution is strongly positive and moderately 19 asymmetric: calcium incorporation in spherocobaltite is more endothermic than cobalt incorporation in 20 calcite.
    [Show full text]
  • The Synthesis and Analysis of Ammine Complexes of Copper and Silver Sulfate: an Undergraduate Laboratory Project
    The Synthesis and Analysis of Ammine Complexes of Copper and Silver Sulfate: An Undergraduate Laboratory Project Steven S. Clareen, Shireen R. Marshall, Kristin E. Price, Margaret B. Royall, Claude H. Yoder, Richard W. Schaeffer, Department of Chemistry Franklin and Marshall College Lancaster, PA 17604 Lab Documentation Written Directions for Students: Note: Copper sulfate is considered “highly toxic” (LDLO, oral, man = 857 mg/kg; LD50, rat, oral = 300 mg/kg) and should be handled with care to avoid ingestion or inhalation of dust. We recommend that all reagents be handled in an appropriate hood. Because of the corrosive nature of concentrated aqueous ammonia and sodium hydroxide care must be exercised to avoid contact with skin. We recommend the use of gloves along with approved safety goggles. Preparation of [Ag(NH3)2]SO4 A 2.17 g sample of silver sulfate (Fisher, CAS 10294- 26-5) was weighed into a 150 mL Erlenmeyer flask. A 10 mL portion of concentrated ammonia (Fisher, CAS 1336-21-6) was added along with 2 mL of distilled water. The mixture was heated gently on a hotplate (low setting) with occasional stirring until the solid silver sulfate dissolved. A 10 mL portion of ethanol (Fisher, CAS 64-17-5) was added, and after cooling in an ice bath for about an hour, the very light silver-gray (almost white) precipitate was suction filtered through a medium pore glass-fritted filter crucible. The product was washed with 5 mL of ethanol and allowed to dry in the filter crucible for about 10 minutes before being placed in a desiccator for a week.
    [Show full text]