Benchmarking Arm-Based Application

Total Page:16

File Type:pdf, Size:1020Kb

Benchmarking Arm-Based Application BENCHMARKING ARM-BASED APPLICATION INTEGRATED SYSTEMS By SETH WILLIAMS Bachelor Science in Electrical Engineering Oklahoma State University Stillwater, Oklahoma 2011 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING December, 2011 BENCHMARKING ARM-BASED APPLICATION INTEGRATED SYSTEMS Thesis Approved: Dr. James Stine Thesis Adviser Dr. Sohum Sohoni Dr. Weihua Sheng Dr. Sheryl Tucker Dean of the Graduate College ii TABLE OF CONTENTS Chapter Page TABLE OF CONTENTS .................................................................................................. III LIST OF TABLES ............................................................................................................. V LIST OF FIGURES .......................................................................................................... VI I. INTRODUCTION ........................................................................................................... 1 Objectives .................................................................................................................... 2 Contributions ............................................................................................................... 3 Summary ...................................................................................................................... 4 II. BACKGROUND ............................................................................................................ 5 ARM ............................................................................................................................ 6 History and Marketing .......................................................................................... 6 Features and Expansions ...................................................................................... 8 Processors ........................................................................................................... 10 Architecture ........................................................................................................ 14 Integrated Systems ..................................................................................................... 17 System-on-a-Chip ............................................................................................... 18 System-in-Package ............................................................................................. 18 Package-on-Package ........................................................................................... 19 Beagle Board ............................................................................................................. 21 Specifications ..................................................................................................... 22 Interface and Extensions ..................................................................................... 22 OMAP3530 and POP Memory ........................................................................... 25 Benchmarks ............................................................................................................... 29 Standard Benchmark Qualities ........................................................................... 29 Misuse ................................................................................................................. 30 Prolific Benchmarks ........................................................................................... 32 III. IMPLEMENTATION ................................................................................................. 34 Beagle Board Setup ................................................................................................... 35 Setting up Ubuntu for the Beagle Board ............................................................ 36 MiBench .................................................................................................................... 36 Composition ....................................................................................................... 37 iii Execution ............................................................................................................ 38 Research Focuses ....................................................................................................... 39 Benchmark Criteria ............................................................................................ 40 IV. RESULTS ................................................................................................................... 41 Benchmark Research ................................................................................................. 42 Possible Benchmarks .......................................................................................... 42 Existing Benchmark Results ............................................................................... 45 MiBench results ......................................................................................................... 50 Automotive/Industrial ......................................................................................... 51 Network .............................................................................................................. 53 Consumer ............................................................................................................ 53 Office .................................................................................................................. 55 Security ............................................................................................................... 56 Telecommunication ............................................................................................ 57 V. CONCLUSIONS .......................................................................................................... 59 Analysis ..................................................................................................................... 60 Are Application Processors Distinct? ................................................................. 60 Is Testing the Core Enough? .............................................................................. 62 Are Current Benchmarks Adequate? .................................................................. 62 What is the Future Trend? .................................................................................. 63 Future Work ............................................................................................................... 64 Summary .................................................................................................................... 65 BIBLIOGRAPHY ............................................................................................................. 66 GLOSSARY ..................................................................................................................... 71 ACRONYMS .................................................................................................................... 73 APPENDICES .................................................................................................................. 75 Appendix A: Partition Geometry ............................................................................... 75 Appendix B: MiBench Details .................................................................................. 76 Appendix C: Cortex-A comparisons ......................................................................... 78 iv LIST OF TABLES Table Page Table 1: ARM Versions and Families ............................................................................................. 7 Table 2: Instruction Set Options .................................................................................................... 14 Table 3: OMAP Interfaces and Beagle Board Connectors ............................................................ 24 Table 4: OMAP3530 Parametrics [30] ......................................................................................... 26 Table 5: MiBench Categories ........................................................................................................ 37 Table 6: TI OMAP3530DCBB72 [30] vs. AMD Turion TM 64 X2 Mobile Dual-Core [76] ......... 51 Table 7: Automotive & Industrial Benchmark Descriptions ......................................................... 76 Table 8: Consumer Benchmark Descriptions ................................................................................ 76 Table 9: Office Benchmark Descriptions....................................................................................... 77 Table 10: Network Benchmark Descriptions ................................................................................. 77 Table 11: Security Benchmark Descriptions ................................................................................. 77 Table 12: Telecommunications Benchmark Descriptions ............................................................. 77 Table 13: Cortex-A Comparisons .................................................................................................. 79 v LIST OF FIGURES Figure Page Figure 1: ARM Processor Categories by Capability [21] .............................................................. 11 Figure 2: ARM Processors and Features [21] ............................................................................... 13 Figure
Recommended publications
  • Oriented Conferences Four Solutions
    Delivering Solutions and Technology to the World’s Design Engineering Community Four Solutions- Oriented Conferences • System-on-Chip Design Conference • IP World Forum • High-Performance System Design Conference • Wireless and Optical Broadband Design Conference Special Technology Focus Areas January 29 – February 1, 2001 • Internet and Information Exhibits: January 30–31, 2001 Appliance Design Santa Clara Convention Center • Embedded Design Santa Clara, California • RF, Optical, and Analog Design NEW! • IEC Executive Forum International Engineering Register by January 5 and Consortium save $100 – and be entered to win www.iec.org a Palm Pilot! Practical Design Solutions Practical design-engineering solutions presented by practicing engineers—The DesignCon reputation of excellence has been built largely by the practical nature of its sessions. Design engineers hand selected by our team of professionals provide you with the best electronic design and silicon-solutions information available in the industry. DesignCon provides attendees with DesignCon has an established reputation for the high design solutions from peers and professionals. quality of its papers and its expert-level speakers from Silicon Valley and around the world. Each year more than 100 industry pioneers bring to light the design-engineering solutions that are on the leading edge of technology. This elite group of design engineers presents unique case studies, technology innovations, practical techniques, design tips, and application overviews. Who Should Attend Any professionals who need to stay on top of current information regarding design-engineering theories, The most complete educational experience techniques, and application strategies should attend this in the industry conference. DesignCon attracts engineers and allied The four conference options of DesignCon 2001 provide a professionals from all levels and disciplines.
    [Show full text]
  • FAN53525 3.0A, 2.4Mhz, Digitally Programmable Tinybuck® Regulator
    FAN53525 — 3.0 A, 2.4 MHz, June 2014 FAN53525 3.0A, 2.4MHz, Digitally Programmable TinyBuck® Regulator Digitally Programmable TinyBuck Digitally Features Description . Fixed-Frequency Operation: 2.4 MHz The FAN53525 is a step-down switching voltage regulator that delivers a digitally programmable output from an input . Best-in-Class Load Transient voltage supply of 2.5 V to 5.5 V. The output voltage is 2 . Continuous Output Current Capability: 3.0 A programmed through an I C interface capable of operating up to 3.4 MHz. 2.5 V to 5.5 V Input Voltage Range Using a proprietary architecture with synchronous . Digitally Programmable Output Voltage: rectification, the FAN53525 is capable of delivering 3.0 A - 0.600 V to 1.39375 V in 6.25 mV Steps continuous at over 80% efficiency, maintaining that efficiency at load currents as low as 10 mA. The regulator operates at Programmable Slew Rate for Voltage Transitions . a nominal fixed frequency of 2.4 MHz, which reduces the . I2C-Compatible Interface Up to 3.4 Mbps value of the external components to 330 nH for the output inductor and as low as 20 µF for the output capacitor. PFM Mode for High Efficiency in Light Load . Additional output capacitance can be added to improve . Quiescent Current in PFM Mode: 50 µA (Typical) regulation during load transients without affecting stability, allowing inductance up to 1.2 µH to be used. Input Under-Voltage Lockout (UVLO) ® At moderate and light loads, Pulse Frequency Modulation Regulator Thermal Shutdown and Overload Protection . (PFM) is used to operate in Power-Save Mode with a typical .
    [Show full text]
  • An Emerging Architecture in Smart Phones
    International Journal of Electronic Engineering and Computer Science Vol. 3, No. 2, 2018, pp. 29-38 http://www.aiscience.org/journal/ijeecs ARM Processor Architecture: An Emerging Architecture in Smart Phones Naseer Ahmad, Muhammad Waqas Boota * Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan Abstract ARM is a 32-bit RISC processor architecture. It is develop and licenses by British company ARM holdings. ARM holding does not manufacture and sell the CPU devices. ARM holding only licenses the processor architecture to interested parties. There are two main types of licences implementation licenses and architecture licenses. ARM processors have a unique combination of feature such as ARM core is very simple as compare to general purpose processors. ARM chip has several peripheral controller, a digital signal processor and ARM core. ARM processor consumes less power but provide the high performance. Now a day, ARM Cortex series is very popular in Smartphone devices. We will also see the important characteristics of cortex series. We discuss the ARM processor and system on a chip (SOC) which includes the Qualcomm, Snapdragon, nVidia Tegra, and Apple system on chips. In this paper, we discuss the features of ARM processor and Intel atom processor and see which processor is best. Finally, we will discuss the future of ARM processor in Smartphone devices. Keywords RISC, ISA, ARM Core, System on a Chip (SoC) Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: July 26, 2018 @ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.
    [Show full text]
  • Improving the Beaglebone Board with Embedded Ubuntu, Enhanced GPMC Driver and Python for Communication and Graphical Prototypes
    Final Master Thesis Improving the BeagleBone board with embedded Ubuntu, enhanced GPMC driver and Python for communication and graphical prototypes By RUBÉN GONZÁLEZ MUÑOZ Directed by MANUEL M. DOMINGUEZ PUMAR FINAL MASTER THESIS 30 ECTS, JULY 2015, ELECTRICAL AND ELECTRONICS ENGINEERING Abstract Abstract BeagleBone is a low price, small size Linux embedded microcomputer with a full set of I/O pins and processing power for real-time applications, also expandable with cape pluggable boards. The current work has been focused on improving the performance of this board. In this case, the BeagleBone comes with a pre-installed Angstrom OS and with a cape board using a particular software “overlay” and applications. Due to a lack of support, this pre-installed OS has been replaced by Ubuntu. As a consequence, the cape software and applications need to be adapted. Another necessity that emerges from the stated changes is to improve the communications through a GPMC interface. The depicted driver has been built for the new system as well as synchronous variants, also developed and tested. Finally, a set of applications in Python using the cape functionalities has been developed. Some extra graphical features have been included as example. Contents Contents Abstract ..................................................................................................................................................................................... 5 List of figures .........................................................................................................................................................................
    [Show full text]
  • Implementation of Real-Time Applications on ARM Microcontroller
    Implementation of Real-Time Applications on ARM Microcontroller Fawad 1 and Dr. Imran Amin 2 [email protected] SZABIST Karachi, Pakistan Abstract: The ARM is a 32-bit reduced instruction set • Open platforms running complex operating systems computer(RISC) architecture for microprocessor developed for wireless consumer and imaging applications. by ARM Limited[1]. I is also known as Advance RISC[2] • Embedded real-time systems for mass storage, Machine. AMR is suitable for the low power applications automotive, industrial and networking applications. which made them leading in the mobile and embedded • Secure applications including smart cards and SIMs. electronics industry relatively low cost and small microprocessor and microcontroller. The ARM architecture is licensable. companies that are currently ARM licenses include Alcatel, Atmel, Broadcom, Intel, LG, NVIDIA, Yamaha ST Microelectronics, Samsung and many more. ARM processor families include the ARM7, ARM9, ARM11 and Cortex. The purpose of this Research is to study the ARM architecture and uses of it on real-time Applications using ARM Cortex-A8 microprocessor, which is one of the microprocessor from ARM family. Beagleboard[5] is used for experimental setup and testing real-time application on ARM microprocessor. The Beagle Board is a low-power, low-cost Single-board computer developed by worldwide Figure 1: A Conexant ARM processor used mainly in community. It is amazingly 3x3 inch width and height. As a routers open-source application the Beagle Board is the open- ARM has a vast experience on developing embedded hardware architecture which is available for embedded systems which delivers technology that achieves develop and further enhancement.
    [Show full text]
  • Sitara™ Am57x Processor with Dual ARM® Cortex®-A15 Cores
    Sitara™ AM57x processor with dual ARM® Cortex®-A15 cores In today’s industrial automation market, (PLCs) and industrial computers consumers are seeing an evolution to human machine interface (HMI), that requires new technology featuring industrial peripherals and factory amplified performance and capabilities. communication, automation systems The factory automation floor is rapidly require cutting­edge technologies to advancing to become more user meet stringent customer requirements friendly with the incorporation of ele­ for high reliability in mission­critical ments like user interfaces that are environments. increasingly similar to those we use in our everyday lives and video compe­ Texas Instruments Incorporated (TI) has tencies that grant the ability to view a strategic commitment to the factory machines running on the opposite side automation industry, ranging from an of factories. This shift necessitates extensive, reliable solution portfolio to solutions very complex, expensive new processors that afford industrial a long product life supply as well as a and resistant to evolution even though system developers the capacity to suc­ strong local­based support. Industrial industry standards are changing. cessfully address these ever­evolving automation applications have been challenges. With applications ranging implemented using a variety of external Meeting the need for high from programmable logic controllers components making yesterday’s performance AM57x block diagram In industrial HMI and PLC systems, there is an increasing trend towards achieving x86­level performance in fanless enclosures and smaller form factors. At the same time, communica­ tions requirements are ever increasing for these systems, as is the need for intuitive user interface and high­perfor­ mance graphics in HMI systems.
    [Show full text]
  • OMAP 3 Family of Multimedia Applications
    OMAP™ 3 family of multimedia applications processors Revolutionizing entertainment and productivity Key features in wireless handheld commumications • Combines mobile entertainment and high-performance productivity applications. Product Bulletin • Integrates the advanced Superscalar ARM Cortex-A8 RISC core, enabling up to The OMAP™ 3 family of multimedia applications processors from Texas Instruments (TI) 3x gain in performance versus ARM11. introduces a new level of performance that enables laptop-like productivity and advanced • Designed in 45-nm (OMAP36x platform) entertainment in multimedia-enabled handsets. OMAP 3 devices support all levels of and 65-nm (OMAP34x platform) CMOS handsets, from the entry-level multimedia-enabled handsets to high-end Mobile Internet process technologies for less power Devices (MIDs). consumption and increased device performance. Entry-level Mid-level High-end • Includes integrated IVA hardware multimedia-enabled multimedia-enabled multimedia-enabled accelerators to enable multi-standard encode handsets handsets handsets decode up to HD resolution. OMAP3410 OMAP3420 OMAP3430/3440 • Available integrated image signal OMAP3610 OMAP3620 OMAP3630/3640 processor (ISP) enables faster, higher quality image capture, lower system cost TI’s OMAP 3 family of applications processors These devices can operate at a higher and lower power consumption. • Provides seamless connectivity to hard integrate the ARM Cortex-A8 superscalar frequency than previous-generation OMAP diskdrive (HDD) devices for mass storage. microprocessor
    [Show full text]
  • I.MX 8Quadxplus Power and Performance
    NXP Semiconductors Document Number: AN12338 Application Note Rev. 4 , 04/2020 i.MX 8QuadXPlus Power and Performance 1. Introduction Contents This application note helps you to design power 1. Introduction ........................................................................ 1 management systems. It illustrates the current drain 2. Overview of i.MX 8QuadXPlus voltage supplies .............. 1 3. Power measurement of the i.MX 8QuadXPlus processor ... 2 measurements of the i.MX 8QuadXPlus Applications 3.1. VCC_SCU_1V8 power ........................................... 4 Processors taken on NXP Multisensory Evaluation Kit 3.2. VCC_DDRIO power ............................................... 4 (MEK) Platform through several use cases. 3.3. VCC_CPU/VCC_GPU/VCC_MAIN power ........... 5 3.4. Temperature measurements .................................... 5 This document provides details on the performance and 3.5. Hardware and software used ................................... 6 3.6. Measuring points on the MEK platform .................. 6 power consumption of the i.MX 8QuadXPlus 4. Use cases and measurement results .................................... 6 processors under a variety of low- and high-power 4.1. Low-power mode power consumption (Key States modes. or ‘KS’)…… ......................................................................... 7 4.2. Complex use case power consumption (Arm Core, The data presented in this application note is based on GPU active) ......................................................................... 11 5. SOC
    [Show full text]
  • Part 1 of 4 : Introduction to RISC-V ISA
    PULP PLATFORM Open Source Hardware, the way it should be! Working with RISC-V Part 1 of 4 : Introduction to RISC-V ISA Frank K. Gürkaynak <[email protected]> Luca Benini <[email protected]> http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform Working with RISC-V Summary ▪ Part 1 – Introduction to RISC-V ISA ▪ What is RISC-V about ▪ Description of ISA, and basic principles ▪ Simple 32b implementation (Ibex by LowRISC) ▪ How to extend the ISA (CV32E40P by OpenHW group) ▪ Part 2 – Advanced RISC-V Architectures ▪ Part 3 – PULP concepts ▪ Part 4 – PULP based chips | ACACES 2020 - July 2020 Working with RISC-V Few words about myself Frank K. Gürkaynak (just call me Frank) Senior scientist at ETH Zurich (means I am old) working with Luca Studied / Worked at Universities: in Turkey, United States and Switzerland (ETHZ and EPFL) Involved in Digital Design, Low Power Circuits, Open Source Hardware Part of PULP project from the beginning in 2013 | ACACES 2020 - July 2020 Working with RISC-V RISC-V Instruction Set Architecture ▪ Started by UC-Berkeley in 2010 SW ▪ Contract between SW and HW Applications ▪ Partitioned into user and privileged spec ▪ External Debug OS ▪ Standard governed by RISC-V foundation ▪ ETHZ is a founding member of the foundation ISA ▪ Necessary for the continuity User Privileged ▪ Defines 32, 64 and 128 bit ISA Debug ▪ No implementation, just the ISA ▪ Different implementations (both open and close source) HW ▪ At ETH Zurich we specialize in efficient implementations of RISC-V cores | ACACES 2020 - July 2020 Working with RISC-V RISC-V maintains basically a PDF document | ACACES 2020 - July 2020 Working with RISC-V ISA defines the instructions that processor uses C++ program translated to RISC-V instructions defined by ISA.
    [Show full text]
  • Table of Contents 2006 IEEE Symposium on VLSI Technology
    13eds02.qxd 3/6/06 8:36 AM Page 1 IEEE E D S ELECTRONELECTRON DEVICESDEVICES SOCIETYSOCIETY Newsletter APRIL 2006 Vol. 13, No. 2 ISSN:1074 1879 Editor-in-Chief: Ninoslav D. Stojadinovic 2006 IEEE Symposium Table of Contents on VLSI Technology Upcoming Technical Meetings .......................1 • 2006 VLSI • 2006 ASMC • 2006 IITC • 2006 UGIM Outgoing Message from the 2004-5 EDS President...................................3 Society News.........................................................9 • December 2005 AdCom Meeting Summary • Message from the EDS Newsletter Editor-in-Chief • EDS Educational Activities Committee Report • EDS Nanotechnology Committee Report • EDS Photovoltaic Devices Committee Report • 2005 EDS J.J. Ebers Award Winner • 2006 EDS J.J. Ebers Award Call for Nominations • 2005 EDS Distinguished Service Award Winner • 2006 Charles Stark Draper Prize Hilton Hawaiian Village, Honolulu, Hawaii • 23 EDS Members Elected to the IEEE The 26th Annual IEEE Symposium on VLSI Technology will Grade of Fellow be held June 13-15, 2006, at the Hilton Hawaiian Village in • 2005 Class of EDS Fellows Honored at IEDM Honolulu, Hawaii. The VLSI Technology Symposium is joint- ly sponsored by the IEEE Electron Devices Society (EDS) and • EDS Members Named Winners of the Japan Society of Applied Physics (JSAP). 2006 IEEE Technical Field Awards The VLSI Symposium is well recognized as one of the • EDS Regions 1-3 & 7 Chapters Meeting Summary premiere conferences on semiconductor technology, and research results presented at the conference represent a • 2005 EDS Chapter of the Year Award broad spectrum of VLSI technology topics, including: • EDS Members Recently Elected • New concepts and breakthroughs in VLSI devices and to IEEE Senior Member Grade processes.
    [Show full text]
  • BOOM): an Industry- Competitive, Synthesizable, Parameterized RISC-V Processor
    The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A. Patterson Krste Asanović Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-167 http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html June 13, 2015 Copyright © 2015, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanovic´ University of California, Berkeley, California 94720–1770 [email protected] BOOM is a work-in-progress. Results shown are prelimi- nary and subject to change as of 2015 June. I$ L1 D$ (32k) L2 data 1. The Berkeley Out-of-Order Machine BOOM is a synthesizable, parameterized, superscalar out- exe of-order RISC-V core designed to serve as the prototypical baseline processor for future micro-architectural studies of uncore regfile out-of-order processors. Our goal is to provide a readable, issue open-source implementation for use in education, research, exe and industry. uncore BOOM is written in roughly 9,000 lines of the hardware L2 data (256k) construction language Chisel.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]