Understanding the Biology and Epidemiology of Dickeya Solani: a Recently Emerged Bacterial Pathogen of Potato Rachel Maria Kelly

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Biology and Epidemiology of Dickeya Solani: a Recently Emerged Bacterial Pathogen of Potato Rachel Maria Kelly Understanding the Biology and Epidemiology of Dickeya solani: a Recently Emerged Bacterial Pathogen of Potato Rachel Maria Kelly PhD Thesis Heriot-Watt University & Science and Advice for Scottish Agriculture (SASA) August 2018 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information." i Abstract Dickeya solani has emerged as a major threat to potato production in Europe and Israel. Its potential impact on the Scottish potato industry was studied with the goal to develop better control strategies. Molecular techniques were employed to understand the diversity of the D. solani and its comparison to other Dickeya spp. and to map the origin and spread of infection. Using nine housekeeping genes, a MLSA typing scheme was created and published online to facilitate its future tracking. MLSA established genetic variation between D. solani isolates and it was determined that D. solani is likely to be clonal. Due to the similarities between D. solani isolates, which was further aided with the sequencing of three full D. solani genomes, single nucleotide polymorphisms were discovered. Eight SNPs were identified and further investigated; allowing for the development of pyrosequencing assays. Two real-time PCR assays were developed to improve the diagnostics of D. solani by detecting and identifying D. solani specifically. These assays were further evaluated as part of the Euphresco II project on blackleg and soft rot disease. The spread of D. solani is likely to be through latently infected seed potatoes; therefore, the transmission of D. solani from infected seed potato to daughter tubers was studied. It has also been suggested that D. solani can survive and spread through stored tubers and the potential for D. solani to survive in plant material was assessed. The effectiveness of disinfectants commonly used in agriculture was also investigated and it was determined when used at the manufacturer’s recommended concentration, they were effective at controlling the pathogen on surfaces. ii Dedicated to Kelly family: Mary, Shaun, Natalie, Lauren and Timothy. iii Acknowledgments There are no adequate words to express the gratitude I have for my supervisor, Gerry Saddler, who has shown tremendous patience and support throughout this whole process. His guidance has been invaluable and he went above and beyond what I ever expected. Having him as my supervisor was the key factor in my completion of this thesis and the reason I loved this project so much. I would like to thank Wilf Mitchell from Heriot-Watt University who also provided guidance and support and took the time to read this thesis in his retirement, and Euan Brown who stepped in at the end of my PhD studies to represent me as a supervisor. Without Euan’s advice and support it would have been impossible for me to complete and submit this work and I am so grateful for his patience and for the time he has sacrificed to guide me. Completing this research as part of a larger project afforded me the opportunity to work with a number of collaborators and I would like to thank Ian Toth, Sonia Humphris and Leighton Pritchard from JHI and John Elphinstone from Fera for sharing their knowledge and time and in return, for allowing me to share my own work. I am grateful to the entire Diagnostic and Molecular Biology department at SASA, who were crucial in the research process, especially Greig Cahill, Andrew Jeffries, Karen Fraser, Alex Reid, Vince Mulholland and David Kenyon, who not only put up with me in the lab but also provided guidance and advice. With their support I was never able to get discouraged and from them I learned so much. I am appreciative of all my friends and colleagues at SASA who provided support (especially during my rants and mini- breakdowns!) and a wonderful environment in which to complete my PhD. Finally, I want to thank my family, especially my parents, who have supported me unconditionally through this process. My family have always inspired me and driven me to be the best I could be and without them I never would have undertaken this PhD, let alone complete it. I am eternally grateful for all of you and love you all. iv ACADEMIC REGISTRY Research Thesis Submission Please note this form should be bound into the submitted thesis. Name: Rachel Maria Kelly School: Engineering and Physical Science Version: (i.e. First, Final Degree Sought: PhD Resubmission, Final) Declaration In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 1. The thesis embodies the results of my own work and has been composed by myself 2. Where appropriate, I have made acknowledgement of the work of others 3. Where the thesis contains published outputs under Regulation 6 (9.1.2) these are accompanied by a critical review which accurately describes my contribution to the research and, for multi-author outputs, a signed declaration indicating the contribution of each author (complete Inclusion of Published Works Form – see below) 4. The thesis is the correct version for submission and is the same version as any electronic versions submitted*. 5. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require 6. I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline. 7. Inclusion of published outputs under Regulation 6 (9.1.2) shall not constitute plagiarism. 8. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g. Turnitin. * Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted. Signature of Date: Candidate: Submission Submitted By (name in capitals): Signature of Individual Submitting: Date Submitted: For Completion in the Student Service Centre (SSC) Received in the SSC by (name in capitals): Method of Submission (Handed in to SSC; posted through internal/external mail): E-thesis Submitted (mandatory for final theses) Signature: Date: Page 1 of 2 RDC Clerk/Nov 2018 ACADEMIC REGISTRY Inclusion of Published Works Declaration This thesis contains one or more multi-author published works. In accordance with Regulation 6 (9.1.2) I hereby declare that the contributions of each author to these publications is as follows: Citation details e. g. Author 1 and Author 2, Title of paper, Title of Journal, X, XX-XX (20XX) Author 1 Contribution…. Author 2 Contribution…. Signature: Date: Citation details e. g. Author 1 and Author 2, Title of paper, Title of Journal, X, XX-XX (20XX) Author 1 Contribution…. Author 2 Contribution…. Signature: Date: Citation details e. g. Author 1 and Author 2, Title of paper, Title of Journal, X, XX-XX (20XX) Author 1 Contribution…. Author 2 Contribution…. Signature: Date: Page 2 of 2 RDC Clerk/Nov 2018 Contents Abstract………………………………………………………………………………….i Dedication.......................................................................................................................iii Acknowledgments………………………………………………………………...........iv Declaration Statement...………………………………………………………………..v List of Tables….…...…………………………………………………………………...xi List of Figures...............................................................................................................xiii List of Publications...….……………………………………………………………...xiii Chapter 1. Introduction….…………………………………...………………………..1 1.1. The History of Potato....……………………………………………...…………..1 1.2. The Development of the Cultivated Potato....…………………….……………...2 1.3. The Significance of Potato as a Crop...…………..................................................3 1.4. Modern Potato Breeding and Advancements.....………………………………...4 1.5. Potato Genomics...….……………………………………………………………6 1.6. Seed Classification Schemes……………………………………………….….....7 1.7. Scottish Potato Production…………………………………………………….....7 1.8. Threats to Potato Production……………………………………………….…...10 1.9. History of Dickeya spp…………………………………………………….……13 1.10. Dickeya spp. on Potato………………………………………………………...16 1.11. Economic losses due to Dickeya spp.…………………………………...…….16 1.12. Factors influencing Dickeya Disease Development…………………………..17 1.13 . Transmission and Survival of Dickeya spp.…………………………………..18 1.14 .The importance of Diagnostics of Dickeya spp.…………………………….....19 1.15 . Aims and Objectives of PhD project……………………………………….....20 Chapter 2. The Development of a Real-Time PCR Diagnostic Assay specific for Dickeya solani………………………………………………………………………….22 2.1. Introduction…………………………….………………………...……………..22 2.1.1 Potato Industry of Great Britain…………………………………………...22 2.1.2 Diagnostics and Detection of Potato Pathogens…………………...……...22 2.1.3 Molecular Advancements in Techniques for Diagnostics and Detection….23 2.1.4 Polymerase Chain Reaction………………………………………………..24 2.1.5 Detection Methods for Dickeya sp.………………………………………...25 2.1.6 Specific Aims of Developing PCR Assay……………………………….......26 2.2. Materials and Methods………………………….……………………………....28 2.2.1 Cultures…………………………………………………………………….28 vii 2.2.2 Real time assay……………………………………………………………..28 2.2.3 Validation of Real-Time Assays…………………………………………....29 2.2.4 Further validation of PCR assays: “Ring Test.”…………………………..30 2.3. Results from Real-time Diagnostic Assays…………………….…..…………...34 2.3.1
Recommended publications
  • Dickeya Blackleg Is a More Aggressive Disease Than Blackleg Caused by Pectobacterium Atrosepticum
    PEI Potato Day 2017 Dickeya is the name of a group of bacteria. Various Dickeya species cause different plant diseases. Two species of Dickeya cause blackleg in potato. Dickeya blackleg is a more aggressive disease than blackleg caused by Pectobacterium atrosepticum. One of the blackleg-causing Dickeya species now occurs in Maine, and has been spread to other states. Blackleg is a potato disease with characteristic symptoms seed-piece decay black-pigmented soft rot of stems soft rot of tubers Blackleg is caused by several bacteria: . Pectobacterium atrosepticum . Pectobacterium brasiliense . Pectobacterium parmentieri (formerly wasabiae) . Dickeya dianthicola . Dickeya solani ATROSEPTICUM BLACKLEG DICKEYA BLACKLEG Usual cause of blackleg in Recently introduced into the Canada – in the past and United States, probably from currently Europe Favours lower temperatures Favours higher temperatures Symptoms: almost always Symptoms: sometimes clearly evident and visible on restricted to internal pith tissue stems of the stem Causes limited yield loss May cause serious disease loss ATROSEPTICUM DICKEYA Blackleg develops from bacteria that move from the seed tuber into the vascular tissue of the stem. These bacteria grow and multiple and produce soft-rotting Drawing from Potato Health Management. R.C. Rowe, ed. enzymes. APS Press Blackleg Disease Cycle The Seed Potato . They may look healthy and well BUT blackleg bacteria may be present in lenticels or stolon end vascular tissue During the growing season — from bacteria that
    [Show full text]
  • Opening of Symposium 08:50 Professor Lyn Beazley, Chief Scientist of Western Australia Chair – Elaine Davison Chemical Control of Soil-Borne Diseases
    The following organisations sponsored this symposium and the Organising Committee and delegates thank them sincerely for their support. Major sponsors Bayer CropScience offers leading brands and expertise in the areas of crop protection, seeds and plant biotechnology, and non-agricultural pest control. With a strong commitment to The Grains Research and Development Corporation is one of the world's leading grains innovation, research and development, we are committed to working together with growers and research organisations, responsible for planning and investing in R & D to support partners along the entire value chain; to cultivate ideas and answers so that Australian effective competition by Australian grain growers in global markets, through enhanced agriculture can be more efficient and more sustainable year on year. For every $10 spent on profitability and sustainability. The GRDC's research portfolio covers 25 leviable crops our products, more than $1 goes towards creating even better products for our customers. We spanning temperate and tropical cereals,oilseeds and pulses, with over $7billion per year innovate together with farmers to bring smart solutions to market, enabling them to grow in gross value of production. Contact GRDC 02 6166 4500 or go to www.grdc.com.au healthier crops, more efficiently and more sustainably." Other sponsors PROGRAM & PAPERS OF THE SEVENTH AUSTRALASIAN SOILBORNE DISEASES SYMPOSIUM 17-20 SEPTEMBER 2012 ISBN: 978-0-646-58584-0 Citation Proceedings of the Seventh Australasian Soilborne Diseases Symposium (Ed. WJ MacLeod) Cover photographs supplied by Daniel Huberli, Andrew Taylor, Tourism Western Australia. Welcome to the Seventh Australasian Soilborne Diseases Symposium The first Australasian Soilborne Diseases Symposium was held on the Gold Coast in 1999, and was followed by successful meetings at Lorne, the Barossa Valley, Christchurch, Thredbo and the Sunshine Coast.
    [Show full text]
  • Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco
    microorganisms Article Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco Saïd Oulghazi 1,2, Mohieddine Moumni 1, Slimane Khayi 3 ,Kévin Robic 2,4, Sohaib Sarfraz 5, Céline Lopez-Roques 6,Céline Vandecasteele 6 and Denis Faure 2,* 1 Department of Biology, Faculty of Sciences, Moulay Ismaïl University, 50000 Meknes, Morocco; [email protected] (S.O.); [email protected] (M.M.) 2 Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; [email protected] 3 Biotechnology Research Unit, CRRA-Rabat, National Institut for Agricultural Research (INRA), 10101 Rabat, Morocco; [email protected] 4 National Federation of Seed Potato Growers (FN3PT-RD3PT), 75008 Paris, France 5 Department of Plant Pathology, University of Agriculture Faisalabad Sub-Campus Depalpur, 38000 Okara, Pakistan; [email protected] 6 INRA, US 1426, GeT-PlaGe, Genotoul, 31320 Castanet-Tolosan, France; [email protected] (C.L.-R.); [email protected] (C.V.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 9 June 2020; Published: 13 June 2020 Abstract: Dickeya and Pectobacterium pathogens are causative agents of several diseases that affect many crops worldwide. This work investigated the species diversity of these pathogens in Morocco, where Dickeya pathogens have only been isolated from potato fields recently. To this end, samplings were conducted in three major potato growing areas over a three-year period (2015–2017). Pathogens were characterized by sequence determination of both the gapA gene marker and genomes using Illumina and Oxford Nanopore technologies.
    [Show full text]
  • Agricultural and Food Science, Vol. 20 (2011): 117 S
    AGRICULTURAL AND FOOD A gricultural A N D F O O D S ci ence Vol. 20, No. 1, 2011 Contents Hyvönen, T. 1 Preface Agricultural anD food science Hakala, K., Hannukkala, A., Huusela-Veistola, E., Jalli, M. and Peltonen-Sainio, P. 3 Pests and diseases in a changing climate: a major challenge for Finnish crop production Heikkilä, J. 15 A review of risk prioritisation schemes of pathogens, pests and weeds: principles and practices Lemmetty, A., Laamanen J., Soukainen, M. and Tegel, J. 29 SC Emerging virus and viroid pathogen species identified for the first time in horticultural plants in Finland in IENCE 1997–2010 V o l . 2 0 , N o . 1 , 2 0 1 1 Hannukkala, A.O. 42 Examples of alien pathogens in Finnish potato production – their introduction, establishment and conse- quences Special Issue Jalli, M., Laitinen, P. and Latvala, S. 62 The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Alien pest species in agriculture and Lilja, A., Rytkönen, A., Hantula, J., Müller, M., Parikka, P. and Kurkela, T. 74 horticulture in Finland Introduced pathogens found on ornamentals, strawberry and trees in Finland over the past 20 years Hyvönen, T. and Jalli, H. 86 Alien species in the Finnish weed flora Vänninen, I., Worner, S., Huusela-Veistola, E., Tuovinen, T., Nissinen, A. and Saikkonen, K. 96 Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture Saxe, A. 115 Letter to Editor. Third sector organizations in rural development: – A Comment. Valentinov, V. 117 Letter to Editor. Third sector organizations in rural development: – Reply.
    [Show full text]
  • Review Bacterial Blackleg Disease and R&D Gaps with a Focus on The
    Final Report Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry Project leader: Dr Len Tesoriero Delivery partner: Crop Doc Consulting Pty Ltd Project code: PT18000 Hort Innovation – Final Report Project: Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry – PT18000 Disclaimer: Horticulture Innovation Australia Limited (Hort Innovation) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non‐use of the Final Report or from reliance on information contained in the Final Report or that Hort Innovation provides to you by any other means. Funding statement: This project has been funded by Hort Innovation, using the fresh potato and processed potato research and development levy and contributions from the Australian Government. Hort Innovation is the grower‐owned, not‐ for‐profit research and development corporation for Australian horticulture. Publishing details:
    [Show full text]
  • Inoculation and Spread of Dickeya in Potatoes
    INOCULATION AND SPREAD OF DICKEYA IN POTATOES A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Blake William Greiner In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology May 2018 Fargo, North Dakota North Dakota State University Graduate School Title INOCULATION AND SPREAD OF DICKEYA IN POTATOES By Blake William Greiner The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Gary A. Secor Chair Asunta (Susie) Thompson Andrew Robinson Luis del Rio Mendoza Approved: January 22, 2019 Jack Rasmussen Date Department Chair ABSTRACT Field experiments were conducted in two different growing environments to evaluate the spread and movement of Dickeya dadantii. A procedure to inoculate seed potatoes with Dickeya dadantii was developed to use during this study. Spread of Dickeya dadantii from inoculated potato seed to healthy potato seed during the handling, cutting and planting procedures was not detected at either location. Spread of Dickeya dadantii from inoculated seed to surrounding progeny tubers in the field was documented in both locations. In Florida, 33% of progeny tubers tested positive for Dickeya using PCR, and in North Dakota, 13% of the progeny tubers tested positive. Stunting was observed in plants grown from Dickeya dadantii inoculated seed tubers in North Dakota, but not in Florida. These results indicate that Dickeya dadantii may spread during the seed handling and cutting processes and can spread in the field from infected seed tubers to progeny tubers.
    [Show full text]
  • Dickeya Solani’
    Proceedings Crop Protection in Northern Britain 2012 DEVELOPMENT OF A REAL-TIME PCR ASSAY FOR THE DETECTION OF ‘DICKEYA SOLANI’ R M Kelly1, 3, G Cahill1, J G Elphinstone2, W J Mitchell3, V Mulholland1, N M Parkinson2, L Pritchard4, I K Toth4 and G S Saddler1 1Science and Advice for Scottish Agriculture (SASA), Edinburgh, EH12 9FJ 2The Food and Environment Research Agency (Fera), Sand Hutton, York, YO41 1L0Z 3School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS 4The James Hutton Institute (JHI), Dundee, DD2 5DA E-mail: [email protected] Summary: ‘Dickeya solani’ is a recently emerged bacterial pathogen of potato that has had a great impact on the potato industry of Israel and many European countries and poses a significant threat to GB production. ‘D. solani’ is highly aggressive and results in symptoms and disease similar to that of blackleg. Current diagnostic methods are time-consuming and expensive. Work is being carried out to reduce the time taken to make a diagnosis and to develop a single, specific test for ‘D. solani’. A real-time PCR assay, based on the fusA gene has been developed and evaluated against a panel of 110 representative strains from the genera Dickeya and Pectobacterium, alongside two other real-time PCR assays, developed independently and jointly by JHI and Fera. All assays performed equally well and were shown to positively identify ‘D. solani’ with only a small number of false positives and only one false negative. Further evaluation of these assays is underway to ensure they are suitable for routine use.
    [Show full text]
  • Dickeya Solani D S0432-1 Produces an Arsenal of Secondary
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.452942; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Dickeya solani D s0432-1 produces an arsenal of secondary 3 metabolites with anti-prokaryotic and anti-eukaryotic activities 4 against bacteria, yeasts, fungi, and aphids. 5 6 Running title: Dickeya solani secondary metabolites 7 8 Authors: Effantin G1, Brual T1, Rahbé Y1,2, Hugouvieux-Cotte-Pattat N1 & Gueguen 9 E1*. 10 11 Affiliation: 12 1 Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, 13 F-69622, LYON, France 14 2 INRAE, Univ. Lyon, UMR5240 MAP, F-69622, Lyon, France 15 16 *corresponding author: [email protected] 17 18 Orcid I.D. 19 G.E. 0000-0001-8784-1491 20 H-C-P.N 0000-0002-4322-160X 21 R. Y. 0000-0002-0074-4443 22 23 Key Words: Dickeya solani, deletion mutagenesis, secondary metabolites, oocydin, 24 zeamine, inhibition, bacteria, yeasts, fungi, streptomyces, aphid 25 26 27 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.452942; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Dickeya and Pectobacterium Species: Consistent Threats to Potato Production in Europe
    Dickeya and Pectobacterium species: consistent threats to potato production in Europe Yeshitila Degefu, MTT Agrifood Research Finland, Biotechnology and Food Research, Agrobiotechnology. Paavo Havaksen tie 3, P.O.Box 413, 90014, University of Oulu, Finland. Abstract This brief review highlights the current status of the bacterial species of Dickeya and Pectobacterium and the blackleg and soft rot complex in potato. The changes in the pathogen and disease profile over the past years, in Finland and the rest of Europe are discussed. Evaluation of the commonly practiced control measures is briefly presented and significance of the High Grade (HG) status from the view point of blackleg management strategy and sustainable potato production and the project initiative of MTT Oulu towards that goal is cited as one example. The scope of this review is limited to selected topics of practical importance and presented in a way understandable to readers who are not necessarily experts in Dickeya and Pectobacterium but are aware of the problem of blackleg and soft rot. These include potato producers, disease inspection agents and agricultural advisers. Details of the biology of the pathogens are not included .However, readers who are interested in such advances of the pathogens are referred to the most up to date reviews cited in this article. Introduction The International Potato Center (CIP) ranks potato to be the third most important food crop in the world after rice and wheat in terms of human consumption. More than a billion people worldwide eat potato, and global total production exceeds 300 million metric tons (http://cipotato.org/potato/facts).
    [Show full text]
  • Characterization of Dickeya Solani Strains and Identification of Bacterial and Plant Signals Involved in the Induction of Virulence
    Intercollegiate Faculty of Biotechnology University of Gdansk and Medical Institut National University of Gdansk, des Sciences Apliquées de Lyon Department of Biotechnology, Laboratoire de Microbiologie, Adaptation Laboratory of Plant Protection et Pathogénie and Biotechnology 2015ISAL0087 Malgorzata Golanowska Life Sciences and Mathematics Interdisciplinary Doctoral Studies; Ecole Doctorale: Evolution, Ecosystèmes, Microbiologie, Modélisation Characterization of Dickeya solani strains and identification of bacterial and plant signals involved in the induction of virulence. Caractérisation de souches de Dickeya solani et identification de signaux bactériens ou végétaux impliqués dans l'induction de gènes de virulence. Thesis presented to Scientific Board of Intercollegiate Faculty of Biotechnology UG MUG and the Institute National des Sciences Apliquees de Lyon in order to obtain the degree of doctor in biological sciences in the field of biochemistry Supervisors: Prof. Dr hab. Ewa ŁOJKOWSKA Intercollegiate Faculty of Biotechnology University of Gdansk & Medical University of Gdansk, POLAND Dr. Nicole HUGOUVIEUX-COTTE-PATTAT Laboratory of Microbiology Adaptation and Pathogenesis (UMR 5240) CNRS, Université Lyon 1 & INSA de Lyon, FRANCE Gdańsk 2015 Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0087/these.pdf © [M. Golanowska], [2015], INSA Lyon, tous droits réservés INSA Direction de la Recherche - Ecoles Doctorales – Quinquennal 2011-2015 SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE CHIMIE CHIMIE DE LYON M. Jean Marc LANCELIN http://www.edchimie-lyon.fr Université de Lyon – Collège Doctoral Sec : Renée EL MELHEM Bât ESCPE Bat Blaise Pascal 3e etage 43 bd du 11 novembre 1918 04 72 43 80 46 69622 VILLEURBANNE Cedex Insa : R. GOURDON Tél : 04.72.43 13 95 [email protected] [email protected] E.E.A.
    [Show full text]
  • Aremu BR.Pdf (5.310Mb)
    PHYLOGENETIC ANALYSES OF SPECIES-SPECIFIC MACERGENS IN SOUTH AFRICAN EXPORTABLE VEGETABLES L NWu ~ L!J.f!B_ARV BY BUKOLA RHODA AREMU A Thesis Submitted in Fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (BIOLOGY) LIBRARY r,JIJ\Fl!H:1 JG CAMPUS CALL NO.: 2019 -07- 1 5 ACC. "1O .: : i'.&ORTH!-W IEST UNIVERSITY DEPARTMENT OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE, AGRICULTURE AND TECHNOLOGY, NORTH-WEST UNIVERSITY, MAFIKENG CAMPUS, SOUTH AFRICA Supervisor: Professor Olubukola 0. Babalola 2015 NORTH-WEST UNIVERSITY • I YUNIBESITI YA BOKONE -BOPHIRIMA NOORDWES-UNIVERS ITEIT It all starts here '" DECLARATION I, the undersigned, declare that this thesis submitted to the North-West University for the degree of Doctor of Philosophy in Biology in the Faculty of Science, Agriculture and Technology, School of Environmental and Health Sciences, and the work contained herein is my original work with exception of the citations and that this work has not been submitted at any other University in part or entirety for the award of any degree. Student AREMU, Bukola Rhoda S1gnature. ::..:::~ .AJA...... ... .. Date ..<:2--q/oL?(. .. ... .. .... ... .lb.. ... .... .... .... Supervisor BABALOLA, 0.0. (Professor) Date ... '+1/ O.tf I(&. ....... II NWU· ~ · lueRARY_ DEDICATION Thi s thesis is dedicated to six indispensabl e people of my li fe ; my lovely husband O luwole Samuel Aremu, three j ewels Favour, Mercy and Grace, my dearest daddy Amos A lade Amoa and late mummy Dorcas Mosunmola Amoa. Ill ACKNOWLEDGEMENTS I would like to express my gratitude to those who assisted me. First, my supervisor Prof. Olubukola Oluranti Babalola for her support, care, directions and timely advice to ensure that this project is brought to completion.
    [Show full text]
  • Identification of the Causal Agent of Bacterial Soft Rot of Potato and Its Management in Bangladesh Dissertation Presented in Pa
    Identification of the Causal Agent of Bacterial Soft Rot of Potato and its Management in Bangladesh Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ferdous-E-Elahi, M.S. Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee Sally A. Miller, Adviser Pierce A. Paul M. Soledad Benitez Ponce Melanie L. Lewis Ivey Copyright by Ferdous-E-Elahi 2018 Abstract Although commercial potato production started in 1920 in Bangladesh, potatoes are severely affected by diseases, resulting in poor yields. The demand for potato is growing day by day and many approaches are being implemented to increase yields. From December 2014 to January 2015, a total of 15 bacterial isolates were recovered from potato tubers with symptoms of soft rot collected in ten major potato- growing areas of Bangladesh. Based on biochemical and physiological assays, Pectobacterium carotovorum ssp. were identified as the causal agents of soft rot in potato tubers. The pathogens were further characterized with molecular methods including subspecies-specific PCR, 16s rRNA gene sequencing and multilocus sequence analysis (MLSA). Of the 15 isolates causing tuber soft rot, five of the isolates also caused blackleg symptoms in potato seedlings. PCR utilizing primer pair EXPCCF and EXPCCR resulted in the amplification of 550-bp DNA sequences of P. carotovorum ssp. carotovorum from the 15 soft rot isolates. 16s rRNA gene sequencing confirmed the identity of Pectobacterium carotovorum ssp. carotovorum from potato tubers. Phylogenetic analysis of concatenated gene sequences from six housekeeping genes (acnA, gapA, icdA, mdh, pgi and proA) from in MLSA revealed two distinct clades among the Bangladeshi strains.
    [Show full text]