Copyrighted Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report
Zentralinstitut für Seelische Gesundheit Landesstiftung des öffentlichen Rechts 2017 2019 ANNUAL REPORT 2017 2019 ANNUAL REPORT EXECUTIVE BOARD RESEARCH REPORT BY THE EXECUTIVE BOARD, DEPARTMENTS, INSTITUTES DEVELOPMENT FIGURES AND RESEARCH GROUPS Report by the Executive Board 6 The Future of Therapy Research 42 Development Figures 8 Department of Neuropeptide Research 46 in Psychiatry Department of Molecular Neuroimaging 47 Department of Public Mental Health 48 Hector Institute for Translational 50 Brain Research RG Developmental Brain Pathologies 51 Department of Biostatistics 52 PATIENT CARE Institute of Cognitive and 53 Clinical Neuroscience CLINICAL DEPARTMENTS AND INSTITUTES RG Brain Stimulation, Neuroplasticity and 54 Learning RG Psychobiology of Risk Behavior 54 Clinic of Psychiatry and Psychotherapy 12 RG Body Plasticity and Memory Processes 55 Clinic of Child and Adolescent Psychiatry and 20 RG Psychobiology of Pain 56 Psychotherapy RG Psychobiology of Emotional Learning 57 Clinic of Psychosomatic Medicine and 24 Institute for Psychopharmacology 58 Psychotherapy RG Behavioral Genetics 59 RG Translational Addiction Research 60 Clinic of Addictive Behavior and 26 RG Physiology of Neuronal Networks 61 Addiction Medicine RG Molecular Psychopharmacology 62 Adolescent Center for Disorders 29 RG Neuroanatomy 63 of Emotional Regulation RG In Silico Psychopharmacology 64 Adolescent Center for 30 Institute for Psychiatric and 65 Psychotic Disorders – SOTERIA Psychosomatic Psychotherapy RG Experimental Psychotherapy 66 Central Outpatient -
The “Rights” of Precision Drug Development for Alzheimer's Disease
Cummings et al. Alzheimer's Research & Therapy (2019) 11:76 https://doi.org/10.1186/s13195-019-0529-5 REVIEW Open Access The “rights” of precision drug development for Alzheimer’s disease Jeffrey Cummings1*, Howard H. Feldman2 and Philip Scheltens3 Abstract There is a high rate of failure in Alzheimer’s disease (AD) drug development with 99% of trials showing no drug- placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The “rights” of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0179214 A1 Dubé Et Al
US 20100179214A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0179214 A1 Dubé et al. (43) Pub. Date: Jul. 15, 2010 (54) DOXEPIN TRANS ISOMERS AND SOMERC continuation-in-part of application No. 1 1/804,720, MIXTURES AND METHODS OF USING THE filed on May 18, 2007. SAME TO TREAT SLEEP DSORDERS (60) Provisional application No. 60/898,378, filed on Jan. (75) Inventors: Susan E. Dubé, Carlsbad, CA (US); 30, 2007, provisional application No. 60/801,824, Neil B. Kavey, Chappaqua, NY filed on May 19, 2006, provisional application No. (US) 60/833,319, filed on Jul 25, 2006. Correspondence Address: KNOBBE MARTENS OLSON & BEAR LLP Publication Classification 2040 MAINSTREET, FOURTEENTH FLOOR (51) Int. Cl. IRVINE, CA 92.614 (US) A63L/335 (2006.01) A6IP 25/20 (2006.01) (73) Assignee: SOMAXON PHARMACEUTICALS, INC., (52) U.S. Cl. ........................................................ S14/450 San Diego, CA (US) (21) Appl. No.: 12/535,623 (57) ABSTRACT The invention relates to use of the trans-(E) isomer or iso (22) Filed: Aug. 4, 2009 meric mixtures containing specified ratios of the trans-(E) and cis-(Z) isomers of doxepin, metabolites of doxepin, phar Related U.S. Application Data maceutically-acceptable salts of doxepin and prodrugs of the (63) Continuation-in-part of application No. 12/022,788, same; compositions containing the same, for the treatment of filed on Jan. 30, 2008, now abandoned, which is a sleep disorders US 2010/0179214 A1 Jul. 15, 2010 DOXEPIN TRANS ISOMERS AND SOMERC brings scrutiny from the Drug Enforcement Administration MIXTURES AND METHODS OF USING THE and other regulatory bodies, and requires registration and SAME TO TREAT SLEEP DSORDERS administrative controls in physicians offices. -
New Therapeutic Property of Dimebon As a Neuroprotective Agent
Send Orders for Reprints to [email protected] Current Medicinal Chemistry, 2016, 23, 1-12 1 REVIEW ARTICLE New Therapeutic Property of Dimebon as a Neuroprotective Agent Aleksey Ustyugov1, Elena Shevtsova1, George E. Barreto2,3, Ghulam Md Ashraf 4, Sergey O. Bachurin1 and Gjumrakch Aliev1,5,6,* 1Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy Proezd 1, Cher- nogolovka, 142432, Russia; 2Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Uni- versidad Javeriana, Bogotá D.C., Colombia; 3Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; 4King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Ara- bia; 5GALLY International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San An- tonio, TX, 78229, USA; 6School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA, 30097, USA Abstract: Dimebon (or Latrepirdine) was initially used as an anti-histamergic drug but later new therapeutic properties were rediscovered, adding to a growing body of “old” agents with prominent neuroprotective effects. In the present manuscript, we are focusing on our latest study on Dimebon with regard to brain’s pathological processes using in vivo protei- A R T I C L E H I S T O R Y nopathy models. In the study, neurodegenerative pathology has been attributed to a group of aggregate-prone proteins: hyperphosphorylated tau, fused in sarcoma and γ-synuclein , which Received: March 13, 2016 Revised: June 08, 2016 are involved in a number of neurological disorders. We have also presented our in vitro Accepted: July 24, 2016 model based on overexpression of an aberrant mutant form of transactive response DNA DOI: 10.2174/0929867323666160804 binding 43 kDa protein in cultured SH-SY5Y neuroblastoma cells. -
The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone -
(12) United States Patent (10) Patent N0.: US 6,967,201 B1 Briner Et Al
US006967201B1 (12) United States Patent (10) Patent N0.: US 6,967,201 B1 Briner et al. (45) Date of Patent: *Nov. 22, 2005 (54) BENZOFURYLPIPERAZINES AND (56) References Cited BENZOFURYLHOMOPIPERAZINES: SEROTONIN AGONISTS U.S. PATENT DOCUMENTS 5,698,766 A 12/1997 Julius et 211. (75) Inventors: Karin Briner, Indianapolis, IN (US); 6,638,936 B1 * 10/2003 Briner et a1. Joseph Paul Burkhart, Plain?eld, IN (US); Timothy Paul Burkholder, FOREIGN PATENT DOCUMENTS Carmel, IN (US); Brian Eugene EP 0 006 524 A 1/1980 Cunningham, Martinsville, IN (US); EP 0 189 612 A 8/1986 Matthew Joseph Fisher, Mooresville, W0 W0 95 11243 A 4/1995 IN (US); William Harlan Gritton, W0 W0 97 08167 A 3/1997 Zionsville, IN (US); Shawn W0 W0 97 36893 A 10/1997 Christopher Miller, Noblesville, IN (US); J e?'rey Thomas Mullaney, OTHER PUBLICATIONS Indianapolis, IN (US); Matthew Robert Kuipers W. et al: “N4-unsubstituted 1-6 nl-arylpiperaZines Reinhard, Indianapolis, IN (US); as high-affinity 5 -HT1A recept r ligands” Journal of Medici Dennis Charles Thompson, nal Chemistry., vol. 38, No. 11, May 26, 1995, pp. 1942 Indianapolis, IN (US); Leonard Larry 1954, XP002153536 American Chemical Society. Washing Winneroski, Greenwood, IN (US); ton., US ISSN: 0022-2623. Yanping Xu, Fishers, IN (US) * cited by examiner (73) Assignee: Eli Lilly and Company, Indianapolis, Primary Examiner—Emily Bernhardt IN (US) (74) Attorney, Agent, or Firm—R. Craig Tucker (57) ABSTRACT (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. -
La Place Des Composés Multi Target Directed Ligands Dans Le Traitement De La Maladie D’Alzheimer Katia Hamidouche
La place des composés Multi Target Directed Ligands dans le traitement de la maladie d’Alzheimer Katia Hamidouche To cite this version: Katia Hamidouche. La place des composés Multi Target Directed Ligands dans le traitement de la maladie d’Alzheimer. Sciences pharmaceutiques. 2017. dumas-01556379 HAL Id: dumas-01556379 https://dumas.ccsd.cnrs.fr/dumas-01556379 Submitted on 5 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE CAEN NORMANDIE ANNEE 2017 U.F.R. DES SCIENCES PHARMACEUTIQUES THESE POUR LE DIPLOME D’ETAT DE DOCTEUR EN PHARMACIE PRESENTEE PAR Katia HAMIDOUCHE SUJET : La place des composés "Multi Target Directed Ligands" dans le traitement de la maladie d'Alzheimer SOUTENUE PUBLIQUEMENT LE : 31/03/2017 JURY : Pr. Michel Boulouard PRESIDENT DU JURY Dr. Véronique Lelong Boulouard EXAMINATEUR Dr. Joanna Bourgine EXAMINATEUR Pr. Thomas Freret Remerciements Avant tout, je tiens à dédier ce travail à mes parents , que je remercie également profondément pour leurs longs encouragements et soutien, et à qui je présente toute ma reconnaissance et gratitude pour les sacrifices qu’ils ont choisis de faire afin de nous permettre, ma sœur, mes frères et moi -même de faire ces grandes études, et sans lesquels je n’aurai jamais découvert cet univers de savoir et de science « à la Française ». -
List of Vital Essential and Necessary Drugs and Medical Sundries For
LIST OF VITAL ESSENTIAL AND NECESSARY DRUGS AND 2015 MEDICAL SUNDRIES FOR PUBLIC HEALTH INSTITUTIONS Sixth Edition STANDARDS & REGULATION DIVISION JAMAICA List of Vital Essential and Necessary List of Drugs and Medical Sundries for Public Institutions List of Vital Essential and Necessary List of Drugs and Medical Sundries for Public Institutions CONTENTS CONTENTS Contd. Page Preface 5-6 Page Information on Hospitals and Health Centres 7 Explanatory Notes 8 Medical Sundries 69-73 Prescription Writing 9-10 Dental Supplies 74 Algorithm for Treatment of Hypertension 11-12 Radiotherapy – Diagnostic Agents 75 Algorithm for Management of Type 2 Diabetes 13-14 Raw Materials 76 List of Drugs Designated for NHF 15-17 List of Drugs Designated for JADEP 18 VOLUME11 – SPECIALIST LIST 77 VOLUME 1 – GENERAL LIST 19 CLASSIFICATION OF DRUGS SECTION 1. Cardiovascular System 78 CLASSIFICATION OF DRUGS SECTION 2. Central Nervous System 79 SECTION 1. Cardiovascular System 20-24 SECTION 3. Dermatology 80 SECTION 2. Central Nervous System 25-30 SECTION 4. Endocrine System 80 SECTION 3. Dermatology 31-33 SECTION 5. Gastro-intestinal System 81 SECTION 4. Ear, Nose and Oropharynx 34-35 SECTION 6. Infections 81 SECTION 5. Endocrine System 36-38 SECTION 7. Malignant Disease and SECTION 6. Gastro-intestinal System 39-40 Immunosuppression 82 SECTION 7. Infections 41-46 SECTION 8. Musculoskeletal and Joint Diseases 83 SECTION 8. Malignant Disease and SECTION 9. Ophthalmology 83 Immunosuppression 47-49 SECTION 10. Genito-Urinary Tract Disorders 84 SECTION 9. Musculoskeletal and Joint Diseases 50-51 SECTION 11. Respiratory System 84 SECTION 10. Nutrition and Blood 52-54 SECTION 12. -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
Partial Agreement in the Social and Public Health Field
COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this -
A [18F]Fluoroethoxybenzovesamicol Positron Emission Tomography Study
Received: 24 May 2018 Revised: 7 September 2018 Accepted: 10 September 2018 DOI: 10.1002/cne.24541 RESEARCH ARTICLE Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study Roger L. Albin1,2,3,4 | Nicolaas I. Bohnen1,2,3,5 | Martijn L. T. M. Muller3,5 | William T. Dauer1,2,3,6 | Martin Sarter3,7 | Kirk A. Frey2,5 | Robert A. Koeppe3,5 1Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan Abstract 2Department of Neurology, University of Prior efforts to image cholinergic projections in human brain in vivo had significant technical lim- Michigan, Ann Arbor, Michigan itations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxyben- 3University of Michigan Morris K. Udall Center zovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional of Excellence for Research in Parkinson's distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age Disease, Ann Arbor, Michigan 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, inter- 4Michigan Alzheimer Disease Center, Ann Arbor, Michigan mediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar 18 5Department of Radiology, University of regions, and lower in other regions. Neocortical [ F]FEOBV binding was inhomogeneous with Michigan, Ann Arbor, Michigan relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and 6Department of Cell and Developmental lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in Biology, University of Michigan, Ann Arbor, the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. -
Pridopidine for the Treatment of Motor Function in Patients with Huntington’S Disease (Mermaihd): a Phase 3, Randomised, Double-Blind, Placebo-Controlled Trial
Articles Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial Justo Garcia de Yebenes, Bernhard Landwehrmeyer, Ferdinando Squitieri, Ralf Reilmann, Anne Rosser, Roger A Barker, Carsten Saft, Markus K Magnet, Alastair Sword, Åsa Rembratt, Joakim Tedroff, for the MermaiHD study investigators Summary Background Huntington’s disease is a progressive neurodegenerative disorder, characterised by motor, cognitive, and Lancet Neurol 2011; 10: 1049–57 behavioural deficits. Pridopidine belongs to a new class of compounds known as dopaminergic stabilisers, and results Published Online from a small phase 2 study in patients with Huntington’s disease suggested that this drug might improve voluntary November 8, 2011 motor function. We aimed to assess further the effects of pridopidine in patients with Huntington’s disease. DOI:10.1016/S1474- 4422(11)70233-2 See Comment page 1036 Methods We undertook a 6 month, randomised, double-blind, placebo-controlled trial to assess the efficacy of pridopidine Department of Neurology, in the treatment of motor deficits in patients with Huntington’s disease. Our primary endpoint was change in the Hospital Ramón y Cajal, modified motor score (mMS; derived from the unified Huntington’s disease rating scale) at 26 weeks. We recruited CIBERNED, Madrid, Spain patients with Huntington’s disease from 32 European centres; patients were aged 30 years or older and had an mMS of (J G de Yebenes MD); 10 points or greater at baseline. Patients were randomly assigned (1:1:1) to receive placebo, 45 mg per day pridopidine, Department of Neurology, University of Ulm, Ulm, or 90 mg per day pridopidine by use of centralised computer-generated codes.