Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco microorganisms Article Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco Saïd Oulghazi 1,2, Mohieddine Moumni 1, Slimane Khayi 3 ,Kévin Robic 2,4, Sohaib Sarfraz 5, Céline Lopez-Roques 6,Céline Vandecasteele 6 and Denis Faure 2,* 1 Department of Biology, Faculty of Sciences, Moulay Ismaïl University, 50000 Meknes, Morocco; [email protected] (S.O.); [email protected] (M.M.) 2 Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; [email protected] 3 Biotechnology Research Unit, CRRA-Rabat, National Institut for Agricultural Research (INRA), 10101 Rabat, Morocco; [email protected] 4 National Federation of Seed Potato Growers (FN3PT-RD3PT), 75008 Paris, France 5 Department of Plant Pathology, University of Agriculture Faisalabad Sub-Campus Depalpur, 38000 Okara, Pakistan; [email protected] 6 INRA, US 1426, GeT-PlaGe, Genotoul, 31320 Castanet-Tolosan, France; [email protected] (C.L.-R.); [email protected] (C.V.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 9 June 2020; Published: 13 June 2020 Abstract: Dickeya and Pectobacterium pathogens are causative agents of several diseases that affect many crops worldwide. This work investigated the species diversity of these pathogens in Morocco, where Dickeya pathogens have only been isolated from potato fields recently. To this end, samplings were conducted in three major potato growing areas over a three-year period (2015–2017). Pathogens were characterized by sequence determination of both the gapA gene marker and genomes using Illumina and Oxford Nanopore technologies. We isolated 119 pathogens belonging to P. versatile (19%), P. carotovorum (3%), P. polaris (5%), P. brasiliense (56%) and D. dianthicola (17%). Their taxonomic assignation was confirmed by draft genome analyses of 10 representative strains of the collected species. D. dianthicola were isolated from a unique area where a wide species diversity of pectinolytic pathogens was observed. In tuber rotting assays, D. dianthicola isolates were more aggressive than Pectobacterium isolates. The complete genome sequence of D. dianthicola LAR.16.03.LID was obtained and compared with other D. dianthicola genomes from public databases. Overall, this study highlighted the ecological context from which some Dickeya and Pectobacterium species emerged in Morocco, and reported the first complete genome of a D. dianthicola strain isolated in Morocco that will be suitable for further epidemiological studies. Keywords: Pectobacterium; Dickeya; plant pathogen; potato tuber; genome; field sampling 1. Introduction Pectinolytic Pectobacterium and Dickeya spp. are causative agents of severe diseases in a wide range of plants of high economic value [1,2]. On potato tubers and stems, the diseases caused by pectinolytic pathogens are soft rot and blackleg, respectively. These pathogens produce a large set of extracellular enzymes that degrade the plant cell wall, resulting in plant tissue decay and maceration. This rotting process causes losses in the production of potato tubers sold both on the food market and as certified seed tubers [3]. The pathogens may be acquired by the host plants from soil and/or from contaminated seed tubers [4]. On plants, pathogen populations remain at a low level in asymptomatic Microorganisms 2020, 8, 895; doi:10.3390/microorganisms8060895 www.mdpi.com/journal/microorganisms Microorganisms 2020, 8, 895 2 of 16 plant tissues, and may become particularly destructive when environmental conditions favor their proliferation and the expression of virulence factors. P. atrosepticum was considered as the primary pathogen responsible for the rotting of stored potato tubers and wilting of potato plants under temperate climates [4]. Other Pectobacterium species frequently associated with damage of potato crops are P. carotovorum, P. brasiliense, P. parmentieri and P.polaris [5–9]. Some Pectobacterium species have also been characterized in some specific areas, such as P. peruviense strains isolated from tubers in Peru, and P. punjabense species from symptomatic potato plants in Pakistan [10,11]. P. odoriferum exhibits a very wide host range, including potato plants [12], while some other species were characterized by a more restricted host range, at least in the fields. Thus, P. wasabiae was isolated from symptomatic Japanese horseradish [13]; P. betavasculorum was reported almost exclusively on sugar beet [14]; P. aroidearum exhibits a preference for some monocotyledonous plants [15]; P. zantedeschiae strains were isolated from Zantedeschia spp. (Calla lily) [16]; and P. actinidiae from symptomatic Actinidia chinensis (kiwi fruit) [17]. Recently, some other species, isolated from surface waters, have also been described: P. fontis, P. aquaticum and P. versatile [7,18,19]. Altogether, 16 Pectobacterium species have been described so far [7]. A limited number of Dickeya species, i.e., D. dianthicola, D. dadantii and D. solani, have been associated with symptoms on potatoes. D. dianthicola was first reported on potatoes in the Netherlands in the 1970s, and has been detected since then in many other European countries [20]. D. dadantii causes soft rot disease in several members of the Solanaceae family, including the potato [21]. Another virulent species, namely D. solani, spread rapidly throughout Western Europe [22] and in Russia [23], and into other countries such as Turkey [24], Georgia [25] and Brazil [26]. During the past decade, the taxonomy of Dickeya and Pectobacterium species was revisited following genomic studies bearing on international culture collections and diverse ecosystems around the world [27,28]. By now, the genus Dickeya encompasses 10 species: D. aquatica, D. chrysanthemi, D. dadantii, D. dianthicola, D. fangzhongdai, D. lacustris, D. paradisiaca, D. solani, D. undicola, and D. zeae [22,29–34]. Bacteria belonging to this genus cause plant diseases in temperate, tropical and subtropical climates [35]. The unambiguous identification of Dickeya and Pectobacterium species is crucial for epidemiological purposes, to develop appropriate prophylactic approaches and quality controls in national and international trade exchanges. Multi-Locus Sequence Analysis (MLSA) provides relevant information for a better understanding of speciation, and hence for proposing pertinent taxa delineations [15,36]. MLSA may exploit gene sequences, obtained by PCR-sequencing of several loci or by whole genome sequencing. Among the loci commonly included in MLSA, the rrs sequence is poorly informative at a species level, while the gapA gene appeared as an appropriate marker to discriminate the different Dickeya and Pectobacterium species [10,18,19,31,32,37]. Taxonomy of Dickeya and Pectobacterium gained precision and robustness with additional genome analyses, such as average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) [38]. Comparative genomics is also used to identify species-specific DNA regions. Analysis of the functions encoded by these DNA regions allows the prediction of species-specific metabolic traits. This knowledge contributes to the understanding of both the taxonomy and ecology of the Dickeya and Pectobacterium pathogens [22,30–32,39]. P. atrosepticum, P. carotovorum and P. brasiliense were described in Morocco as the main causative agents of blackleg and soft rot diseases in potato crop [40–43]. In 2016, D. dianthicola was described for the first time in the North of Morocco [44]. In this respect, the main objectives of this study were: (i) to investigate the species composition of the Moroccan Dickeya and Pectobacterium populations, collected between 2015 and 2017 from diseased potato tubers and stems, (ii) to compare the aggressiveness of some identified pathogens belonging to different species, and (iii) to propose a complete genome of the emerging pathogen D. dianthicola in Morocco, that could be used for further studies as a reference genome. This work represents the most important sampling effort of the Pectobacterium and Dickeya potato pathogens in Morocco over the past decade. Microorganisms 2020, 8, 895 3 of 16 2. Materials and Methods 2.1. Sampling and Isolation of Pectinolytic Bacteria In 2015, 2016 and 2017, blackleg symptoms were searched for in potato fields in four regions (Meknes, Guigo, Boumia and Larache) in Northern Morocco. Pectinolytic bacteria were isolated from symptomatic plant tissues using crystal violet pectate (CVP) medium as described previously [45]. The CVP plates were incubated at 28 ◦C for 3 days and colonies that had formed pits were re-streaked onto Tryptone (5 g/L) yeast extract (3 g/L) agar medium (TY). The purified isolates were spotted again on CVP to confirm the pectinolytic activity. The obtained cultures from single colonies were stored in 25% glycerol at 80 C. − ◦ 2.2. Molecular Characterization of Pectobacterium and Dickeya Isolates The primer couples Y1/Y2 and ADE1/ADE2 (Table S1) were used for the identification of isolates belonging to Pectobacterium and Dickeya genera [46,47]. The reaction was carried out in a final volume of 25 µL, containing 1 µL of bacterial DNA (50 ng/µL), 2.5 µL of PCR buffer (10 ), 2 µL of × MgCl2 (25 mM), 2.5 µL of dNTPs (1 mM), 1U Taq polymerase and 1 µL of each primer (1 µM) and water. The temperature settings for PCR were the same as described before [46,47]. The analysis of PCR products was done by electrophoresis on 2% agarose gels, using PCR products of
Recommended publications
  • Dickeya Blackleg Is a More Aggressive Disease Than Blackleg Caused by Pectobacterium Atrosepticum
    PEI Potato Day 2017 Dickeya is the name of a group of bacteria. Various Dickeya species cause different plant diseases. Two species of Dickeya cause blackleg in potato. Dickeya blackleg is a more aggressive disease than blackleg caused by Pectobacterium atrosepticum. One of the blackleg-causing Dickeya species now occurs in Maine, and has been spread to other states. Blackleg is a potato disease with characteristic symptoms seed-piece decay black-pigmented soft rot of stems soft rot of tubers Blackleg is caused by several bacteria: . Pectobacterium atrosepticum . Pectobacterium brasiliense . Pectobacterium parmentieri (formerly wasabiae) . Dickeya dianthicola . Dickeya solani ATROSEPTICUM BLACKLEG DICKEYA BLACKLEG Usual cause of blackleg in Recently introduced into the Canada – in the past and United States, probably from currently Europe Favours lower temperatures Favours higher temperatures Symptoms: almost always Symptoms: sometimes clearly evident and visible on restricted to internal pith tissue stems of the stem Causes limited yield loss May cause serious disease loss ATROSEPTICUM DICKEYA Blackleg develops from bacteria that move from the seed tuber into the vascular tissue of the stem. These bacteria grow and multiple and produce soft-rotting Drawing from Potato Health Management. R.C. Rowe, ed. enzymes. APS Press Blackleg Disease Cycle The Seed Potato . They may look healthy and well BUT blackleg bacteria may be present in lenticels or stolon end vascular tissue During the growing season — from bacteria that
    [Show full text]
  • Opening of Symposium 08:50 Professor Lyn Beazley, Chief Scientist of Western Australia Chair – Elaine Davison Chemical Control of Soil-Borne Diseases
    The following organisations sponsored this symposium and the Organising Committee and delegates thank them sincerely for their support. Major sponsors Bayer CropScience offers leading brands and expertise in the areas of crop protection, seeds and plant biotechnology, and non-agricultural pest control. With a strong commitment to The Grains Research and Development Corporation is one of the world's leading grains innovation, research and development, we are committed to working together with growers and research organisations, responsible for planning and investing in R & D to support partners along the entire value chain; to cultivate ideas and answers so that Australian effective competition by Australian grain growers in global markets, through enhanced agriculture can be more efficient and more sustainable year on year. For every $10 spent on profitability and sustainability. The GRDC's research portfolio covers 25 leviable crops our products, more than $1 goes towards creating even better products for our customers. We spanning temperate and tropical cereals,oilseeds and pulses, with over $7billion per year innovate together with farmers to bring smart solutions to market, enabling them to grow in gross value of production. Contact GRDC 02 6166 4500 or go to www.grdc.com.au healthier crops, more efficiently and more sustainably." Other sponsors PROGRAM & PAPERS OF THE SEVENTH AUSTRALASIAN SOILBORNE DISEASES SYMPOSIUM 17-20 SEPTEMBER 2012 ISBN: 978-0-646-58584-0 Citation Proceedings of the Seventh Australasian Soilborne Diseases Symposium (Ed. WJ MacLeod) Cover photographs supplied by Daniel Huberli, Andrew Taylor, Tourism Western Australia. Welcome to the Seventh Australasian Soilborne Diseases Symposium The first Australasian Soilborne Diseases Symposium was held on the Gold Coast in 1999, and was followed by successful meetings at Lorne, the Barossa Valley, Christchurch, Thredbo and the Sunshine Coast.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • European Population of Pectobacterium Punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen
    microorganisms Article European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen Jérémy Cigna 1,2,*, Angélique Laurent 1,3, Malgorzata Waleron 4 , Krzysztof Waleron 5 , Pauline Dewaegeneire 1, Jan van der Wolf 6, Didier Andrivon 3 , Denis Faure 2 and Valérie Hélias 1,3,* 1 French Federation of Seed Potato Growers (FN3PT-inov3PT), 43-45 Rue de Naples, 75008 Paris, France; [email protected] (A.L.); [email protected] (P.D.) 2 Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; [email protected] 3 IGEPP, Agrocampus Ouest, INRAe, University Rennes 1, F-35653 Le Rheu, France; [email protected] 4 Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; [email protected] 5 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. Hallera 107, 80-416 Gdansk, Poland; [email protected] 6 Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; [email protected] * Correspondence: [email protected] (J.C.); [email protected] (V.H.) Citation: Cigna, J.; Laurent, A.; Waleron, M.; Waleron, K.; Dewaegeneire, P.; van der Wolf, J.; Abstract: Enterobacteria belonging to the Pectobacterium and Dickeya genera are responsible for Andrivon, D.; Faure, D.; Hélias, V. soft rot and blackleg diseases occurring in many crops around the world.
    [Show full text]
  • Erwinia Chrysanthemi the Facts
    Erwinia chrysanthemi (Dickeya spp.) The Facts Compiled for the British Potato Council by; Dr John Elphinstone, Central Science Laboratory Dr Ian Toth, Scottish Crop Research Institute Erwinia chrysanthemi (Dickeya spp.) – The Facts Contents Executive Summary 1. Introduction 2. The pathogen 3. Symptoms • Distinction from symptoms caused by P. atrosepticum and P. carotovorum • Distinction from other diseases 4. Geographical distribution • Presence in GB • Europe • Overseas 5. Biology, survival and dissemination of the pathogen • Factors influencing disease development • Dissemination • Survival 6. Assessment of Risk and Economic Loss • Quarantine status • Potential GB economic impact • Economic impact to overseas markets 7. Control • Statutory (certification) • On farm • Specific approaches and control measures in other countries • Best practice guide 8. Diagnostic methods 9. Knowledge gaps 10. Threats, Opportunities and Recommendations 11. References 12. Glossary of terms 2 © British Potato Council 2007 Erwinia chrysanthemi (Dickeya spp.) – The Facts Executive Summary The pathogen Erwinia chrysanthemi (Echr) is a complex of different bacteria now reclassified as species of Dickeya. While D. dadantii and D. zeae (formerly Echr biovar 3 or 8) are pathogens of potato in warmer countries, D. dianthicola (formerly Echr biovar 1 and 7) appears to be spreading on potatoes in Europe. The revised nomenclature of these pathogens has distinguished them from other soft rot erwiniae (including P. atrosepticum and P. carotovorum). Symptoms Symptoms of soft rot disease on potato tubers are similar whether caused by Dickeya or Pectobacterium spp. In the field, disease develops following movement of either pathogen from the stem base. Whereas P. atrosepticum typically causes blackleg symptoms under cool wet conditions, symptoms due to Dickeya spp.
    [Show full text]
  • Génomique Comparative Des Bactéries Dickeya Solani Et Pectobacterium Wasabiae, Pathogènes Émergents Chez Solanum Tuberosum Slimane Khayi
    Génomique comparative des bactéries Dickeya solani et Pectobacterium wasabiae, pathogènes émergents chez Solanum tuberosum Slimane Khayi To cite this version: Slimane Khayi. Génomique comparative des bactéries Dickeya solani et Pectobacterium wasabiae, pathogènes émergents chez Solanum tuberosum. Sciences agricoles. Université Paris Saclay (COmUE); Université Moulay Ismaïl (Meknès, Maroc), 2015. Français. NNT : 2015SACLS048. tel-01295341 HAL Id: tel-01295341 https://tel.archives-ouvertes.fr/tel-01295341 Submitted on 30 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2015SACLS048 THÈSE DE DOCTORAT de l'UNIVERSITÉ MOULAY ISMAЇL et de l’UNIVERSITÉ PARIS-SACLAY préparée à l’Université Paris Sud ÉCOLE DOCTORALE N° 567 Sciences du végétal : du gène à l'ecosystème CEDoc : SCIENCES FONDAMENTALES ET APPLIQUÉES Sciences Biologiques et leurs Applications Spécialité de doctorat : Biologie Par M. Slimane KHAYI Génomique comparative des bactéries Dickeya solani et Pectobacterium wasabiae, pathogènes émergents chez Solanum tuberosum Thèse présentée
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Agricultural and Food Science, Vol. 20 (2011): 117 S
    AGRICULTURAL AND FOOD A gricultural A N D F O O D S ci ence Vol. 20, No. 1, 2011 Contents Hyvönen, T. 1 Preface Agricultural anD food science Hakala, K., Hannukkala, A., Huusela-Veistola, E., Jalli, M. and Peltonen-Sainio, P. 3 Pests and diseases in a changing climate: a major challenge for Finnish crop production Heikkilä, J. 15 A review of risk prioritisation schemes of pathogens, pests and weeds: principles and practices Lemmetty, A., Laamanen J., Soukainen, M. and Tegel, J. 29 SC Emerging virus and viroid pathogen species identified for the first time in horticultural plants in Finland in IENCE 1997–2010 V o l . 2 0 , N o . 1 , 2 0 1 1 Hannukkala, A.O. 42 Examples of alien pathogens in Finnish potato production – their introduction, establishment and conse- quences Special Issue Jalli, M., Laitinen, P. and Latvala, S. 62 The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Alien pest species in agriculture and Lilja, A., Rytkönen, A., Hantula, J., Müller, M., Parikka, P. and Kurkela, T. 74 horticulture in Finland Introduced pathogens found on ornamentals, strawberry and trees in Finland over the past 20 years Hyvönen, T. and Jalli, H. 86 Alien species in the Finnish weed flora Vänninen, I., Worner, S., Huusela-Veistola, E., Tuovinen, T., Nissinen, A. and Saikkonen, K. 96 Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture Saxe, A. 115 Letter to Editor. Third sector organizations in rural development: – A Comment. Valentinov, V. 117 Letter to Editor. Third sector organizations in rural development: – Reply.
    [Show full text]
  • Genome-Wide Analyses of the Temperature-Responsive Genetic Loci of the Pectinolytic Plant Pathogenic Pectobacterium Atrosepticum
    International Journal of Molecular Sciences Article Genome-Wide Analyses of the Temperature-Responsive Genetic Loci of the Pectinolytic Plant Pathogenic Pectobacterium atrosepticum Natalia Kaczynska 1 , Ewa Lojkowska 1 , Magdalena Narajczyk 2 and Robert Czajkowski 3,* 1 Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Antoniego, Abrahama 58, 80-307 Gdansk, Poland; [email protected] (N.K.); [email protected] (E.L.) 2 Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; [email protected] 3 Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Antoniego, Abrahama 58, 80-307 Gdansk, Poland * Correspondence: [email protected]; Tel.: +48-58-5236333 Abstract: Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosep- ticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutage- nesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 ◦C, whereas 15 other genes were up-regulated at 28 ◦C. Among the Citation: Kaczynska, N.; Lojkowska, thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, E.; Narajczyk, M.; Czajkowski, R. fitness-corresponding factors, and several hypothetical proteins were found.
    [Show full text]
  • Tsetse Fly Evolution, Genetics and the Trypanosomiases - a Review E
    Entomology Publications Entomology 10-2018 Tsetse fly evolution, genetics and the trypanosomiases - A review E. S. Krafsur Iowa State University, [email protected] Ian Maudlin The University of Edinburgh Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Genetics Commons, and the Parasitic Diseases Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/546. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tsetse fly evolution, genetics and the trypanosomiases - A review Abstract This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b.
    [Show full text]
  • Characterization of Pectobacterium Strains Causing Soft Rot and Blackleg of Potato in Finland
    Department of Agricultural Sciences University of Helsinki Finland Characterization of Pectobacterium strains causing soft rot and blackleg of potato in Finland Miia Pasanen ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in the Athena room 166, Siltavuorenpenger 3A, Helsinki, on 14th October 2020, at 12 noon. Helsinki 2020 Supervisor: Docent Minna Pirhonen Department of Agricultural Sciences University of Helsinki, Finland Follow-up group: Professor Jari Valkonen Department of Agricultural Sciences University of Helsinki, Finland Docent Kim Yrjälä Department of Forest Sciences University of Helsinki, Finland Reviewers: Professor Paula Persson Department of Crop Production Ecology Swedish University of Agricultural Sciences, Sweden Research Director Marie-Anne Barny Institut d’Ecologie et des Sciences de l’Environnement Sorbonne Université, France Opponent: Professor Martin Romantschuk Faculty of Biological and Environmental Sciences University of Helsinki, Finland Custos: Professor Paula Elomaa Department of Agricultural Sciences University of Helsinki, Finland ISNN 2342-5423 (Print) ISNN 2342-5431 (Online) ISBN 978-951-51-6666-1 (Paperback) ISBN 978-951-51-6667-8 (PDF) http://ethesis.helsinki.fi Unigrafia 2020 CONTENTS ABSTRACT .………………………………………………………………………………………. 1 LIST OF ORIGINAL PUBLICATIONS ………………………………………………………….. 3 ABBREVIATIONS ………..………………………………………………………………………. 4 1. INTRODUCTION …………………………….………………………………………………… 5 1.1. SOFT ROT AND BLACKLEG OF POTATO CAUSED BY PECTOBACTERIUM SPECIES ………..…………………………………………………..………………. 5 1.1.1. Symptoms on potato ..…………………………………………………. 5 1.1.2. Virulence proteins and their secretion ………...……………………… 6 1.1.3. Quorum sensing in Pectobacteria ..…………………………………... 7 1.1.4. Spreading and survival of Pectobacteria …..………………………… 9 1.1.5. Control strategies of Pectobacterium species ……………………….10 1.2. TAXONOMY OF PECTOBACTERIUM SPECIES …...…….…………………...12 1.2.1.
    [Show full text]
  • Review Bacterial Blackleg Disease and R&D Gaps with a Focus on The
    Final Report Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry Project leader: Dr Len Tesoriero Delivery partner: Crop Doc Consulting Pty Ltd Project code: PT18000 Hort Innovation – Final Report Project: Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry – PT18000 Disclaimer: Horticulture Innovation Australia Limited (Hort Innovation) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non‐use of the Final Report or from reliance on information contained in the Final Report or that Hort Innovation provides to you by any other means. Funding statement: This project has been funded by Hort Innovation, using the fresh potato and processed potato research and development levy and contributions from the Australian Government. Hort Innovation is the grower‐owned, not‐ for‐profit research and development corporation for Australian horticulture. Publishing details:
    [Show full text]