Phylloxera and Rootstocks

Total Page:16

File Type:pdf, Size:1020Kb

Phylloxera and Rootstocks PHYLLOXERA STEPHEN J. KREBS PHYLLOXERA BIOLOGY AND LIFE CYCLE The grape phylloxera, Daktulosphaira vitifoliae (Fitch), (Hemiptera: Homoptera: Phylloxeridae), is an aphid-like insect that attacks the roots and the leaves of plants in the genus Vitis. It was first described in 1854 from vines in New York State by Asa Fitch, who named the insect Pemphigus vitifolii. It was then reclassified into the genus Phylloxera (Mayet, 1894) but because the grape phylloxera differs morphologically from other phylloxera species it was re-assigned to its own genus. Outside the United States, Viteus is an accepted synonym for the older term Daktulosphaira. Numerous other names appear in the literature (Russell, 1974). The basic biology of phylloxera was established in the 1870s by C. V. Riley, State Entomologist in Missouri (Riley, 1871, 1872, 1873, 1874, 1876). He found that in its native North American range and in other summer-humid climate areas, phylloxera has a complex life cycle, feeding on both the root system and the aerial portion of the vine (Figure 1). The root feeding forms are all oviparous parthenogenic females. Some of the eggs these females produce are pre-destined to become winged adults. In their fourth instar the alates emerge from the soil and molt to the winged type. In this form they are highly mobile (Riley, 1876). The winged adult, which does not feed, lays eggs that hatch into male and female insects. These males and females, which also do not feed, molt four times, mate and produce the so-called winter egg. Only fundatrix females hatch from the winter eggs, their feeding inducing galls to form on the vine leaves. They develop and lay eggs which will produce females. The offspring of the fundatrix females eventually exit from the galls to form new galls. Some may return to the soil to live on the roots. Infestations are spread by both the movement of the winged form above ground in regions where they are fertile, and by the crawler form, a first instar female that can move short distances above or below ground (Riley, 1874) or, when they are above ground, short or long distances in wind (Granett, personal communication, 1995). Riley confirmed that the insect damaging vines in France and California was the same phylloxera native to the eastern United States (Riley, 1872; Appleton, 1880; Ordish, 1987). He also confirmed that American Vitis species were resistant to phylloxera and were seldom killed by the insect (Riley, 1880). In California and other dry-summer climates, the phylloxera life cycle is truncated. The insect is found on the roots as an oviparous parthenogenic female. The development of the winged form is often observed under these growing conditions, but it is not known to be fertile and therefore no sexual forms or winter egg is produced and there is no leaf-galling. The lack of the sexual cycle is thought to limit the genetic diversity of the phylloxera population (Davidson and Nougaret, 1921). 2 S- PHYLLOXERA Daktulosphaira vitifoliae (Fitch) WINTER EGG SEXUAL FORMS 2/ TO LEAVES LEAF WINGED GALLIN FORM C WLER DISPERSAL TO OTHE DI SPERSAL TO OTHER LEAVES AND TO ROOTS NYMPH 41 WITH FORMING ROOT WINGPADS SWELLING CYCLE CRAWLER D SPERSAL TO OTHER ROOTS Phylloxera is the most serious insect pest of the grapevine. The active root stage of the insect is known as the radicole and its feeding results in the formation of nodosity and tuberosity root swellings. Several parthenogenic female radicole generations are produced during the active growth of the vine. Crawlers of the radicole form migrate above and below ground to the roots of other vines. The overwintering root form is called a hibernant and does not feed. The emerging nymph with forming wingpads becomes the winged migratory adult female, called an elate. The sexual forms develop from eggs laid by the alate. Mating of the sexual forms produces the winter egg, which hatches into the fundatrix female. The fundatrix migrates to new leaves in the spring and feeds on the leaf tissue, causing leaf galls to form. The egg of the fundatrix hatches into the gallicole female, which forms additional galls and several more parthenogenic generations are produced during the active growth of the vine. The gallicole may migrate to other leaves, or to roots where a new radicole cycle is initiated. (Illustration © 1994 by R. Krebs James. Text ° 1994 by S. Krebs.) 3 Phylloxera may damage grapevine roots by feeding on either new root tips or on older root tissue. Feeding on new root tips causes a small gall called a nodosity to develop at the feeding site. Feeding on older roots causes the formation of an abnormal roughened swelling called a tuberosity. The formation of tuberosities is more serious because it leads to the decomposition and death of the damaged root (Millardet, 1892). Phylloxera damage to the roots of the grapevine results in a general weakening and the eventual death of susceptible plants. Vegetative symptoms include reduced cane growth, short internode length, an absence of actively growing shoot tips in the spring and premature leaf fall. Crop yield is reduced because the berries are small and few clusters are produced. The symptoms become increasingly severe over several seasons. In the field, a circular pattern of decline radiating from the point of first infestation may occur (Riley, 1874; Bioletti, 1901; Davidson and Nougaret, 1921; Husmann, 1910). In North America phylloxera coevolved with the indigenous Vitis species. The resistance developed by some American Vitis species limits the root damage caused by the insect. Different levels of resistance to both leaf and root damage are found among the Vitis species (Riley, 1874; Millardet, 1892; Viala and Ravaz, 1903; Boubals, 1966). Vitis vinifera has susceptible roots but is resistant to leaf galling (Wapshere and Helm, 1987). It is the species from which most commercial grape cultivars have been selected. Accidental importation of phylloxera led to the catastrophic destruction of V. vinifera vineyards throughout Europe, California and most other world viticultural regions in the late nineteenth century (Stevenson, 1985; Ordish, 1987). It is the most important insect enemy of the grapevine worldwide. PHYLLOXERA INTRODUCTION INTO EUROPE AND ELSEWHERE The introduction of phylloxera into Europe probably occurred on American vines used in grafting and hybridizing experiments for the control of powdery mildew (oidium), Uncinula necator, which had been accidentally brought into Europe in the mid-1800s from North America (Hewitt, 1988). The knowledge gained from this work was later applied to the control of phylloxera (Ordish, 1987). Phylloxera was found on the roots of grapevines in southern France in 1868 (Planchon, et al., 1868). Based on vine decline symptoms that had been previously noted there, the actual introduction into France probably occurred in the Rhone Valley around 1862. The insect spread very rapidly and soon had devastated the viticulture industry in much of the country (Stevenson, 1980). 4 In other European countries, phylloxera was found at about the same time. In Portugal, the first discovery of the pest occurred in 1862. It had spread through the Douro region by 1872 and was found in most other districts by 1880 (Bleasdale, 1880; Morrow, 1973). In Spain, the discovery of phylloxera occurred in 1876 in the Mediterranean district of Malaga and infestation had become general in the country by 1888. In Italy, phylloxera was probably present by 1870. In Germany, the first damage occurred in 1875 (Ordish, 1987). In Great Britain, phylloxera was discovered in 1867 (Stevenson, 1985). Other European countries infested with phylloxera include Turkey, Austria, Hungary, Switzerland, Algeria, Greece, Cyprus and Yugoslavia (Branas, 1962; Daris, 1970; Ordish, 1987). In Asia, phylloxera is present in Korea and in Japan. In Central America, the insect is found in Mexico (Anonymous, 1975). Phylloxera was also introduced into viticultural regions of the Southern Hemisphere in the nineteenth century. The insect was first detected in Australia in 1875 (Adcock, 1914; Buchanan, 1987). The introduction into New Zealand occurred in 1885 (Dry and Smart, 1982a, 1982b; Smart and King, 1983). In South Africa, phylloxera was discovered in 1886 and is now widely distributed throughout the grape growing regions of that country (De Klerk, 1972). In South America, phylloxera is present in Peru, Brazil and Argentina (Anonymous, 1975). Olmo (19xx) believes it to be native to Venezuela. Phylloxera created severe economic and social displacement as wine production declined (Eichel, 1975; Stevenson, 1980; de Blij, 1983; Ordish, 1987; Unwin, 1991). Expensive insecticide applications were devised to control the insect. Carbon bisulfide was the most effective material tested, but its application was labor-intensive and the effects were short-lived. Repeated treatments were therefore required. Many other purportedly insecticidal materials were also recommended, including coal tars, manures, and various fanciful decoctions. None of these were successful in the control of the insect (Bleasdale, 1880). Quarantine methods were generally ineffective in controlling the spread of phylloxera. Growers were warned to practice careful sanitation whenever moving from one vineyard to another, because the insect is readily transported on harvesting bins, on nursery stock and in contaminated soil that becomes attached to vineyard equipment and workers' clothing. The small size of the pest makes detection difficult (Fodx, 1902; Viala and Ravaz, 1903). PHYLLOXERA INTRODUCTION INTO CALIFORNIA Phylloxera was first found on the roots of grapevines in the Sonoma Valley in 1873, at the center of the young California wine industry. It was to this location that many Vitis cultivars had been introduced before being taken to other growing regions in the state (Pinney, 1984). As early as 1860, growers had noted vines with symptoms of phylloxera injury (Appleton, 1880). University of California reports proposed an introduction date of 1858 (Davidson 2 5 and Nougaret, 1921) or 1852 (Smith and Stafford, 1955).
Recommended publications
  • Determining the Classification of Vine Varieties Has Become Difficult to Understand Because of the Large Whereas Article 31
    31 . 12 . 81 Official Journal of the European Communities No L 381 / 1 I (Acts whose publication is obligatory) COMMISSION REGULATION ( EEC) No 3800/81 of 16 December 1981 determining the classification of vine varieties THE COMMISSION OF THE EUROPEAN COMMUNITIES, Whereas Commission Regulation ( EEC) No 2005/ 70 ( 4), as last amended by Regulation ( EEC) No 591 /80 ( 5), sets out the classification of vine varieties ; Having regard to the Treaty establishing the European Economic Community, Whereas the classification of vine varieties should be substantially altered for a large number of administrative units, on the basis of experience and of studies concerning suitability for cultivation; . Having regard to Council Regulation ( EEC) No 337/79 of 5 February 1979 on the common organization of the Whereas the provisions of Regulation ( EEC) market in wine C1), as last amended by Regulation No 2005/70 have been amended several times since its ( EEC) No 3577/81 ( 2), and in particular Article 31 ( 4) thereof, adoption ; whereas the wording of the said Regulation has become difficult to understand because of the large number of amendments ; whereas account must be taken of the consolidation of Regulations ( EEC) No Whereas Article 31 of Regulation ( EEC) No 337/79 816/70 ( 6) and ( EEC) No 1388/70 ( 7) in Regulations provides for the classification of vine varieties approved ( EEC) No 337/79 and ( EEC) No 347/79 ; whereas, in for cultivation in the Community ; whereas those vine view of this situation, Regulation ( EEC) No 2005/70 varieties
    [Show full text]
  • Grape Varieties for Indiana
    Commercial • HO-221-W Grape Varieties for Indiana COMMERCIAL HORTICULTURE • DEPARTMENT OF HORTICULTURE PURDUE UNIVERSITY COOPERATIVE EXTENSION SERVICE • WEST LAFAYETTE, IN Bruce Bordelon Selection of the proper variety is a major factor for fungal diseases than that of Concord (Table 1). Catawba successful grape production in Indiana. Properly match- also experiences foliar injury where ozone pollution ing the variety to the climate of the vineyard site is occurs. This grape is used primarily in white or pink necessary for consistent production of high quality dessert wines, but it is also used for juice production and grapes. Grape varieties fall into one of three groups: fresh market sales. This grape was widely grown in the American, French-American hybrids, and European. Cincinnati area during the mid-1800’s. Within each group are types suited for juice and wine or for fresh consumption. American and French-American Niagara is a floral, strongly labrusca flavored white grape hybrid varieties are suitable for production in Indiana. used for juice, wine, and fresh consumption. It ranks The European, or vinifera varieties, generally lack the below Concord in cold hardiness and ripens somewhat necessary cold hardiness to be successfully grown in earlier. On favorable sites, yields can equal or surpass Indiana except on the very best sites. those of Concord. Acidity is lower than for most other American varieties. The first section of this publication discusses American, French-American hybrids, and European varieties of wine Other American Varieties grapes. The second section discusses seeded and seedless table grape varieties. Included are tables on the best adapted varieties for Indiana and their relative Delaware is an early-ripening red variety with small berries, small clusters, and a mild American flavor.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • RAPD Assessment of California Phylloxera Diversity. Molecular Ecology 4:459464.)
    California grape phylloxera more variable than expected Jeffrey Granett 0 Andrew Walker P John De Benedictis GenineFong o Hong Lin P Ed Weber Many strains of grape phylloxera phylloxera’s biology, its life cycle and now have been identified in Cali- how grape species and rootstocks re- fornia vineyards. This variability sist its feeding. may be the result of multiple intro- This paper reviews our recent dis- ductions of this pest or of evolu- coveries that the DNA and feeding f tion of new strains on susceptible behavior of different collections of -G* or weakly resistant rootstocks. California phylloxera are relatively di- 8 1 verse. The discovery of diversity in 0 Thus own-rooted vines, weakly re- -J sistant rootstocks and those with biological populations is not novel, but the amount we found in California Grape phylloxera on rootstock. The minute V. vinifera parentage should not aphidlike insects feed on the root, causing a was unexpected. Because phylloxera be used in phylloxerated areas. In gall to form. The expanding and cracking gall were supposedly introduced into Cali- limits the root’s ability to take up water and addition, because of the observed fornia a relatively short time ago, and nutrients and allows rot organisms to invade. variability, quarantines are inef- they only reproduce asexually on the fective in preventing the occur- roots, we expected a relatively low are rarely damaged by its feeding. rence of biotype B phylloxera, as level of diversity. Other Vitis species, from parts of the it appears to evolve independently The variability in phylloxera’s abil- world where phylloxera are not na- in different areas.
    [Show full text]
  • Phylloxera Strategiesis for Management in Oregon's Vineyards Information
    EC 1463 • November 1995 $2.50 DATE. OF OUTPhylloxera StrategiesIS for management in Oregon's vineyards information: PUBLICATIONcurrent most THIS For http://extension.oregonstate.edu/catalog OREGON STATE UNIVERSITY EXTENSION SERVICE Contents Chapter 1. Phylloxera: What is it? 1 Chapter 2. Reducing the risk of phylloxera infestation 3 Chapter 3. Sampling vines to confirm the presence of phylloxera 4 Chapter 4. How to monitor the rate of spread of phylloxera in your vineyard 5 Chapter 5. Managing a phylloxera-infested vineyard DATE. 7 Chapter 6. Replanting options for establishing phylloxera-resistant vineyards 9 Chapter 7. Phylloxera-resistant rootstocks for grapevines 12 Chapter 8. Buying winegrape plants OF 19 Chapter 9. Tips for producing phylloxera-resistant grafted vines 20 OUT IS Authors This publication was prepared by a phylloxera task force at Oregon State University. Members are Bemadine Strik, Extensioninformation: berry crops specialist; M. Carmo Candolfi-Vasconcelos, Extension viticulture specialist; Glenn Fisher, Extension entomologist; Edward Hellman, Extension agent, North Willamette Research and Extension Center; Barney Watson, Extension enologist: Steven Price, postdoctoral research associate, viticulture; Anne Connelly, master's program student, horticulture; and Paula Stonerod, research aide, horticulture.PUBLICATION current most THIS For http://extension.oregonstate.edu/catalog Chapter 1 Phylloxera: What is It? B. Strik, A. Connelly, and G. Fisher History green, or light brown; on weakened distances. In Oregon, above-ground roots they are brown or orange. Mature nymphs have been detected on trunk The grape phylloxera, Daktulosphaira adults become brown or purplish- wraps in July and August. vitifoliae (Fitch), is an aphidlike insect brown, no matter on what kind of root that feeds on grape roots.
    [Show full text]
  • The Influence of Phosphorus Availability, Scion, and Rootstock on Grapevine Shoot Growth, Leaf Area, and Petiole Phosphorus Concentration R
    The Influence of Phosphorus Availability, Scion, and Rootstock on Grapevine Shoot Growth, Leaf Area, and Petiole Phosphorus Concentration R. STANLEY GRANT ~* and M. A. MATTHEWS 2 Cabernet Sauvignon (CS) and Chenin blanc (Cb) scions on Freedom, AxR#1, St. George, and 110R rootstocks were grown under conditions of sufficient (+P) and deficient (-P) soil phosphorous availability. Shoot length, shoot dry weight, leaf area, and petiole P concentration were lower for -P compared to +P vines. Cb vines had larger leaves and more leaf area than CS vines and the leaf area of Cb vines was less inhibited by exposure to -P than was CS vines. Vines on Freedom had longer shoots, greater shoot biomass, and greater leaf area than vines on other rootstocks regardless of P availability. Under +P vines on St. George produced less shoot dry weight than vines on Freedom, but more than vines on 110R. However, the shoot dry weight and leaf area of vines on St. George was greatly inhibited by -P and vines on St. George appeared to not use P efficiently for growth under these conditions. Vines on 110R produced the least amount of shoot growth and leaf area among the rootstocks under +P, but were also the least inhibited by -P conditions. The shoot dry weight and leaf area of vines on AxR#1 was intermediate between vines on Freedom and vines on St. George and 110R, and were inhibited by -P slightly less than St. George. Freedom and 110R are more suitable for low P soils than St. George and AxR#1.
    [Show full text]
  • • Phylloxera • Stink Bugs • Fruit Flies • Spotted Lanternfly
    Mid-Late season insect management in vineyards • Phylloxera • Stink bugs • Fruit flies • Spotted lanternfly Photos: Andy Muza, Penn State Flor E. Acevedo Pre-bloom - summer Grape phylloxera, Daktulosphaera vitifoliae (Hemiptera: Phylloxeridae) Insecticides (foliar form): Assail Danitol Movento https://bugguide.net/node/view/794979 Photos (c) Prof. Dr. Joachim Schmid, Department of Grapevine Breeding and Grafting, Geisenheim Research Institute, Germany Root form Leaf form Mid-summer to pre-harvest Brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae) • Native to Asia • Polyphagous (over 100 plant species) • Detected in Allentown, PA in 1998 Photo: Andy Muza, Penn State Mid-summer to pre-harvest Photo by Steve Schoof Brown marmorated Dusky stink bug Brown stink bug Onespotted stink bug Rough stink bug stink bug Consperse stink bug (Euschistus tristigmus) (Euschistus servus) (Euschistus variolarius) (Euschistus conspersus) (Brochymena (Halyomorpha halys) quadripustulata) Photo: Brandon Woo Photo: Brent Short, USDA Photo: Brent Short, USDA Photo: Brent Short, USDA Photo: Brent Short, USDA Photo: Mike Quinn https://www.stopbmsb.org/stink-bug-basics/look-alike-insects/ Mid-summer to pre-harvest Brown marmorated stink bug Samurai wasp Natural enemies: (Trissolcus japonicus) Egg parasitoid Photo by the Oregon Department of Agriculture Insecticides: Material Rate per Acre Comments Source: 2020 New York and Pennsylvania Pest management guidelines for grapes Pre-harvest Fruit flies Spotted wing Drosophila Fruit fly Drosophila suzukii Drosophila melanogaster By Martin Hauser, source: https://amasianv.wordpress.com/tag/asian-shore-crab/ Pre-harvest Fruit fly ovipositors Crava et al., 2019. BioRxiv Pre-harvest • Close association of fruit flies with sour rot. • Fruit flies contribute to spread of sour rot.
    [Show full text]
  • Population Diversity of Grape Phylloxera in California and Evidence for Sexual Reproduction
    Population Diversity of Grape Phylloxera in California and Evidence for Sexual Reproduction Summaira Riaz,1,2 Karl T. Lund,1,2 Jeffrey Granett,1 and M. Andrew Walker1* Abstract: Until recently, the foliar forms of grape phylloxera have been absent or very rare in California, and no- dosities have not been common on resistant rootstocks. Foliar phylloxera are now widely spread in the mothervine plantings of grape rootstock nurseries in Yolo and Solano counties. Nodosities on resistant rootstocks have also been frequently observed. To determine the genetic relationships within and among these seemingly new types of phyl- loxera, collections were made across California from 2009 to 2011. Foliar-feeding phylloxera strains were collected from rootstock mothervines at the National Clonal Germplasm Repository in Winters, CA; University of California, Davis (UCD), vineyards; and six commercial rootstock nursery plantings in Yolo and Solano counties. Root-feeding samples were collected from a rootstock trial at the UCD Oakville research station vineyard in Napa County, which had previously been sampled in 2006 and 2007. Root-feeding samples were also collected from commercial vineyards in Napa and Sonoma counties and UCD vineyards. All samples were tested and genotyped using simple sequence repeat markers, and the genetic structure of the populations was analyzed. The results identified four genetically distinct populations of phylloxera in California, which were named Davis, Foliar, Napa1, and Napa2. Davis, Napa1, and Napa2 were composed of root-feeding samples. Multilocus genotypes with identical DNA-fingerprint profiles were detected in the 2006 to 2007 samples from the Oakville research station. More genetic divergence was observed in the Davis, Napa1, and Napa2 populations, with evidence for sexual reproduction between members of Napa1 and Napa2.
    [Show full text]
  • Impacts of Soil Electrical Conductivity and Compost Mulches on Phylloxera Establishment and Abundance
    Impacts of soil electrical conductivity and compost mulches on phylloxera establishment and abundance Kevin Powell, Ginger Korosi, Bernadette Carmody and Rebecca Bruce Department of Primary Industries, Rutherglen Centre, Biosciences Research Division, RMB 1145 Chiltern Valley Road, Rutherglen, Victoria 3685, Australia Corresponding author: [email protected] Introduction Grape phylloxera ( Daktulosphaira vitifoliae Fitch) is present in most grape-growing countries and can attack both the roots and foliage of grapevines. The root-galling form of phylloxera causes significant economic damage to Vitis vinifera L. and can also survive on the roots of ‘resistant’ rootstocks. In Australia grape phylloxera is a quarantine pest and is restricted to phylloxera infested zones in Victoria and New South Wales. Eighty-three genotypic clones of phylloxera have so far been identified in Australia (Umina et al. 2007) and some strains predominate in the different geographical regions. The degree of damage to the grapevine root system and the risk of phylloxera establishment through quarantine breakdown is predominantly influenced by the virulence of the phylloxera genetic strain (Powell 2008, 2011). Long-term management of root-galling strains of phylloxera has predominantly focused on recommending resistant rootstocks and developing robust quarantine protocols. This focus has largely ignored the impact that the soil environment, which is after all phylloxeras’ predominant habitat, has on the insect-host plant interactions. Future phylloxera management needs to consider a more integrated approach and where the influence of soil physiochemical properties on phylloxera establishment, subsequent abundance and the risk of spread are recognised. Newly developed options for targeted early detection of phylloxera are being developed, where soil factors are considered, include the use of a soil molecular DNA probe, trapping techniques and the use of soil electromagnetic induction surveys.
    [Show full text]
  • Grape Breeding for the Prairies
    Grape Breeding for the Prairies: Inheritance of Resveratrol production in hybrid grapes 2008/09 Annual Project Summary for The Alberta Horticultural Growers Congress and Foundational Society By Tyler Kaban University of Saskatchewan MSc Candidate Breeding Overview Over the last three seasons, I was able to perform multiple controlled crosses utilizing parent vines of diverse genetic backgrounds. Research started in my last year of undergraduate studies has continued through my summer employment with the Fruit Program and now as a graduate student. In 2007, with the help of summer staff, 300 vines from controlled crosses were planted in the U of S hort field plots. Of those vines two promising genotypes have Figure 1. Promising red-fruited (Valiant x been selected based on winter Kay Gray) seedling showing greater hardiness (and quality traits), C-16 hardiness than its parent Valiant. Fruit which will be described in detail and a quality is similar to its paternal parent red-fruited (Valiant x Kay Gray) seedling ‘Kay Gray’. Cluster size is small because the plants are very young. Currently, which produced fruit for the first time this there are no red grape varieties for the year. This genotype was the hardiest of Prairies. all the first generation crosses to Valiant and proved to be hardier than Valiant itself having flowered above the snow Due to the low level of hardiness line following the 2008/2009 ‘test winter’. observed in the Valiant-cross, first This genotype may prove useful in generation seedlings, I decided to return further breeding. back to crosses with pure Vitis riparia to maintain greater hardiness in progeny.
    [Show full text]
  • Use of Ampelographic Methods in the Identification of Nova
    USE OF AMPELOGRAPHIC METHODS IN THE IDENTIFICATION OF NOVA SCOTIAN GRAPE (VITIS SPP.) CULTIVARS by Laura A. Wiser Thesis submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science with Honours in Biology Acadia University April, 2011 © Copyright by Laura A. Wiser, 2011 This thesis by Laura A. Wiser is accepted in its present form by the Department of Biology as satisfying the thesis requirements for the degree of Bachelor of Science with Honours Approved by the Thesis Supervisor __________________________ ____________________ (David Kristie) Date Approved by the Head of the Department __________________________ ____________________ (Donald Stewart) Date Approved by the Honours Committee __________________________ ____________________ (Sonia Hewitt) Date ii I, Laura A. Wiser, grant permission to the University Librarian at Acadia University to reproduce, loan or distribute copies of my thesis in microform, paper or electronic formats on a non-profit basis. I, however, retain the copyright in my thesis. _________________________________ Signature of Author _________________________________ Date iii ACKNOWLEDGEMENTS There are many people who have helped me make this project possible. First, I would like to thank my supervisor, Dr. David Kristie, for his help and suggestions in conducting my research and in writing my thesis. I would also like to thank Dr. Jonathan Murray and Kim Strickland at Muir Murray Estate Winery for allowing me to conduct my research in a beautiful work environment over the summer. I would like to thank NSERC for funding my summer work. Many people have helped make this project possible by letting me sample plants from their vineyards, and by sharing their knowledge with me.
    [Show full text]
  • The Genome Sequence of the Grape Phylloxera
    Rispe et al. BMC Biology (2020) 18:90 https://doi.org/10.1186/s12915-020-00820-5 RESEARCH ARTICLE Open Access The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest Claude Rispe1*†, Fabrice Legeai2*†, Paul D. Nabity3, Rosa Fernández4,5, Arinder K. Arora6, Patrice Baa-Puyoulet7, Celeste R. Banfill8, Leticia Bao9, Miquel Barberà10, Maryem Bouallègue11, Anthony Bretaudeau2, Jennifer A. Brisson12, Federica Calevro7, Pierre Capy13, Olivier Catrice14, Thomas Chertemps15, Carole Couture16, Laurent Delière16, Angela E. Douglas6,17, Keith Dufault-Thompson18, Paula Escuer19, Honglin Feng20,21, Astrid Forneck22, Toni Gabaldón4,23,24, Roderic Guigó25,26, Frédérique Hilliou27, Silvia Hinojosa-Alvarez19, Yi-min Hsiao28,29, Sylvie Hudaverdian30, Emmanuelle Jacquin-Joly31, Edward B. James8, Spencer Johnston32, Benjamin Joubard16, Gaëlle Le Goff33, Gaël Le Trionnaire30, Pablo Librado34, Shanlin Liu35,36,37, Eric Lombaert38, Hsiao-ling Lu39, Martine Maïbèche15, Mohamed Makni11, Marina Marcet-Houben4, David Martínez-Torres40, Camille Meslin31, Nicolas Montagné41, Nancy A. Moran42, Daciana Papura16, Nicolas Parisot7, Yvan Rahbé43, Mélanie Ribeiro Lopes7, Aida Ripoll-Cladellas25, Stéphanie Robin44, Céline Roques45, Pascale Roux16, Julio Rozas19, Alejandro Sánchez-Gracia19, Jose F. Sánchez-Herrero19, Didac Santesmasses25,46, Iris Scatoni47, Rémy-Félix Serre45, Ming Tang37, Wenhua Tian3, Paul A. Umina48, Manuella van Munster49, Carole Vincent-Monégat7, Joshua Wemmer3, Alex C. C. Wilson8,
    [Show full text]