WO 2013/126565 Al II IIII I I I11

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/126565 Al II IIII I I I11 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2013/126565 A l 2 9 August 2013 (29.08.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 5/071 (2010.01) C12N 15/63 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 5/10 (2006.01) A61K 48/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 15/113 (2010.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, EST, IS, JP, KE, KG, KM, KN, KP, PCT/US20 13/027 128 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 2 1 February 2013 (21 .02.2013) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/603,165 24 February 2012 (24.02.2012) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (72) Inventor; and UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant : LUNYAK, Victoria V . [US/US]; 4 Shep TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Court, Novato, California 94945 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (74) Agents: HUNTER, Tom et al; Weaver Austin Villeneuve TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, & Sampson LLP, P.O. Box 70250, Oakland, California ML, MR, NE, SN, TD, TG). 94612-0250 (US). [Continued on nextpage] (54) Title: DOWNREGULATION OF SINE/ALU RETROTRANSPOSON TRANSCRIPTION TO INDUCE OR RESTORE PRO LIFERATIVE CAPACITY AND/OR PLURIPOTENCY TO A STEM CELL (57) Abstract: In certain embodiments methods Senescent ADSC are provided for inducing and/or restoring and/or maintaining a non-senescent phenotype, or as pects thereof (e.g., proliferative capacity and/or pluripotency) in a mammalian cell. The methods typically involve reducing the level or activity of SINE/Alu retrotransposon transcripts in the cell in an amount sufficient to induce or restore pro - Lentivirus genome liferative capacity and/or pluripotency to said was modified to mammalian cell. Viral particle V , express GFP and sh-RNA against Alu transcript Stable integration of viral genome upon infection ADSC with stable knockdown of Alu RNA Lentivirus Generated Alu Knockdown Fig. 15A WO 2013/126565 Al II IIII I I I11 Published: before the expiration of the time limit for amending the — with international search report (Art. 21(3)) claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) DOWNREGULATION OF SINE/ALU RETROTRANSPOSON TRANSCRIPTION TO INDUCE OR RESTORE PROLIFERATIVE CAPACITY AND/OR PLURIPOTENCY TO A STEM CELL CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims benefit of and priority to USSN 61/603,165, filed on February 24, 2012, which is incorporated herein by reference in its entirety for all purposes. STATEMENT OF GOVERNMENTAL SUPPORT [ Not Applicable ] BACKGROUND [0002] Adult stem cells are extremely important for long-term tissue homeostasis throughout life. Their self-renewing proliferative capacity involves numerous tightly coordinated processes to ensure preservation of genome integrity during cell division. The regulatory mechanisms underlying their aging are less well defined. Nonetheless, global gene expression studies of stem cells purified from young and old mice have implicated the involvement of epigenetic regulation in higher-order chromatin dynamics. These studies have suggested coordinated age-dependent regulation of chromosomal regions, chromatin remodeling activities and lineage specification genes (Chambers et al. (2007) PLoS Biol., 5: e201; Rossi et al. (2007) Exp. Gerontol., 42: 385-390; Rossi et al. (2005) Proc. Natl. Acad. Sci. USA, 102: 9194-9199). [0003] All cells are constantly challenged by exogenous and endogenous sources of DNA damage; depending on the nature of the damage, they activate different DNA damage repair mechanisms (Sinclair et al. (2004) Am. Nat., 164: 396-414). In parallel, cells also activate checkpoint pathways, which delay cell cycle progression until genome integrity has been restored (Shiloh (2001) Curr. Opin. Genet. Dev., 11: 71-77). One aspect of the stem cell hypothesis of aging postulates that the gradual and coordinated age-related loss of DNA damage repair capacity results in DNA damage accumulation over time. This damage would pose a significant threat to adult stem cell survival by altering proliferation and differentiation patterns, ultimately triggering cellular senescence. Therefore, the ability of adult stem cells to monitor and faithfully repair DNA damage is key to the prevention of aging and neoplastic transformations. [0004] Little is known about the precise relationship between chromatin and DNA- repair factors. More than 50% of the human genome consists of retrotransposons (Lander et al. (2001) Nature, 409: 860-921). Their epigenetic makeup is poorly understood and inadequately annotated at the genomic level, due to a high degree of sequence conservation. In fact, many retrotransposons are derived from ancestral R A genes and might represent genetically active sequences that encode different types of RNA with yet unknown functions (McClintock (1956) Cold Spring Harb. Symp. Quant. Biol., 21: 197-216). However, clear evidence exists that the retrotransposal portion of the genome profoundly influences the organization, integrity, and evolution of the host's genome and transcriptome (Han et al. (2004) Nature, 429: 268-274; Kazazian (2004) Science, 303: 1626-1632). A growing body of evidence demonstrates that, during mammalian evolution, a large number of ancient retroelements acquired regulatory or structural functions. [0005] The majority of retrotransposons are expressed in extraordinarily complex patterns in a cell- or tissue-specific manner, and potentially provide a rich source of non- protein coding RNAs to guide the trajectories of cellular differentiation and multicellular development (Amaral et al. (2008) Science 319: 1787-1789; Birney etal. (2007) Nature, 447: 799-816; Denoeud et al. (2007) Genome Res., 17: 746-759; Dinger et al. (2008) GenomeRes., 18: 1433-1445; Dinger et al. (2008) J. Mol. Endocrinol., 40: 151-159; Emanuelsson et al. (2007) Genome Res., 17: 886-897; Faulkner et al. (2009) Nat. Genet., 41: 563-571; Lowe et al. (2007) Proc. Natl. Acad. Sci. USA, 104: 8005-8010; Mattick etal. (2009) Bioessays, 31: 51-59; Mercer etal. (2008) Proc. Natl. Acad. Sci. USA, 105: 716- 721 ; Mikkelsen et al., ed. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells; Rozowsky et al. (2007) Genome Res., 17: 732-745; Trinklein et al. (2007) Genome Res., 17: 720-731). Recent studies have proven that retrotransposon transcriptional activities trigger and guide the processes of (i) assembly of centromeric chromatin, (ii) gene transcription, (iii) compartmentalization of chromatin and, (iv) nuclear organization of chromatin insulation during X-chromosome inactivation. Retrotransposons also serve a distinct function in non-random chromosomal translocations in tumors (Allen et al. (2004) Nat. Struct. Mol. Biol., 11: 816-821; Chueh etal. (2005) Hum. Mol. Genet., 14: 85-93; Lei and Corces (2006) Cell, 124: 886-888; Lei and Corces (2006) Nat. Genet., 38: 936-941; Lin et al. (2009) Cell, 139: 1069-1083; Lunyak (2008) Curr. Opin. Cell Biol, 20: 281-287; Lunyak et al. (2007) Science, 317: 248-251; Mattick et al. (2009) Bioessays, 31: 51-59; Navarro et al. (2009) Epigenetics Chromatin 2: 8). [0006] There is also a considerable amount of tissue-specific, development-specific, and disease-related variability in DNA methylation and covalent modifications of chromatin within the retrotransposal portion of the genome (Kondo and Issa (2003) J. Biol. Chem. 278: 27658-27662; Estecio et al. (2007) PLoS ONE 2: e399). A genome-wide study by Martens (Martens et al. (2005) EMBO J., 24: 800-8 12) demonstrates that LINEs, SINE/Alus, and other interspersed retrotransposons have variable degrees of H3K9, H3K27, and H4K20 histone methylation, raising the possibility that posttranscriptional modifications (PTM) of retrotransposal chromatin can influence diverse cellular processes. SUMMARY [0007] Efficient repair of DNA double-strand breaks and authentic genome maintenance at the chromatin level are fundamental to faithful human adult stem cell self- renewal. Stem cell aging can be linked to deficiencies in these two processes. In one example, we report that -65% of naturally occurring repairable damage in self-renewing adult stem cells occurs in transposable elements. Upregulation of transcriptional activity from SINE/Alu retrotransposons interferes with the recruitment of condensin I and cohesin complexes in pericentric chromatin, resulting in the loss of efficient DNA repair and, in turn, senescence. Stable knockdown of generic SINE/Alu transcripts in senescent human adult stem cells reinstates the cells self-renewing properties and unexpectedly increases their plasticity as manifested by upregulation of Nanog and Oct4. The results provided herein demonstrate the functional significance of SINE/Alu retrotransposons and provide mechanistic insight into their novel role in mediating crosstalk between chromatin, DNA repair and aging of human adult stem cells. [0008] In certain embodiments, methods are provided for restoring a non-senescent phenotype, or aspects of a non-senescent phenotype to a senescent cell {e.g., a senescent adult stem cell).
Recommended publications
  • Peripheral Nervous System……………………………………………….9
    PhD School in Integrative Biomedical Research Department of Pharmacological and Biomolecular Sciences Curriculum: Neuroscience Molecular basis for the development of innovative therapies for peripheral neuropathies treatment: role and cross-regulation of the GABAergic system and neuroactive steroids SDD BIO/09 - Physiology Luca Franco Castelnovo Badge number R10402 PhD Tutor: Prof. Valerio Magnaghi PhD School Coordinator: Prof. Chiarella Sforza Academic year 2015/2016 INDEX Abstract…………………………………………………………………...page 1 Abbreviations list…………………………………………………………….....5 Introduction………………………………………………………………….....8 Peripheral nervous system……………………………………………….9 General concepts……………...……….……………………………........……..9 Sensory system and nociceptive fibers.………………..………….…………..12 Schwann cells and myelination……….……..………………...………………15 Peripheral neuropathies…….…………………………………………...26 General concepts……………………………………………………...……….26 Neuropathic pain……………………………………...……………………….27 Nerve regeneration…………………………………………………………….28 The GABAergic system………….……………………………………...32 GABA……………….…………………………………………………..……..32 GABA-A receptors…………………………………………………………….33 GABA-B receptors…………………………………………………………….42 GABAergic system in the peripheral nervous system…………………………47 Protein kinase C – type ε……………………….………………………..51 General concepts…………………………………………………….…………51 Cross-talk with allopregnanolone and GABA-A………………………………54 Neuroactive steroids…………......………………………………………57 General concepts…………………………………….…………………………57 Mechanism of action…………………………….……………………………..59 Progesterone derivatives………………………………….……………………60
    [Show full text]
  • A 475 Years-Old Founder Effect Involving IL12RB1: a Highly Prevalent Mutation Conferring Mendelian Susceptibility to Mycobacterial Diseases in European Descendants
    Infection, Genetics and Evolution 9 (2009) 574–580 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid A 475 years-old founder effect involving IL12RB1: A highly prevalent mutation conferring Mendelian Susceptibility to Mycobacterial Diseases in European descendants J. Yancoski a, C. Rocco a, A. Bernasconi a, M. Oleastro a, L. Bezrodnik b, C. Vra´tnica c, F. Haerynck d, S.D. Rosenzweig a,* a Hospital Nacional de Pediatrı´a J. P. Garrahan, Buenos Aires, Argentina b Hospital de Nin˜os Ricardo Gutierrez, Buenos Aires, Argentina c Hospital de Nin˜os Juan Pablo II, Corrientes, Argentina d Ghent University Hospital, Ghent, Belgium ARTICLE INFO ABSTRACT Article history: Mutations in IFNGR1, IFNGR2, IL12RB1, IL12B, STAT1 and NEMO result in a common clinical phenotype Received 11 December 2008 known as Mendelian Susceptibility to Mycobacterial Diseases (MSMD). Interleukin-12 receptor b1 (IL- Received in revised form 13 February 2009 12Rb1) deficiency is the most common genetic etiology for MSMD. Known mutations affecting IL12RB1 Accepted 16 February 2009 are recessively inherited and are associated with null response to both IL-12 and IL-23. Mutation IL12RB1 Available online 9 March 2009 1623_1624delinsTT was originally described in 5 families from European origin (2 from Germany; 1 from Cyprus, France and Belgium). Interestingly, this same mutation was found in an unexpectedly high Keywords: prevalence among IL-12Rb1 deficient patients in Argentina: 5-out-of-6 individuals born to unrelated Hot spot families carried this particular change. To determine whether mutation 1623_1624delinsTT represents a Salmonella Bacillus Calmette Guerin DNA mutational hotspot or a founder effect, 34 polymorphic markers internal or proximal to IL12RB1 Interferon gamma were studied in the Argentinean and the Belgian patients.
    [Show full text]
  • Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
    Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences,
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • SFRS14 Antibody (Monoclonal) (M01) Mouse Monoclonal Antibody Raised Against a Partial Recombinant SFRS14
    苏州工业园区双圩路9号1幢 邮 编 : 215000 电 话 : 0512-88856768 SFRS14 Antibody (monoclonal) (M01) Mouse monoclonal antibody raised against a partial recombinant SFRS14. Catalog # AT3845a Specification SFRS14 Antibody (monoclonal) (M01) - Product info Application WB, IHC, IF, E Primary Accession Q8IX01 Other Accession NM_014884 Reactivity Human Host mouse Clonality monoclonal Isotype IgG2a Kappa Clone Names 3C5 Calculated MW 120207 SFRS14 Antibody (monoclonal) (M01) - Additional info Gene ID 10147 Antibody Reactive Against Recombinant Protein.Western Blot detection against Other Names Immunogen (36.3 KDa) . SURP and G-patch domain-containing protein 2, Arginine/serine-rich-splicing factor 14, Splicing factor, arginine/serine-rich 14, SUGP2, KIAA0365, SFRS14 Target/Specificity SFRS14 (NP_055699, 579 a.a. ~ 674 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Dilution WB~~1:500~1000 Format Clear, colorless solution in phosphate buffered saline, pH 7.2 . Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. SFRS14 monoclonal antibody (M01), Precautions clone 3C5 Western Blot analysis of SFRS14 Antibody (monoclonal) (M01) is for research use only SFRS14 expression in Hela S3 NE ( (Cat # and not for use in diagnostic or therapeutic procedures. AT3845a ) SFRS14 Antibody (monoclonal) (M01) - Protocols Provided below are standard protocols that you may find useful for product applications. • Western Blot • Blocking Peptides • Dot Blot • Immunohistochemistry • Immunofluorescence • Immunoprecipitation Immunoperoxidase of monoclonal • Flow Cytomety antibody to SFRS14 on formalin-fixed • Cell Culture paraffin-embedded human testis. SFRS14 Antibody (monoclonal) (M01) - Background [antibody concentration 3 ug/ml] This gene encodes a member of the arginine/serine-rich family of splicing factors.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-C22orf23 Product Datasheet
    Anti-C22orf23 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-C22orf23 Product Number HPA000650 Gene Description chromosome 22 open reading frame 23 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: LQCSPTSSQRVLPSKQIASPIYLPPILAARPHLRPANMCQANGAYSREQF KPQATRDLEKEKQRLQNIFATGKDMEERKRKAPPARQKAPAPELDRFEEL VKEIQERKEFLADMEALGQGKQYRGIILAEISQKLREMEDIDHRRSEE Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended ICC-IF (Immunofluorescence) Applications - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA000650 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • 1 Mutational Heterogeneity in Cancer Akash Kumar a Dissertation
    Mutational Heterogeneity in Cancer Akash Kumar A dissertation Submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy University of Washington 2014 June 5 Reading Committee: Jay Shendure Pete Nelson Mary Claire King Program Authorized to Offer Degree: Genome Sciences 1 University of Washington ABSTRACT Mutational Heterogeneity in Cancer Akash Kumar Chair of the Supervisory Committee: Associate Professor Jay Shendure Department of Genome Sciences Somatic mutation plays a key role in the formation and progression of cancer. Differences in mutation patterns likely explain much of the heterogeneity seen in prognosis and treatment response among patients. Recent advances in massively parallel sequencing have greatly expanded our capability to investigate somatic mutation. Genomic profiling of tumor biopsies could guide the administration of targeted therapeutics on the basis of the tumor’s collection of mutations. Central to the success of this approach is the general applicability of targeted therapies to a patient’s entire tumor burden. This requires a better understanding of the genomic heterogeneity present both within individual tumors (intratumoral) and amongst tumors from the same patient (intrapatient). My dissertation is broadly organized around investigating mutational heterogeneity in cancer. Three projects are discussed in detail: analysis of (1) interpatient and (2) intrapatient heterogeneity in men with disseminated prostate cancer, and (3) investigation of regional intratumoral heterogeneity in
    [Show full text]
  • Metastatic Adrenocortical Carcinoma Displays Higher Mutation Rate and Tumor Heterogeneity Than Primary Tumors
    ARTICLE DOI: 10.1038/s41467-018-06366-z OPEN Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors Sudheer Kumar Gara1, Justin Lack2, Lisa Zhang1, Emerson Harris1, Margaret Cam2 & Electron Kebebew1,3 Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is 1234567890():,; unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. 1 Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 2 Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 3 Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA. Correspondence and requests for materials should be addressed to E.K. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4172 | DOI: 10.1038/s41467-018-06366-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06366-z drenocortical carcinoma (ACC) is a rare malignancy with types including primary ACC from the TCGA to understand our A0.7–2 cases per million per year1,2.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]