Smith P, Ríos SD. 2018. Distribution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Northern Naked-Tailed Armadillo in the Lacandona Rainforest, Mexico: New Records and Potential Threats Revista Mexicana De Biodiversidad, Vol
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; González-Di Pierro, Ana María; Lombera, Rafael; de la Peña-Cuéllar, Erika; Peña-Mondragón, Juan Luis; Hernández-Ordoñez, Omar; Muench, Carlos; Garmendia, Adriana; Stoner, Kathryn E. The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Revista Mexicana de Biodiversidad, vol. 83, núm. 2, 2012, pp. 581-586 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42523421033 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 581-586, 2011 Research note The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Armadillo de cola desnuda en la selva lacandona, México: nuevos registros y amenazas potenciales Arturo González-Zamora1,2, Víctor Arroyo-Rodríguez2, Ana María González-Di Pierro2, Rafael Lombera4, Erika de la Peña-Cuéllar2, Juan Luis Peña-Mondragón2, Omar Hernández-Ordoñez2, Carlos Muench2, Adriana Garmendia2 and Kathryn E. Stoner2,3 1División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Carretera antigua a Coatepec No.351. Congregación El Haya, 91070 Xalapa, Veracruz, México. 2Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, México. -
Health Care Decentralization in Paraguay
HEALTH CARE DECENTRALIZATION IN PARAGUAY: EVALUATION OF IMPACT ON COST, EFFICIENCY, BASIC QUALITY, AND EQUITY Baseline Report MEASURE Evaluation Technical Report Series, No. 4 Gustavo Angeles John F. Stewart Rubén Gaete Dominic Mancini Antonio Trujillo Christina I. Fowler The technical report series is made possible by support from USAID under the terms of Cooperative Agreement HRN-A-00-97-00018-00. The opinions expressed are those of the authors and do not necessarily reflect the views of USAID. December 1999 Printed on recycled paper Other Titles in the Technical Report Series No. 1. Uganda Delivery of Improved Services for Health (DISH) Evaluation Surveys 1997. Path- finder International and MEASURE Evaluation. March 1999. No. 2. Zambia Sexual Behaviour Survey 1998 with Selected Findings from the Quality of STD Services Assessment. Central Statistics Office (Republic of Zambia) and MEASURE Evaluation. April 1999. No. 3. Does Contraceptive Discontinuation Matter? Quality of Care and Fertility Consequences. Ann K. Blanc, Siân Curtis, Trevor Croft. November 1999. Recommended Citation: Gustavo Angeles, John F. Stewart, Rubén Gaete, Dominic Mancini, Antonio Trujillo, Christina I. Fowler. Health Care Decentralization in Paraguay: Evaluation of Impact on Cost, Efficiency, Basic Quality, and Equity. Baseline Report. MEASURE Evaluation Technical Report Series No. 4. Carolina Population Center, University of North Carolina at Chapel Hill. December 1999. Acknowledgements We would like to acknowledge the cooperation and generous support of numerous individuals and organiza- tions that made the first phase of this study possible. We express our gratitude to the staff of 143 health facilities who cooperated with the research team to collect facility and staff data. -
Reveals That Glyptodonts Evolved from Eocene Armadillos
Molecular Ecology (2016) 25, 3499–3508 doi: 10.1111/mec.13695 Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos KIEREN J. MITCHELL,* AGUSTIN SCANFERLA,† ESTEBAN SOIBELZON,‡ RICARDO BONINI,‡ JAVIER OCHOA§ and ALAN COOPER* *Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia, †CONICET-Instituto de Bio y Geociencias del NOA (IBIGEO), 9 de Julio No 14 (A4405BBB), Rosario de Lerma, Salta, Argentina, ‡Division Paleontologıa de Vertebrados, Facultad de Ciencias Naturales y Museo (UNLP), CONICET, Museo de La Plata, Paseo del Bosque, La Plata, Buenos Aires 1900, Argentina, §Museo Arqueologico e Historico Regional ‘Florentino Ameghino’, Int De Buono y San Pedro, Rıo Tercero, Cordoba X5850, Argentina Abstract Glyptodonts were giant (some of them up to ~2400 kg), heavily armoured relatives of living armadillos, which became extinct during the Late Pleistocene/early Holocene alongside much of the South American megafauna. Although glyptodonts were an important component of Cenozoic South American faunas, their early evolution and phylogenetic affinities within the order Cingulata (armoured New World placental mammals) remain controversial. In this study, we used hybridization enrichment and high-throughput sequencing to obtain a partial mitochondrial genome from Doedicurus sp., the largest (1.5 m tall, and 4 m long) and one of the last surviving glyptodonts. Our molecular phylogenetic analyses revealed that glyptodonts fall within the diver- sity of living armadillos. Reanalysis of morphological data using a molecular ‘back- bone constraint’ revealed several morphological characters that supported a close relationship between glyptodonts and the tiny extant fairy armadillos (Chlamyphori- nae). -
Dietary Specialization and Variation in Two Mammalian Myrmecophages (Variation in Mammalian Myrmecophagy)
Revista Chilena de Historia Natural 59: 201-208, 1986 Dietary specialization and variation in two mammalian myrmecophages (variation in mammalian myrmecophagy) Especializaci6n dietaria y variaci6n en dos mamiferos mirmec6fagos (variaci6n en la mirmecofagia de mamiferos) KENT H. REDFORD Center for Latin American Studies, Grinter Hall, University of Florida, Gainesville, Florida 32611, USA ABSTRACT This paper compares dietary variation in an opportunistic myrmecophage, Dasypus novemcinctus, and an obligate myrmecophage, Myrmecophaga tridactyla. The diet of the common long-nosed armadillo, D. novemcintus, consists of a broad range of invertebrate as well as vertebrates and plant material. In the United States, ants and termites are less important as a food source than they are in South America. The diet of the giant anteater. M. tridactyla, consists almost entirely of ants and termites. In some areas giant anteaters consume more ants whereas in others termites are a larger part of their diet. Much of the variation in the diet of these two myrmecophages can be explained by geographical and ecological variation in the abundance of prey. However, some variation may be due to individual differences as well. Key words: Dasypus novemcinctus, Myrmecophaga tridactyla, Tamandua, food habits. armadillo, giant anteater, ants, termites. RESUMEN En este trabajo se compara la variacion dietaria entre un mirmecofago oportunista, Dasypus novemcinctus, y uno obligado, Myrmecophaga tridactyla. La dieta del armadillo comun, D. novemcinctus, incluye un amplio rango de in- vertebrados así como vertebrados y materia vegetal. En los Estados Unidos, hormigas y termites son menos importantes como recurso alimenticio de los armadillos, de lo que son en Sudamérica. La dieta del hormiguero gigante, M tridactyla, está compuesta casi enteramente por hormigas y termites. -
Range Extension of the Northern Naked-Tailed Armadillo (Cabassous Centralis) in Southern Mexico
Western North American Naturalist Volume 77 Number 3 Article 10 9-29-2017 Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Rugieri Juárez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Mariana Pérez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Yaribeth Bravata-de la Cruz Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Alejandro Jesús-de la Cruz Universidad Juarez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Fernando M. Contreras-Moreno Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] See next page for additional authors Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Juárez-López, Rugieri; Pérez-López, Mariana; Bravata-de la Cruz, Yaribeth; Jesús-de la Cruz, Alejandro; Contreras-Moreno, Fernando M.; Thornton, Daniel; and Hidalgo-Mihart, Mircea G. (2017) "Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico," Western North American Naturalist: Vol. 77 : No. 3 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol77/iss3/10 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Authors Rugieri Juárez-López, Mariana Pérez-López, Yaribeth Bravata-de la Cruz, Alejandro Jesús-de la Cruz, Fernando M. -
Captive Communities: Situation of the Guaraní Indigenous People and Contemporary Forms of Slavery in the Bolivian Chaco
INTER‐AMERICAN COMMISSION ON HUMAN RIGHTS OEA/Ser.L/V/II. Doc. 58 24 December 2009 Original: Spanish CAPTIVE COMMUNITIES: SITUATION OF THE GUARANÍ INDIGENOUS PEOPLE AND CONTEMPORARY FORMS OF SLAVERY IN THE BOLIVIAN CHACO 2009 Internet: http://www.cidh.org E‐mail: [email protected] OAS Cataloging‐in‐Publication Data Inter‐American Commission on Human Rights. Comunidades cautivas : situación del pueblo indígena guaraní y formas contemporáneas de esclavitud en el Chaco de Bolivia = Captive communities : situation of the Guaraní indigenous people and contemporary forms of slavery in the Bolivian Chaco / Inter‐American Commission on Human Rights. p. ; cm. (OEA documentos oficiales ; OEA/Ser.L)(OAS official records ; OEA/Ser.L) ISBN 978‐0‐8270‐5433‐2 1. Guarani Indians‐‐Human rights‐‐Bolivia‐‐Chaco region. 2. Guarani Indians‐‐Slavery‐‐ Bolivia‐‐Chaco region. 3. Indigenous peoples‐‐Slavery‐‐Bolivia‐‐Chaco region. 4. Indigenous peoples‐‐Human rights‐‐Bolivia. 5. Indigenous peoples‐‐Civil rights‐‐ Bolivia. I. Title. II Series. III. Series. OAS official records ; OEA/Ser.L. OEA/Ser.L/V/II. Doc. 58 Approved by the Inter‐American Commission on Human Rights on December 24, 2009 INTER‐AMERICAN COMMISSION ON HUMAN RIGHTS MEMBERS Luz Patricia Mejía Guerrero Víctor E. Abramovich Felipe González Sir Clare Kamau Roberts Paulo Sérgio Pinheiro Florentín Meléndez Paolo G. Carozza ****** Executive Secretary: Santiago A. Canton Assistant Executive Secretary: Elizabeth Abi‐Mershed The IACHR thanks the Governments of Denmark and Spain for the financial support that made it possible to carry out the working and supervisory visit to Bolivia from June 9 to 13, 2008, as well as the preparation of this report. -
“Black Tyrants” (Tyrannidae: Knipolegus) with a Remarkable New Country Record
https://doi.org/10.30456/AVO.2019205 Avocetta 43: 149-158 (2019) Status and distribution of Paraguayan “Black Tyrants” (Tyrannidae: Knipolegus) with a remarkable new country record PAUL SMITH1,2, KEVIN EASLEY3 1 FAUNA Paraguay, Encarnación, Dpto. Itapúa, Paraguay; www.faunaparaguay.com Contact email: [email protected] 2 Para La Tierra, Centro IDEAL - Mariscal Estigarribia 321 c/ Tte. Capurro, Pilar, Dpto. Ñeembucú, Paraguay www.paralatierra.org. 3 Costa Rica Gateway - San José, Costa Rica Abstract – “Black-tyrants” (Tyrannidae: Knipolegus) are a distinctive Neotropical genus of flycatchers with black or dark grey males and brownish or reddish females. Five species have previously been reported in Paraguay and a discussion of all verifiable reports is provided. Knipolegus striaticeps is considered resident and a presumed breeder, but no nest has yet been reported. Knipolegus hudsoni is consid- ered a passage migrant in September and October. Knipolegus cyanirostris is considered a winter visitor. Knipolegus aterrimus is known from few records in the Chaco region, and is possibly a rare altitudinal migrant. The status of Knipolegus lophotes requires further inves- tigation, with Paraguay representing the western extreme of its known range. The first report of Knipolegus poecilurus for the country is documented with photographs. This high-Andean species is considered to be a vagrant pending further information. Key-words: Knipolegus aterrimus, Knipolegus cyanirostris, Knipolegus hudsoni, Knipolegus lophotes, Knipolegus poecilurus, Knipo- legus striaticeps. INTRODUCTION In order to coordinate observer effort and update pub- lished distributional data, here we critically review the dis- The genus Knipolegus consists of 10 species that are dis- tribution of the genus Knipolegus in the country (Fig.1a), tributed throughout most of South America (Farmsworth comment on their status and report an additional and quite & Langham 2004). -
The Giant Armadillo of the Gran Chaco
The Giant Armadillo of the Gran Chaco A giant armadillo Priodontes maximus at the Saenz-Peña Zoo in South America raises up, balancing with its tail, a common posture for this large species. Venezuela The Guianas: Guyana hat’s the size of Texas and Arizona combined, reaches temperatures Suriname French Guiana Wof 115 degrees Fahrenheit, has plants with 15-inch-long thorns, Colombia and houses an armadillo larger than a coffee table? The South American Gran Chaco, where giant armadillos wander freely. The Gran Chaco region covers more than 1 million square kilometers of Argentina, Bolivia, Perú Brazil Paraguay, and Brazil, with approximately 60 percent in Argentina and Bolivia just 7 percent in Brazil. The region is a mosaic of grasslands, savannas, Paraguay • open woodlands, dry thorn forests, and gallery forests that provide a GRAN CHACO 15 range of habitats where some diverse animal species flourish. • In the gallery forests of the humid Chaco, we regularly encounter animals Argentina that are associated with tropical and subtropical forests, like jaguars, owl monkeys, howler monkeys, peccaries, deer, tapirs, and various kinds of eden- tates, a group of mammals that includes sloths, anteaters, and armadillos. The Gran Chaco—from the Quechua Although there are no sloths in the Chaco, we regularly find lesser anteaters 2003 and sometimes come across giant anteaters. Both the nine-banded armadillo, Indian language of Bolivia for “great hunting ground”—crosses four coun- also found in Texas, and the tatu bola, or three-banded armadillo, which you tries and encompasses an area the can see at the Wild Animal Park’s Animal Care Center and the San Diego Zoo’s size of Texas and Arizona combined. -
El Armadillo, Cabassous Centralis (Cingulata: Chlamyphoridae) En Agroecosistemas Con Café De Costa Rica
El armadillo, Cabassous centralis (Cingulata: Chlamyphoridae) en agroecosistemas con café de Costa Rica Ronald J. Sánchez-Brenes1 & Javier Monge2 1. Universidad Nacional Costa Rica, Sede Regional Chorotega, Centro Mesoamericano de Desarrollo Sostenible del Trópico Seco (CEMEDE-UNA), Nicoya, Costa Rica; [email protected], https://orcid.org/0000-0002-6979-1336 2. Universidad de Costa Rica, Facultad de Ciencias Agroalimentarias, Escuela de Agronomía, Centro de Investigación en Protección de Cultivos, Instituto de Investigaciones Agronómicas, San José, Costa Rica; [email protected], https://orcid.org/0000-0003-1530-5774 Recibido 09-VIII-2019 • Corregido 11-IX-2019 • Aceptado 30-IX-2019 DOI: https://doi.org/10.22458/urj.v11i3.2724 ABSTRACT: “The armadillo, Cabassous centralis (Cingulata: RESUMEN: Introducción: El armadillo Cabassous centralis se clasifica Chlamyphoridae) in a Costa Rican coffee agro-ecosystem”. Introduction: como una especie con Datos Insuficientes que se encuentra desde The rare Cabassous centralis armadillo is classified as a Data Deficient México hasta el norte de América del Sur. Objetivo: Ampliar la distri- species found from Mexico to northern South America). Objective: To bución ecológica de C. centralis. Métodos: Colocamos cuatro cámaras expand the ecological distribution of C. centralis. Methods: We placed trampa en sitios estratégicos como fuentes de alimentación, madrigue- four trap cameras in strategic sites such as food sites, burrows, bodies of ras, cuerpos de agua y transición al bosque secundario, en San Ramón, water and transition to the secondary forest, in San Ramón, Costa Rica. Costa Rica. Resultados: Obtuvimos un registro de C. centralis en la tran- Results: We obtained a record of C. -
(Dasypus) in North America Based on Ancient Mitochondrial DNA
bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W. -
Guidelines to Identify Individual Giant Armadillos, Priodontes Maximus (Kerr, 1792), Through Camera Traps
Edentata 20 (2019): 1–16 DOI: 10.2305/IUCN.CH.2019.Edentata-20-1.2.en Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 http://www.xenarthrans.org Guidelines to identify individual giant armadillos, Priodontes maximus (Kerr, 1792), through camera traps Gabriel Fávero MassocatoA,B,D,1 & Arnaud L. J. DesbiezA,C,D A Instituto de Conservação de Animais Silvestres (ICAS), Rua Afonso Lino Barbosa, 142, Chácara Cachoeira, 79040-290, Campo Grande, Mato Grosso do Sul, Brasil B Houston Zoo, 6200 Hermann Park Drive, Houston, Texas 77030, USA C Royal Zoological Society of Scotland (RZSS), Murrayfield, Edinburgh, EH12 6TS, United Kingdom D Instituto de Pesquisas Ecológicas (IPÊ), Rodovia Dom Pedro I, km 47, 12960-000, Nazaré Paulista, São Paulo, Brasil 1 Corresponding author E-mail: [email protected] Abstract Camera trapping is one of the main tools used to advance Priodontes maximus research as it can provide information on the species' presence, densities, relative abundance, home ranges, movement, ac- tivity patterns, habitat use, reproduction, and parental care. Photographic records obtained by camera traps allow the individual identification of P. maximus if properly examined. The aim of this work is to pro- vide researchers with the tools to identify individuals of P. maximus in their regions and stimulate further research and conservation work on the species. We use nine years of camera trap work to present and il- lustrate the different individual identification patterns that can be used to distinguish individuals as well as reproductive status and age class. We describe six different morphological characteristics that can be used for individual identification: cephalic scale pattern, tail markings, light band width and shape above the base of tail, hind limbs, flank scale pattern, and natural marks. -
Nine-Banded Armadillo (Dasypus Novemcinctus) Michael T
Nine-banded Armadillo (Dasypus novemcinctus) Michael T. Mengak Armadillos are present throughout much of Georgia and are considered an urban pest by many people. Armadillos are common in central and southern Georgia and can easily be found in most of Georgia’s 159 counties. They may be absent from the mountain counties but are found northward along the Interstate 75 corridor. They have poorly developed teeth and limited mobility. In fact, armadillos have small, peg-like teeth that are useful for grinding their food but of little value for capturing prey. No other mammal in Georgia has bony skin plates or a “shell”, which makes the armadillo easy to identify. Just like a turtle, the shell is called a carapace. Only one species of armadillo is found in Georgia and the southeastern U.S. However, 20 recognized species are found throughout Central and South America. These include the giant armadillo, which can weigh up to 130 pounds, and the pink fairy armadillo, which weighs less than 4 ounces. Taxonomy Order Cingulata – Armadillos Family Dasypodidae – Armadillo Nine-banded Armadillo – Dasypus novemcinctus The genus name Dasypus is thought to be derived from a Greek word for hare or rabbit. The armadillo is so named because the Aztec word for armadillo meant turtle-rabbit. The species name novemcinctus refers to the nine movable bands on the middle portion of their shell or carapace. Their common name, armadillo, is derived from a Spanish word meaning “little armored one.” Figure 1. Nine-banded Armadillo. Photo by author, 2014. Status Armadillos are considered both an exotic species and a pest.