Demonstration That Polyol Accumulation Is Responsible for Diabetic Cataract by the Use of Transgenic Mice Expressing the Aldose Reductase Gene in the Lens ALAN Y

Total Page:16

File Type:pdf, Size:1020Kb

Demonstration That Polyol Accumulation Is Responsible for Diabetic Cataract by the Use of Transgenic Mice Expressing the Aldose Reductase Gene in the Lens ALAN Y Proc. Natl. Acad. Sci. USA Vol. 92, pp. 2780-2784, March 1995 Medical Sciences Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens ALAN Y. W. LEE, SOOKJA K. CHUNG, AND STEPHEN S. M. CHUNG* Institute of Molecular Biology, University of Hong Kong, 5 Sassoon Road, Hong Kong Communicated by Y W. Kan, University of California, San Francisco, December 12, 1994 ABSTRACT Aldose reductase (AR) has been implicated cose and galactose, and it has not been demonstrated directly in the etiology of diabetic cataract, as well as in other that AR can reduce these hexoses in vivo. complications. However, the role ofAR in these complications In this report we show that transgenic mice expressing high remains controversial because the strongest supporting evi- levels of AR are susceptible to galactose and diabetic cataracts, dence is drawn from the use of AR inhibitors for which providing the strongest evidence that accumulation of polyols specificity in vivo cannot be ascertained. To settle this issue we is the main factor contributing to sugar cataracts. developed transgenic mice that overexpress AR in their lens epithelial cells and found that they become susceptible to the MATERIALS AND METHODS development of diabetic and galactose cataracts. When the sorbitol dehydrogenase-deficient mutation is also present in Generation of Transgenic Mice. The entire 1.4-kb cDNA these transgenic mice, greater accumulation of sorbitol and from a human AR (hAR) clone with 36-bp 5' and 325-bp 3' further acceleration of diabetic cataract develop. These ge- untranslated regions (16) was released from the Bluescript netic studies demonstrated convincingly that accumulation of vector by Xba I and EcoRV digests and inserted into the Xba polyols from the reduction of hexose by AR leads to the I and Msc I site of the pCAT-Basic vector (Promega) that formation of sugar cataracts. contains the simian virus 40 splice site and poly(A) sequence. The -341 to +49 region of the mouse aA-crystallin promoter Diabetic complications such as neuropathy, nephropathy, ret- (17) was cloned by PCR amplification of BALB/c genomic inopathy, and cataract, etc., occur in both insulin-dependent DNA and inserted into the Xba I and Xma I sites at the 5' end and noninsulin-dependent diabetes mellitus. Hyperglycemia of hAR. A DNA fragment containing the aAcry-hAR hybrid has as the cause of these gene was released from the vector by Tha I and Nde I digestions long been suspected manifestations, and injected into oocytes from CBA egg donors fertilized by and the results of the Diabetic Control and Complications C57BL males. Transgenic mice were identified by PCR screen- Trial (1) appear to confirm it. However, by what mechanism ing of genomic DNA extracted from the tail by using the two elevated blood glucose leads to these complications is unclear. primers as shown (Fig. 1) and then confirmed by Southern blot One theory implicates the polyol pathway as a cause of diabetic hybridization using hAR as a probe (data not shown). cataract because of the discovery of polyols in cataractous Assay ofAR Enzyme Activity. Mouse lens AR crude extract lenses (2) and the identification of aldose reductase (AR) that was prepared, and activity was assayed as described (18). reduces various sugars to their polyols (3, 4). AR reduces Briefly, lenses were isolated from 3-week-old mouse and glucose to sorbitol, which is then converted to fructose by homogenized in a sodium phosphate buffer at 4°C. Crude sorbitol dehydrogenase (SorD). Because sorbitol does not enzyme extract was obtained by spinning down the cell debris, readily diffuse out of cells and its oxidation to fructose is slow, and AR activity was measured spectrophotometrically by the accumulation of sorbitol under the hyperglycemic state monitoring the rate of oxidation of NADPH at 340 nm. would increase the intracellular osmotic pressure, leading to Reaction mix contains 67 mM sodium phosphate (pH 6.2), 5 swelling and eventual rupture of the lens fiber cells (5). The mM DL-glyceraldehyde, 0.4 M lithium sulfate, and 200 ,uM involvement of AR in diabetic cataract is supported by the fact NADPH. An aliquot of enzyme extract was added to initiate that animals such as rats and dogs that have high levels of this the reaction, which was done at 30°C. The unit of AR enzyme enzyme in their lenses are prone to develop diabetic cataract, activity is defined as nmol of NADPH oxidized per min per mg whereas mice that have low lens AR activity are not (6). Rats of protein in the crude extract. and dogs also develop galactose-induced cataracts more Induction of Galactosemia and Diabetes. To induce galac- readily than diabetes-induced cataracts (7). This fact agrees tosemia, both transgenic mice and their normal littermates with the polyol model because galactose is a better substrate were fed with a diet of 50% galactose/50% Purina rat chow at than glucose for AR in vitro, and its reduction product galac- the age of 3 weeks after birth. Hyperglycemia was induced by titol is not further converted to other metabolites, resulting in a single i.p. injection of streptozotocin at a dose of 200 mg/kg faster buildup of this polyol. Additional evidence for the polyol of body weight. Blood glucose was monitored by blood glucose model came from the fact that several AR inhibitors could test strips (HaemoGlukotest, Boehringer Mannheim), and suppress cataract formation in experimentally induced dia- those mice with blood glucose levels >500 mg/dl throughout betic animals (8-10). However, these drugs may inhibit AR by the experimental period were included in this study. Lenses nonspecific hydrophobic interactions (11, 12), and their ben- were examined by dilating the pupils with 1% tropicamide eficial effects may be derived from the inhibition of other (Alcon, Puurs, Belgium), and the progression of cataract was enzymes. The strongest challenge to the polyol model is the divided into three stages as shown in Fig. 2. fact that kinetic analyses (13, 14) and x-ray crystallographic Measurement ofPolyol Level in Mouse Lens. To confirm the studies (15) indicated that AR has a very low affinity for glu- formation of galactitol in galactosemic mouse lens, 3-week-old The publication costs of this article were defrayed in part by page charge Abbreviations: AR, aldose reductase; hAR, human AR; SorD, sorbitol payment. This article must therefore be hereby marked "advertisement" in dehydrogenase. accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 2780 Downloaded by guest on September 27, 2021 Medical Sciences: Lee et aL Proc. Natl. Acad. Sci. USA 92 (1995) 2781 transgenic mice from line CAR222 and their normal litter- Table 1. Lens AR enzyme level and rate of galactose mates were divided into two groups: (i) normal diet, in which cataract development mice were fed on normal Purina rat chow; (ii) galactose- Time to reach stages of feeding, in which mice were put on a diet of 50% galactose/ 50% Purina rat chow. Four mice from each group were Lens AR galactosemic cataract sacrificed for polyol quantitation beginning 1 week after the enzyme level, (after 50% galactose diet), diet and continuing for 3 consecutive weeks. Their lenses were Transgenic nmol/min per days homogenized, and polyols were extracted by ethanol precipi- mouse line no. mg Stage I Stage II Stage III tation, derivatized by phenylisocyanate, and separated by CAR222 37.9 ± 3.57 2 14 21 HPLC; their elution was then monitored by UV absorption at CAR223 11.1 ± 1.20 N N N 240 nm (19). Similarly, the lens sorbitol level of diabetic CAR435 48.9 ± 3.75 1 14 21 heterozygous and homozygous transgenic mice was measured CAR440 11.1 ± 0.63 N N N at the three time points. CAR648 133.7 ± 8.50 1 10 14 Crossing ofAR Transgenic Mice with SorD-Deficient Mice. CAR222 + N N N Mice homozygous for human AR transgene (hAR+/+) from ARI* two transgenic lines CAR222 and CAR648 were mated with Normal mouse 1.4 ± 0.09 N N N homozygous SorD-deficient mice (mSD-/-) called C57BL/ Normal rat 37.4 ± 1.30 7 14 21 LiA. The offsprings (F1) of these crosses were then mated with Enzyme activities of AR in lenses of five transgenic mouse lines each other, and their progenies (F2) were induced to become were assayed at 3 weeks after birth, and values are expressed as mean diabetic and monitored for cataract development and sorbitol ± SD from four mice. To induce galactose cataract, 3-week-old mice accumulation. The genotypes of the F2 mice were determined were fed with a 50% galactose diet, and the rate of cataract develop- as follows: hAR genotypes were determined by Southern blot ment is represented by the number of days that elapsed before the first hybridization using hAR cDNA as a probe. The hybridized appearance of the three stages of cataract, as defined in Fig. 2. Results hAR band in hAR+/+ mice is twice as intense as hAR+/- mice from normal mice and rats are also included for comparison. To inhibit AR enzyme activity, AR inhibitor (AL01576, 0.5 mg/kg per day) was and absent in hAR-/- mice. mSD genotypes were determined administered daily into the stomach of three mice from line CAR222 by enzyme assay. At the end of the experiment, mice were through a gastric tube throughout the experiment. N, no observable sacrificed, and SorD activity in the liver was measured spec- cataract. trophotometrically by monitoring the oxidation of NADH at *AR inhibitor. 340 nm, as described (20).
Recommended publications
  • Hereditary Galactokinase Deficiency J
    Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Upregulations of Clcn3 and P-Gp Provoked by Lens Osmotic Expansion in Rat Galactosemic Cataract
    Hindawi Journal of Diabetes Research Volume 2017, Article ID 3472735, 8 pages https://doi.org/10.1155/2017/3472735 Research Article Upregulations of Clcn3 and P-Gp Provoked by Lens Osmotic Expansion in Rat Galactosemic Cataract 1 2 1 Lixia Ji, Lixia Cheng, and Zhihong Yang 1Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China 2Department of Endocrinology, People’s Hospital of Weifang, Weifang, China Correspondence should be addressed to Lixia Ji; [email protected] Received 21 September 2017; Accepted 1 November 2017; Published 21 November 2017 Academic Editor: Hiroshi Okamoto Copyright © 2017 Lixia Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. Lens osmotic expansion, provoked by overactivated aldose reductase (AR), is the most essential event of sugar cataract. Chloride channel 3 (Clcn3) is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp) acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract. Methods and Results. In vitro, lens epithelial cells (LECs) were primarily cultured in gradient galactose medium (10–60 mM), more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day.
    [Show full text]
  • Sudheendran-Dissertation
    © Copyright by Narendran Sudheendran 2013 All Rights Reserved STUDYING MOUSE EMBRYONIC DEVELOPMENT WITH OCT A Dissertation Presented to the Faculty of the Department of Biomedical Engineering University of Houston In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biomedical Engineering by Narendran Sudheendran December 2013 STUDYING MOUSE EMBRYONIC DEVELOPMENT WITH OCT ___________________________ Narendran Sudheendran Approved: ________________________________ Chair of the Committee Kirill V. Larin, Associate Professor, Department of Biomedical Engineering Committee Members: ________________________________ Irina V. Larina, Assistant Professor, Department of Molecular Physiology and Biophysics, Baylor College of Medicine ________________________________ Rajesh C. Miranda, Associate Professor, Department of Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine _______________________________ Howard Gifford, Associate Professor, Department of Biomedical Engineering _______________________________ Yingchun Zhang, Assistant Professor, Department of Biomedical Engineering ____________________________ _______________________________ Suresh K. Khator, Associate Dean, Metin Akay, Professor and Chairman, Cullen College of Engineering Department of Biomedical Engineering ACKNOWLEDGEMENTS I am extremely thankful to my advisor, Dr. Kirill Larin, for his guidance, support and encouragement throughout this work. I am extremely grateful to Dr. Irina Larina for her time and effort to help me during the entire course of my project. I would especially like to thank Saba, Maleeha, Dr. Shameena Bake and Chen for helping me with the experiments. I thank Esteban, Shang and Manmohan for reviewing my dissertation. I am thankful to Mohamad, Kiran, Venu, Stepan, Jiasong, Peter and the rest of the BOL team for their support and encouragement. I would like to thank Dr. Rajesh C. Miranda and Dr. Howard Gifford and Dr. Yingchun Zhang for their time to serve on my defense committee.
    [Show full text]
  • In Silico Screening of Sugar Alcohol Compounds to Inhibit Viral Matrix Protein VP40 of Ebola Virus
    Molecular Biology Reports (2019) 46:3315–3324 https://doi.org/10.1007/s11033-019-04792-w ORIGINAL ARTICLE In silico screening of sugar alcohol compounds to inhibit viral matrix protein VP40 of Ebola virus Nagasundaram Nagarajan1 · Edward K. Y. Yapp2 · Nguyen Quoc Khanh Le1 · Hui‑Yuan Yeh1 Received: 28 December 2018 / Accepted: 28 March 2019 / Published online: 13 April 2019 © Springer Nature B.V. 2019 Abstract Ebola virus is a virulent pathogen that causes highly lethal hemorrhagic fever in human and non-human species. The rapid growth of this virus infection has made the scenario increasingly complicated to control the disease. Receptor viral matrix protein (VP40) is highly responsible for the replication and budding of progeny virus. The binding of RNA to VP40 could be the crucial factor for the successful lifecycle of the Ebola virus. In this study, we aimed to identify the potential drug that could inhibit VP40. Sugar alcohols were enrich with antiviral properties used to inhibit VP40. Virtual screening analysis was perform for the 48 sugar alcohol compounds, of which the following three compounds show the best binding afnity: Sorbitol, Mannitol and Galactitol. To understand the perfect binding orientation and the strength of non-bonded interactions, individual molecular docking studies were perform for the best hits. Further molecular dynamics studies were conduct to analyze the efcacy between the protein–ligand complexes and it was identify that Sorbitol obtains the highest efcacy. The best-screened compounds obtained drug-like property and were less toxic, which could be use as a potential lead compound to develop anti-Ebola drugs.
    [Show full text]
  • Dismetabolic Cataracts
    ndrom Sy es tic & e G n e e n G e f T o Journal of Genetic Syndromes Cavallini et al., J Genet Syndr Gene Ther 2013, 4:7 h l e a r n a r p u DOI: 10.4172/2157-7412.1000165 y o J & Gene Therapy ISSN: 2157-7412 Case Report Open Access Dismetabolic Cataracts: Clinicopathologic Overview and Surgical Management with B-MICS Technique Cavallini GM1, Forlini M1, Masini C1, Campi L1, Chiesi C1, Rejdak R2 and Forlini C3* 1Institute of Ophthalmology, University of Modena, Modena, Italy 2Department of Ophthalmology, Medical University of Lublin, Lublin, Poland 3Department of Ophthalmology, “Santa Maria Delle Croci” Hospital, Ravenna, Italy Abstract Background: Dismetabolic cataract is a loss of lens transparency due to an insult to the nuclear or lenticular fibers, caused by a metabolic disorder. The lens opacification may occur early or later in life, and may be isolated or associated to particular syndromes. We describe some of these metabolic conditions associated with cataract formation, and in particular we report our experience with a patient affected by lathosterolosis that presented bilateral cataracts. Methods: Our patient was a 7-years-old little girl diagnosed with lathosterolosis at age 2 years, through gas cromatography/mass spectrometry method for plasma sterol profile that revealed a peak corresponding to cholest- 7-en-3β-ol (lathosterol). Results: The lens samples obtained during surgical removal with B-MICS technique were sent to the Department of Pathology and routinely processed and stained with haematoxylin-eosin and PAS; then, they were examined under a light microscope. Histological examination revealed lens fragments with the presence of fibers disposed in a honeycomb way, samples characterized by the presence of homogeneous eosinophilic lens fibers, and other fragments characterized by bulgy elements referable to cortical fibers with degenerative characteristics.
    [Show full text]
  • Textbook of Ophthalmology, 5Th Edition
    Textbook of Ophthalmology Textbook of Ophthalmology 5th Edition HV Nema Former Professor and Head Department of Ophthalmology Institute of Medical Sciences Banaras Hindu University Varanasi India Nitin Nema MS Dip NB Assistant Professor Department of Ophthalmology Sri Aurobindo Institute of Medical Sciences Indore India ® JAYPEE BROTHERS MEDICAL PUBLISHERS (P) LTD. New Delhi • Ahmedabad • Bengaluru • Chennai Hyderabad • Kochi • Kolkata • Lucknow • Mumbai • Nagpur Published by Jitendar P Vij Jaypee Brothers Medical Publishers (P) Ltd B-3 EMCA House, 23/23B Ansari Road, Daryaganj, New Delhi 110 002 I ndia Phones: +91-11-23272143, +91-11-23272703, +91-11-23282021, +91-11-23245672 Rel: +91-11-32558559 Fax: +91-11-23276490 +91-11-23245683 e-mail: [email protected], Visit our website: www.jaypeebrothers.com Branches 2/B, Akruti Society, Jodhpur Gam Road Satellite Ahmedabad 380 015, Phones: +91-79-26926233, Rel: +91-79-32988717 Fax: +91-79-26927094, e-mail: [email protected] 202 Batavia Chambers, 8 Kumara Krupa Road, Kumara Park East Bengaluru 560 001, Phones: +91-80-22285971, +91-80-22382956, 91-80-22372664 Rel: +91-80-32714073, Fax: +91-80-22281761 e-mail: [email protected] 282 IIIrd Floor, Khaleel Shirazi Estate, Fountain Plaza, Pantheon Road Chennai 600 008, Phones: +91-44-28193265, +91-44-28194897 Rel: +91-44-32972089, Fax: +91-44-28193231, e-mail: [email protected] 4-2-1067/1-3, 1st Floor, Balaji Building, Ramkote Cross Road Hyderabad 500 095, Phones: +91-40-66610020, +91-40-24758498 Rel:+91-40-32940929 Fax:+91-40-24758499, e-mail: [email protected] No. 41/3098, B & B1, Kuruvi Building, St.
    [Show full text]
  • In Vitro Anticataract Activity of Tamarindus Indica Linn. Againest Glucose-Induced Cataractogenisis
    Results IN VITRO ANTICATARACT ACTIVITY OF TAMARINDUS INDICA LINN. AGAINEST GLUCOSE-INDUCED CATARACTOGENISIS Dissertation submitted to The Tamil Nadu Dr. M. G. R. Medical University, Chennai in partial fulfillment of the award of degree of MASTER OF PHARMACY (PHARMACOLOGY) Submitted by SRIKANTH MERUGU Under the guidance of Mrs. M. UMA MAHESWARI, M. Pharm., (Ph.D.,) Assistant Professor, Department of Pharmacology MARCH – 2009 COLLEGE OF PHARMACY SRI RAMAKRISHNA INSTITUTE OF PARAMEDICAL SCIENCES COIMBATORE – 641 044. 1 Results IN VITRO ANTICATARACT ACTIVITY OF TAMARINDUS INDICA LINN. AGAINEST GLUCOSE-INDUCED CATARACTOGENISIS Dissertation submitted to The Tamil Nadu Dr. M. G. R. Medical University, Chennai in partial fulfillment of the award of degree of MASTER OF PHARMACY (PHARMACOLOGY) MARCH – 2009 COLLEGE OF PHARMACY SRI RAMAKRISHNA INSTITUTE OF PARAMEDICAL SCIENCES COIMBATORE – 641 044. 2 Results CERTIFICATE This is to certify that the dissertation entitled “IN VITRO ANTICATARACT ACTIVITY OF TAMARINDUS INDICA L. AGAINEST GLUCOSE-INDUCED CATARACTOGENISIS” being submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai in partial fulfillment of the Master of Pharmacy programme in Pharmacology, carried out by Mr. SRIKANTH MERUGU in the Department of Pharmacology, College of Pharmacy, SRIPMS, Coimbatore, under my direct guidance and supervision to my fullest satisfaction. Mrs. M. UMA MAHESWARI, M.Pharm., (Ph.D.,) Assistant Professor, Dept. In-charge Department of Pharmacology, College of Pharmacy, SRIPMS, Place: Coimbatore Coimbatore –44. Date: 3 Results CERTIFICATE This is to certify that the dissertation entitled “IN VITRO ANTICATARACT ACTIVITY OF TAMARINDUS INDICA L. AGAINEST GLUCOSE-INDUCED CATARACTOGENISIS.” was carried out by Mr. SRIKANTH MERUGU, in the Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, which is affiliated to The Tamil Nadu Dr.
    [Show full text]
  • Hemicellulose Arabinogalactan Hydrolytic Hydrogenation Over Ru-Modified H-USY Zeolites
    Research Collection Journal Article Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites Author(s): Murzin, Dmitry; Kusema, Bright; Murzina, Elena V.; Aho, Atte; Tokarev, Anton; Boymirzaev, Azamat S.; Wärnå, Johan; Dapsens, Pierre Y.; Mondelli, Cecilia; Pérez-Ramírez, Javier; Salmi, Tapio Publication Date: 2015-10 Permanent Link: https://doi.org/10.3929/ethz-a-010792434 Originally published in: Journal of Catalysis 330, http://doi.org/10.1016/j.jcat.2015.06.022 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites Dmitry Yu. Murzin1*, Bright Kusema2, Elena V. Murzina1, Atte Aho1, Anton Tokarev1, Azamat S. Boymirzaev3, Johan Wärnå1,4, Pierre Y. Dapsens2, Cecilia Mondelli2, Javier Pérez-Ramírez2, Tapio Salmi1 1Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo/Turku, Finland, E-mail: [email protected] 2Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland 3Namangan Institute of Engineering and Technology, Department of Chemical Technology, Namangan, 160115, Uzbekistan 4University of Umeå, Umeä, Sweden ABSTRACT The hydrolytic hydrogenation of hemicellulose arabinogalactan was investigated in the presence of protonic and Ru (1-5 wt.%)-modified USY zeolites (Si/Al ratio = 15 and 30). The use of the purely acidic materials was effective in depolymerizing the macromolecule into free sugars. While the latter partly dehydrated into 5- hydroxymethylfurfural and furfural, the generation of high molecular-weight compounds (aggregates of sugars and humins) was not favored, in contrast to previous evidences over beta zeolites.
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • Oleaginous Yeasts for the Production of Sugar Alcohols Sujit S Jagtap1,2
    Oleaginous Yeasts for the Production of Sugar Alcohols Sujit S Jagtap1,2* ([email protected]), Ashwini A Bedekar2, Jing-Jing Liu1, Anshu Deewan1,2, and Christopher V Rao1,2 1DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Illinois. 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Illinois. https://cabbi.bio/ Project Goal: The goal of this project is to investigate sugar alcohol production from plant- based sugars and glycerol in the oleaginous yeasts Rhodosporidium toruloides and Yarrowia lipolytica. We are also interested in understanding the mechanism of sugar alcohol production and the key genes involved in the polyol synthesis process. Sugar alcohols are commonly used as low-calorie, natural sweeteners. They have also been proposed by the Department of Energy as potential building blocks for bio-based chemicals. They can be used to produce polymers with applications in medicine and as precursors to anti-cancer drugs 1. Production of these sugar alcohols by yeast often results, from redox imbalances associated with growth on different sugars, accumulation of toxic intermediates, and as a cell response to the high osmotic pressure of the environment 2-3. The ability of yeast to naturally produce these sugar alcohols from simple sugars provides a potentially safer and more sustainable alternative to traditional chemical hydrogenation. In our study, we found that the oleaginous yeast R. toruloides IFO0880 produces D-arabitol during growth on xylose in nitrogen-rich medium 3. Efficient xylose utilization was a prerequisite for extracellular D-arabitol production. D-arabitol is an overflow metabolite associated with transient redox imbalances during growth on xylose.
    [Show full text]
  • Cross-Coupling Reactions Using Samarium(II) Iodide Michal Szostak,* Neal J
    Review pubs.acs.org/CR Cross-Coupling Reactions Using Samarium(II) Iodide Michal Szostak,* Neal J. Fazakerley, Dixit Parmar, and David J. Procter* School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom 4.3. Aldol Reactions BM 5. Cross-Coupling As Part of Sequential and Cascade Reactions BM 5.1. Cascades Initiated by Radical Intermediates BN 5.2. Cascades Initiated by Anionic Intermediates BR 6. Conclusions BT Author Information BT Corresponding Authors BT Notes BT Biographies BT CONTENTS Acknowledgments BU 1. Introduction A References BU 2. Reactivity of Functional Groups toward Samarium Note Added in Proof CB Diiodide B 3. Cross-Coupling via Radical Intermediates C 3.1. Ketyl Radical-Alkene/Alkyne/Arene Cross- 1. INTRODUCTION Coupling C Since its introduction to organic synthesis in 1977 by Kagan,1,2 ’ 3.1.1. Intramolecular Cross-Coupling of Ketyl samarium(II) iodide (SmI2, Kagan s reagent) has gained the Radicals with Alkenes C status of one of the most versatile single-electron transfer − 3.1.2. Intermolecular Cross-Coupling of Ketyl reagents available in the laboratory.3 46 SmI occupies a unique − 2 Radicals with Alkenes S place among other reductants47 57 in that it is an extremely − 3.1.3. Cross-Coupling of Ketyl Radicals with powerful58 64 yet chemoselective reagent, whose selectivity Alkynes Y toward functional groups is fine-tuned by the use of appropriate 26−30 3.1.4. Cross-Coupling of Ketyl Radicals with ligands and additives. Transformations mediated by SmI2 Allenes Z are performed under user-friendly and operationally simple 3.1.5.
    [Show full text]