Convolutional Neural Network (CNN) for Egyptian Sign extracting spatial features. The CNN model was retrained on the inception mod. The second Language architecture is a CNN followed by a Long Short Term Memory (LSTM) for extracting both spatial and temporal features. The two models Recognition Using achieved an accuracy of 90% and 72%, respectively. We examined the power of these CNN and LSTM two architectures to distinguish between 9 common words (with similar signs) among some deaf people community in Egypt. Ahmed Adel Gomaa Elhagry, Rawan Gla Elrayes Comp. & Sys. Dept., Faculty of Engineering, Zagazig University, Egypt, II. INTRODUCTION
[email protected] [email protected] In 2019, a study showed that 466 million people Supervisors: Dr.Amr Zamel, Comp. & Sys. Dept, worldwide have disabling hearing loss [1 ]. Faculty of Engineering, Zagazig University, Egypt,
[email protected]. In Egypt, the percentage reached about 7% of Dr.Ahmed Helmy, Comp. & Sys. Dept, Faculty our population. More than 7 million of Engineering, Zagazig University, Egypt Egyptians are being marginalized; special elementary schools with a poor quality of Keywords: Deep Learning, CNN, LSTM, education and a lack of supervision, Computer Vision, Video Recognition, Transfer universities that don’t accept them, and job vacancies that refuses them just because they Learning, Egyptian Sign Language, Spatial and are deaf. Temporal Features. In addition, most of their parents tend to keep them indoors and avoid socializing. Also, I. ABSTRACT Whenever they start using sign language in public places, people either stare at them, or Sign language is a set of gestures that deaf talk normally, ignoring the fact that they people use to communicate.