Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material Index Note: page numbers in italics refer to figures; those in bold to tables or boxes. abacavir 686 tolerability 536–537 children and adolescents 461 acamprosate vascular dementia 549 haematological 798, 805–807 alcohol dependence 397, 397, 402–403 see also donepezil; galantamine; hepatic impairment 636 eating disorders 669 rivastigmine HIV infection 680 re‐starting after non‐adherence 795 acetylcysteine (N‐acetylcysteine) learning disability 700 ACE inhibitors see angiotensin‐converting autism spectrum disorders 505 medication adherence and 788, 790 enzyme inhibitors obsessive compulsive disorder 364 Naranjo probability scale 811, 812 acetaldehyde 753 refractory schizophrenia 163 older people 525 acetaminophen, in dementia 564, 571 acetyl‐L‐carnitine 159 psychiatric see psychiatric adverse effects acetylcholinesterase (AChE) 529 activated partial thromboplastin time 805 renal impairment 647 acetylcholinesterase (AChE) acute intoxication see intoxication, acute see also teratogenicity inhibitors 529–543, 530–531 acute kidney injury 647 affective disorders adverse effects 537–538, 539 acutely disturbed behaviour 54–64 caffeine consumption 762 Alzheimer’s disease 529–543, 544, 576 intoxication with street drugs 56, 450 non‐psychotropics causing 808, atrial fibrillation 720 rapid tranquillisation 54–59 809, 810 clinical guidelines 544, 551, 551 acute mania see mania, acute stupor 107, 108, 109 combination therapy 536 addictions 385–457 see also bipolar disorder; depression; delirium 675 S‐adenosyl‐l‐methionine 275 mania dosing 535 ADHD see attention deficit hyperactivity ageing drug interactions 223, 539–540, disorder pharmacodynamic changes 525 541–542 adherence, medication 787–793 pharmacokinetic changes 526 efficacy 532–533, 534 assessment 732, 789 see also older people Lewy body dementia 538, 550, 576, 717 children and adolescents 486 aggressive behaviour mechanism of action 529 enhancing 789–792 autism spectrum disorders 506–508 mild cognitive impairment 533, factors affecting 788 benzodiazepine‐associated 374, 381–383 537, 550 lithium therapy 206, 209 carbamazepine 222 myasthenia gravis 564, 567 rates 787–789 dementia see behavioural and non‐cognitive symptoms of re‐starting medication after missed psychological symptoms (BPSD) of dementia 535, 576 COPYRIGHTEDdoses 794–797, 795 MATERIALdementia other dementias 550–551 schizophrenia 4, 27, 42, 787–788, 790 Huntington’s disease 706 Parkinson’s disease 550, 716, 717 adolescents see children and adolescents learning disabilities 701–702 renal impairment 656 adverse drug reactions (ADR) lithium 207 re‐starting after non‐adherence 795 autism spectrum disorder 504 non‐psychotropics causing 809 stopping treatment 540–543 biochemical 798, 799–804 valproate 215 switching between 534 breastfed infants 620, 622–630 see also acutely disturbed behaviour The Maudsley Prescribing Guidelines in Psychiatry, Thirteenth Edition. David M. Taylor, Thomas R. E. Barnes and Allan H. Young. © 2018 David M. Taylor. Published 2018 by John Wiley & Sons Ltd. 0003381246.INDD 825 4/2/2018 12:35:38 PM 826 Index agitation alcohol dependence/misuse 387–404 Alzheimer’s disease (AD) 529–549 dementia see behavioural and assessment 387–388 antipsychotic‐associated pneumonia 148 psychological symptoms of brief structured intervention 387–388 atrial fibrillation and 720 dementia children and adolescents 400–401 BAP guidance 551, 551 non‐psychotropics causing 808, co‐morbid mental health cognitive enhancers 529–543, 530–531 809, 810 disorders 401–403 depression 577–578 rapid tranquillisation 54–57 concurrent drug use disorders 401 driving regulations 776 agomelatine drug interactions 753–756, 754, 755 efficacy of drug treatment 532–534 adverse effects 358 mild, assisted withdrawal 392, 393 NICE guidance 543, 544 atrial fibrillation 720 moderate, assisted withdrawal 392, non‐cognitive symptoms see behavioural breastfeeding 622 393, 393 and psychological symptoms (BPSD) cardiac effects 326 NICE guideline 387, 397, 397, 398, of dementia depression 264 399, 399 novel treatments 548–549 diabetes mellitus and 340 older adults 401 other treatments 543–548 discontinuation 310, 312, 315, 318 psychotropic drug choice 756 quantifying drug effects 534 driving ability 777 relapse prevention 397–400 stopping treatment 540–543, 543 epilepsy 692 severe, assisted withdrawal 392, 394, 394 see also dementia generalised anxiety disorder 360 treatment see alcohol withdrawal Alzheimer’s Disease Assessment hepatic impairment 639 Wernicke’s encephalopathy 395–396 Scale ‐ cognitive subscale hyperprolactinaemia and 337 alcohol intoxication (ADAS‐cog) 532, 534 hyponatraemia 333, 333 drug interactions 754, 754, 756 amantadine minimum effective dose 262 rapid tranquillisation 56 antipsychotic‐induced weight gain 100 older people 294, 295, 587 Alcohol Use Disorders Identification Test Huntington’s disease 705 overdose 769 (AUDIT) 388 hyperprolactinaemia 139 Parkinson’s disease 715 alcohol withdrawal 388–396 multiple sclerosis 711–712 renal impairment 651 carbamazepine 222 psychiatric adverse effects 810 sexual adverse effects 344 children and adolescents 400–401 refractory depression 274 smoking status and 750 clinical features 388–389 sexual dysfunction 144, 144, 345 switching to/from 316, 318 community setting 390, 393 American Academy of Child and Adolescent agranulocytosis complications 388–389 Psychiatry (AACAP) 463, 480, 491 clozapine–chemotherapy fixed dose reduction regimen 393–394 amfebutamone see bupropion combination 202 front‐loading regimen 393 amfetamines clozapine‐induced 176, 179, 184–185, inpatient/residential settings 390, 393, autism spectrum disorders 506 197–201 394–395 depression 285, 286–287 psychotropics causing 806 older adults 401 drug interactions 451–452 see also neutropenia pharmacologically assisted epilepsy 693 AIDS see HIV infection/AIDS (detoxification) 390–395, 392 misuse 439–440, 455 akathisia pregnancy 400 psychosis induced by 440 antipsychotic‐induced 39, 91–92, 94–96 somatic complaints, and remedies see also dexamfetamine; lisdexamfetamine never‐medicated schizophrenia 90 396, 396 Amiket (amitriptyline + ketamine non‐psychotropics causing 810 symptom‐triggered regimen 394, cream) 300 switching antipsychotics 150 394–395 amisulpride treatment 92, 94, 95–96 variable dose reduction 393 adverse effects 39 D‐alanine, refractory schizophrenia 163 Wernicke’s encephalopathy 395–396 alcohol misusers 756 alanine aminotransferase (ALT) 799 aldehyde dehydrogenase 753, 753 bipolar disorder 226 albumin, plasma 799 drugs inhibiting 754 breastfeeding 625 albumin:creatinine ratio (ACR) 645, 646 alfuzosin 561 clozapine‐induced hypersalivation 189 alcohol 387 alkaline phosphatase 799 delirium 674 bariatric surgery and 727 allopurinol 162, 237 dementia 572, 574, 575 driving and 777 α2‐adrenergic agonists depression 278 drug interactions 451–452, 753–757, ADHD 497 diabetes and 124–125 754, 755 autism spectrum disorders 506 epilepsy 692 metabolism 753, 753 PTSD in young people 492, 493 equivalent dose 15 methadone interaction 410, 412 tic disorders 513 hepatic impairment 637, 641 post‐mortem blood samples 742, 743 see also clonidine; guanfacine Huntington’s disease 706 units 387 alpha‐blockers maximum licensed dose 12 alcohol consumption PTSD in young people 492, 493 minimum effective dose 9 pregnancy 400 urinary retention in dementia 561, 568 monitoring physical health 37, 38 recommendations 387 alpha‐lipoic acid 100 negative symptoms 32 alcohol dehydrogenase (ADH) 753, 753 alprostadil 144, 145 older people 588 drugs inhibiting 754 alverine 563 overdose 771 0003381246.INDD 826 4/2/2018 12:35:38 PM Index 827 plasma level monitoring 732–734, 733 anticholinergic agents cross‐tapering 314 pneumonia risk 148 antidepressant discontinuation dementia 577–578 refractory schizophrenia 159, 162, symptoms 312 depression 257–359 163, 164 bronchodilators 563–564 children and adolescents relative efficacy 5 with depot antipsychotics 69 463–467, 467 renal impairment 649 extrapyramidal symptoms 92, 95 choice of agent 258 sexual adverse effects 143 hypersalivation 189, 190, 564 duration of treatment 259–260 switching to 51 Parkinson’s disease 716, 716, 717 effectiveness 257 weight gain risk 97 safety in dementia 557–564, 561, lithium augmentation 206 amitriptyline 567, 568 minimum effective doses 262, adverse effects 358 street drug interactions 452 262–263 autism spectrum disorders 508 urinary incontinence 557–561, 562, 568 next step treatments 260 breastfeeding 624 anticholinergic effect on cognition (AEC) NICE guidelines 256, 278, 307 buccal 299 scores 557, 558–560, 561 onset of action 257–258 children and adolescents 464–465 anticholinergic effects post‐stroke 290–291 clozapine‐induced hypersalivation 189 antidepressants 294–295, 296, 321, prescribing principles 255 discontinuation symptoms 311 358–359 prophylaxis 306–309 effectiveness 257 antipsychotics 39, 142 psychostimulants with 285, 286–287 gel 300, 302 anticholinesterases see acetylcholinesterase psychotic 278–279 intramuscular 302 (AChE) inhibitors refractory (resistant) 267–273, intravenous 299, 302 anticoagulation, SSRIs and 291, 268, 271 and ketamine cream 300 348–349, 350 switching 259, 264–265, 314–320, Parkinson’s disease 715 anticonvulsants 316–319 plasma level monitoring 734 alcohol dependence 389, 400 treatment algorithm 264–265 post‐mortem blood concentrations 743 autism spectrum disorders 505, 508 diabetes mellitus and 340, 340–342 post‐stroke depression 290 biochemical side‐effects 799, 802 discontinuation 312, 314–320, 316–319 PTSD 363 chronic kidney disease 647
Recommended publications
  • Annual Report
    Zentralinstitut für Seelische Gesundheit Landesstiftung des öffentlichen Rechts 2017 2019 ANNUAL REPORT 2017 2019 ANNUAL REPORT EXECUTIVE BOARD RESEARCH REPORT BY THE EXECUTIVE BOARD, DEPARTMENTS, INSTITUTES DEVELOPMENT FIGURES AND RESEARCH GROUPS Report by the Executive Board 6 The Future of Therapy Research 42 Development Figures 8 Department of Neuropeptide Research 46 in Psychiatry Department of Molecular Neuroimaging 47 Department of Public Mental Health 48 Hector Institute for Translational 50 Brain Research RG Developmental Brain Pathologies 51 Department of Biostatistics 52 PATIENT CARE Institute of Cognitive and 53 Clinical Neuroscience CLINICAL DEPARTMENTS AND INSTITUTES RG Brain Stimulation, Neuroplasticity and 54 Learning RG Psychobiology of Risk Behavior 54 Clinic of Psychiatry and Psychotherapy 12 RG Body Plasticity and Memory Processes 55 Clinic of Child and Adolescent Psychiatry and 20 RG Psychobiology of Pain 56 Psychotherapy RG Psychobiology of Emotional Learning 57 Clinic of Psychosomatic Medicine and 24 Institute for Psychopharmacology 58 Psychotherapy RG Behavioral Genetics 59 RG Translational Addiction Research 60 Clinic of Addictive Behavior and 26 RG Physiology of Neuronal Networks 61 Addiction Medicine RG Molecular Psychopharmacology 62 Adolescent Center for Disorders 29 RG Neuroanatomy 63 of Emotional Regulation RG In Silico Psychopharmacology 64 Adolescent Center for 30 Institute for Psychiatric and 65 Psychotic Disorders – SOTERIA Psychosomatic Psychotherapy RG Experimental Psychotherapy 66 Central Outpatient
    [Show full text]
  • The “Rights” of Precision Drug Development for Alzheimer's Disease
    Cummings et al. Alzheimer's Research & Therapy (2019) 11:76 https://doi.org/10.1186/s13195-019-0529-5 REVIEW Open Access The “rights” of precision drug development for Alzheimer’s disease Jeffrey Cummings1*, Howard H. Feldman2 and Philip Scheltens3 Abstract There is a high rate of failure in Alzheimer’s disease (AD) drug development with 99% of trials showing no drug- placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The “rights” of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0179214 A1 Dubé Et Al
    US 20100179214A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0179214 A1 Dubé et al. (43) Pub. Date: Jul. 15, 2010 (54) DOXEPIN TRANS ISOMERS AND SOMERC continuation-in-part of application No. 1 1/804,720, MIXTURES AND METHODS OF USING THE filed on May 18, 2007. SAME TO TREAT SLEEP DSORDERS (60) Provisional application No. 60/898,378, filed on Jan. (75) Inventors: Susan E. Dubé, Carlsbad, CA (US); 30, 2007, provisional application No. 60/801,824, Neil B. Kavey, Chappaqua, NY filed on May 19, 2006, provisional application No. (US) 60/833,319, filed on Jul 25, 2006. Correspondence Address: KNOBBE MARTENS OLSON & BEAR LLP Publication Classification 2040 MAINSTREET, FOURTEENTH FLOOR (51) Int. Cl. IRVINE, CA 92.614 (US) A63L/335 (2006.01) A6IP 25/20 (2006.01) (73) Assignee: SOMAXON PHARMACEUTICALS, INC., (52) U.S. Cl. ........................................................ S14/450 San Diego, CA (US) (21) Appl. No.: 12/535,623 (57) ABSTRACT The invention relates to use of the trans-(E) isomer or iso (22) Filed: Aug. 4, 2009 meric mixtures containing specified ratios of the trans-(E) and cis-(Z) isomers of doxepin, metabolites of doxepin, phar Related U.S. Application Data maceutically-acceptable salts of doxepin and prodrugs of the (63) Continuation-in-part of application No. 12/022,788, same; compositions containing the same, for the treatment of filed on Jan. 30, 2008, now abandoned, which is a sleep disorders US 2010/0179214 A1 Jul. 15, 2010 DOXEPIN TRANS ISOMERS AND SOMERC brings scrutiny from the Drug Enforcement Administration MIXTURES AND METHODS OF USING THE and other regulatory bodies, and requires registration and SAME TO TREAT SLEEP DSORDERS administrative controls in physicians offices.
    [Show full text]
  • New Therapeutic Property of Dimebon As a Neuroprotective Agent
    Send Orders for Reprints to [email protected] Current Medicinal Chemistry, 2016, 23, 1-12 1 REVIEW ARTICLE New Therapeutic Property of Dimebon as a Neuroprotective Agent Aleksey Ustyugov1, Elena Shevtsova1, George E. Barreto2,3, Ghulam Md Ashraf 4, Sergey O. Bachurin1 and Gjumrakch Aliev1,5,6,* 1Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy Proezd 1, Cher- nogolovka, 142432, Russia; 2Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Uni- versidad Javeriana, Bogotá D.C., Colombia; 3Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; 4King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Ara- bia; 5GALLY International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San An- tonio, TX, 78229, USA; 6School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA, 30097, USA Abstract: Dimebon (or Latrepirdine) was initially used as an anti-histamergic drug but later new therapeutic properties were rediscovered, adding to a growing body of “old” agents with prominent neuroprotective effects. In the present manuscript, we are focusing on our latest study on Dimebon with regard to brain’s pathological processes using in vivo protei- A R T I C L E H I S T O R Y nopathy models. In the study, neurodegenerative pathology has been attributed to a group of aggregate-prone proteins: hyperphosphorylated tau, fused in sarcoma and γ-synuclein , which Received: March 13, 2016 Revised: June 08, 2016 are involved in a number of neurological disorders. We have also presented our in vitro Accepted: July 24, 2016 model based on overexpression of an aberrant mutant form of transactive response DNA DOI: 10.2174/0929867323666160804 binding 43 kDa protein in cultured SH-SY5Y neuroblastoma cells.
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 6,967,201 B1 Briner Et Al
    US006967201B1 (12) United States Patent (10) Patent N0.: US 6,967,201 B1 Briner et al. (45) Date of Patent: *Nov. 22, 2005 (54) BENZOFURYLPIPERAZINES AND (56) References Cited BENZOFURYLHOMOPIPERAZINES: SEROTONIN AGONISTS U.S. PATENT DOCUMENTS 5,698,766 A 12/1997 Julius et 211. (75) Inventors: Karin Briner, Indianapolis, IN (US); 6,638,936 B1 * 10/2003 Briner et a1. Joseph Paul Burkhart, Plain?eld, IN (US); Timothy Paul Burkholder, FOREIGN PATENT DOCUMENTS Carmel, IN (US); Brian Eugene EP 0 006 524 A 1/1980 Cunningham, Martinsville, IN (US); EP 0 189 612 A 8/1986 Matthew Joseph Fisher, Mooresville, W0 W0 95 11243 A 4/1995 IN (US); William Harlan Gritton, W0 W0 97 08167 A 3/1997 Zionsville, IN (US); Shawn W0 W0 97 36893 A 10/1997 Christopher Miller, Noblesville, IN (US); J e?'rey Thomas Mullaney, OTHER PUBLICATIONS Indianapolis, IN (US); Matthew Robert Kuipers W. et al: “N4-unsubstituted 1-6 nl-arylpiperaZines Reinhard, Indianapolis, IN (US); as high-affinity 5 -HT1A recept r ligands” Journal of Medici Dennis Charles Thompson, nal Chemistry., vol. 38, No. 11, May 26, 1995, pp. 1942 Indianapolis, IN (US); Leonard Larry 1954, XP002153536 American Chemical Society. Washing Winneroski, Greenwood, IN (US); ton., US ISSN: 0022-2623. Yanping Xu, Fishers, IN (US) * cited by examiner (73) Assignee: Eli Lilly and Company, Indianapolis, Primary Examiner—Emily Bernhardt IN (US) (74) Attorney, Agent, or Firm—R. Craig Tucker (57) ABSTRACT (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
    [Show full text]
  • La Place Des Composés Multi Target Directed Ligands Dans Le Traitement De La Maladie D’Alzheimer Katia Hamidouche
    La place des composés Multi Target Directed Ligands dans le traitement de la maladie d’Alzheimer Katia Hamidouche To cite this version: Katia Hamidouche. La place des composés Multi Target Directed Ligands dans le traitement de la maladie d’Alzheimer. Sciences pharmaceutiques. 2017. dumas-01556379 HAL Id: dumas-01556379 https://dumas.ccsd.cnrs.fr/dumas-01556379 Submitted on 5 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE CAEN NORMANDIE ANNEE 2017 U.F.R. DES SCIENCES PHARMACEUTIQUES THESE POUR LE DIPLOME D’ETAT DE DOCTEUR EN PHARMACIE PRESENTEE PAR Katia HAMIDOUCHE SUJET : La place des composés "Multi Target Directed Ligands" dans le traitement de la maladie d'Alzheimer SOUTENUE PUBLIQUEMENT LE : 31/03/2017 JURY : Pr. Michel Boulouard PRESIDENT DU JURY Dr. Véronique Lelong Boulouard EXAMINATEUR Dr. Joanna Bourgine EXAMINATEUR Pr. Thomas Freret Remerciements Avant tout, je tiens à dédier ce travail à mes parents , que je remercie également profondément pour leurs longs encouragements et soutien, et à qui je présente toute ma reconnaissance et gratitude pour les sacrifices qu’ils ont choisis de faire afin de nous permettre, ma sœur, mes frères et moi -même de faire ces grandes études, et sans lesquels je n’aurai jamais découvert cet univers de savoir et de science « à la Française ».
    [Show full text]
  • List of Vital Essential and Necessary Drugs and Medical Sundries For
    LIST OF VITAL ESSENTIAL AND NECESSARY DRUGS AND 2015 MEDICAL SUNDRIES FOR PUBLIC HEALTH INSTITUTIONS Sixth Edition STANDARDS & REGULATION DIVISION JAMAICA List of Vital Essential and Necessary List of Drugs and Medical Sundries for Public Institutions List of Vital Essential and Necessary List of Drugs and Medical Sundries for Public Institutions CONTENTS CONTENTS Contd. Page Preface 5-6 Page Information on Hospitals and Health Centres 7 Explanatory Notes 8 Medical Sundries 69-73 Prescription Writing 9-10 Dental Supplies 74 Algorithm for Treatment of Hypertension 11-12 Radiotherapy – Diagnostic Agents 75 Algorithm for Management of Type 2 Diabetes 13-14 Raw Materials 76 List of Drugs Designated for NHF 15-17 List of Drugs Designated for JADEP 18 VOLUME11 – SPECIALIST LIST 77 VOLUME 1 – GENERAL LIST 19 CLASSIFICATION OF DRUGS SECTION 1. Cardiovascular System 78 CLASSIFICATION OF DRUGS SECTION 2. Central Nervous System 79 SECTION 1. Cardiovascular System 20-24 SECTION 3. Dermatology 80 SECTION 2. Central Nervous System 25-30 SECTION 4. Endocrine System 80 SECTION 3. Dermatology 31-33 SECTION 5. Gastro-intestinal System 81 SECTION 4. Ear, Nose and Oropharynx 34-35 SECTION 6. Infections 81 SECTION 5. Endocrine System 36-38 SECTION 7. Malignant Disease and SECTION 6. Gastro-intestinal System 39-40 Immunosuppression 82 SECTION 7. Infections 41-46 SECTION 8. Musculoskeletal and Joint Diseases 83 SECTION 8. Malignant Disease and SECTION 9. Ophthalmology 83 Immunosuppression 47-49 SECTION 10. Genito-Urinary Tract Disorders 84 SECTION 9. Musculoskeletal and Joint Diseases 50-51 SECTION 11. Respiratory System 84 SECTION 10. Nutrition and Blood 52-54 SECTION 12.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • A [18F]Fluoroethoxybenzovesamicol Positron Emission Tomography Study
    Received: 24 May 2018 Revised: 7 September 2018 Accepted: 10 September 2018 DOI: 10.1002/cne.24541 RESEARCH ARTICLE Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study Roger L. Albin1,2,3,4 | Nicolaas I. Bohnen1,2,3,5 | Martijn L. T. M. Muller3,5 | William T. Dauer1,2,3,6 | Martin Sarter3,7 | Kirk A. Frey2,5 | Robert A. Koeppe3,5 1Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan Abstract 2Department of Neurology, University of Prior efforts to image cholinergic projections in human brain in vivo had significant technical lim- Michigan, Ann Arbor, Michigan itations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxyben- 3University of Michigan Morris K. Udall Center zovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional of Excellence for Research in Parkinson's distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age Disease, Ann Arbor, Michigan 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, inter- 4Michigan Alzheimer Disease Center, Ann Arbor, Michigan mediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar 18 5Department of Radiology, University of regions, and lower in other regions. Neocortical [ F]FEOBV binding was inhomogeneous with Michigan, Ann Arbor, Michigan relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and 6Department of Cell and Developmental lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in Biology, University of Michigan, Ann Arbor, the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus.
    [Show full text]
  • Pridopidine for the Treatment of Motor Function in Patients with Huntington’S Disease (Mermaihd): a Phase 3, Randomised, Double-Blind, Placebo-Controlled Trial
    Articles Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial Justo Garcia de Yebenes, Bernhard Landwehrmeyer, Ferdinando Squitieri, Ralf Reilmann, Anne Rosser, Roger A Barker, Carsten Saft, Markus K Magnet, Alastair Sword, Åsa Rembratt, Joakim Tedroff, for the MermaiHD study investigators Summary Background Huntington’s disease is a progressive neurodegenerative disorder, characterised by motor, cognitive, and Lancet Neurol 2011; 10: 1049–57 behavioural deficits. Pridopidine belongs to a new class of compounds known as dopaminergic stabilisers, and results Published Online from a small phase 2 study in patients with Huntington’s disease suggested that this drug might improve voluntary November 8, 2011 motor function. We aimed to assess further the effects of pridopidine in patients with Huntington’s disease. DOI:10.1016/S1474- 4422(11)70233-2 See Comment page 1036 Methods We undertook a 6 month, randomised, double-blind, placebo-controlled trial to assess the efficacy of pridopidine Department of Neurology, in the treatment of motor deficits in patients with Huntington’s disease. Our primary endpoint was change in the Hospital Ramón y Cajal, modified motor score (mMS; derived from the unified Huntington’s disease rating scale) at 26 weeks. We recruited CIBERNED, Madrid, Spain patients with Huntington’s disease from 32 European centres; patients were aged 30 years or older and had an mMS of (J G de Yebenes MD); 10 points or greater at baseline. Patients were randomly assigned (1:1:1) to receive placebo, 45 mg per day pridopidine, Department of Neurology, University of Ulm, Ulm, or 90 mg per day pridopidine by use of centralised computer-generated codes.
    [Show full text]