New Therapeutic Property of Dimebon As a Neuroprotective Agent

Total Page:16

File Type:pdf, Size:1020Kb

New Therapeutic Property of Dimebon As a Neuroprotective Agent Send Orders for Reprints to [email protected] Current Medicinal Chemistry, 2016, 23, 1-12 1 REVIEW ARTICLE New Therapeutic Property of Dimebon as a Neuroprotective Agent Aleksey Ustyugov1, Elena Shevtsova1, George E. Barreto2,3, Ghulam Md Ashraf 4, Sergey O. Bachurin1 and Gjumrakch Aliev1,5,6,* 1Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy Proezd 1, Cher- nogolovka, 142432, Russia; 2Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Uni- versidad Javeriana, Bogotá D.C., Colombia; 3Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; 4King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Ara- bia; 5GALLY International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San An- tonio, TX, 78229, USA; 6School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA, 30097, USA Abstract: Dimebon (or Latrepirdine) was initially used as an anti-histamergic drug but later new therapeutic properties were rediscovered, adding to a growing body of “old” agents with prominent neuroprotective effects. In the present manuscript, we are focusing on our latest study on Dimebon with regard to brain’s pathological processes using in vivo protei- A R T I C L E H I S T O R Y nopathy models. In the study, neurodegenerative pathology has been attributed to a group of aggregate-prone proteins: hyperphosphorylated tau, fused in sarcoma and γ-synuclein , which Received: March 13, 2016 Revised: June 08, 2016 are involved in a number of neurological disorders. We have also presented our in vitro Accepted: July 24, 2016 model based on overexpression of an aberrant mutant form of transactive response DNA DOI: 10.2174/0929867323666160804 binding 43 kDa protein in cultured SH-SY5Y neuroblastoma cells. Dimebon treatment fol- 122746 lowed by the activation of autophagy markers resulted in reduced number of inclusion con- taining cells. The most significant effects of Dimebon appeared to be on the improving cellu- lar energy balance, mitochondria stability by increasing the threshold for nonselective mito- chondrial pore opening as well as on increased calcium retention capacity while reducing lipid peroxidation. The therapeutic potential of Dimebon and newly designed analogs show disease modifying properties and could be used to treat neurodegenerative disorders. In addi- tion, new data hint on a possible anti-aging effect and potential application of Dimebon for treatment of anxiety, ischemia and depression. Overall, our findings suggest that the most pronounced effect of Dimebon was observed when treatment was started at the early stages of disease onset and this factor needs to be taken into account while planning future clinical trials. Keywords: Dimebon, Latrepirdine, proteinopathy, neuroprotection, mitochondrial permeability transition. INTRODUCTION gress towards long term treatment options. In recent years, the steadily increasing number of failures in The drugs for the treatment of majority of neurode- clinical trials led to an alternative strategy based on re- generative disorders (NDDs) such as Alzheimer disease introduction of earlier approved medicines as route for (AD), Parkinson’s disease (PD), amyotrophic lateral modern drug research [1, 2]. Dimebon (or Latrepirdine) sclerosis (ALS), frontotemporal dementia (FTD), etc is one of those “old” drugs which has been quite effec- provide only temporary relief without any visible pro- tive in the treatment of pathological conditions differ- ing from original targets (Fig. 1) [3-5]. Several decades *Address correspondence to this author at the GALLY International ago it was marketed as a non-competitive anti- Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA; Tel: +1(440) 263-7461; histamine agent, but unexpectedly showed the ability to E-mail: [email protected] enhance cognition in a small-scale, open-label trial of 0929-8673/16 $58.00+.00 © 2016 Bentham Science Publishers 2 Current Medicinal Chemistry, 2016, Vol. 23, No. 30 Ustyugov et al. mechanistic capabilities of mitochondria which has N opened up new possibilities will make this task even more challenging [10, 11]. The lack of definitive mode N of action is hampering the attempt to understand the Cl remarkable discrepancies in clinical trials and also Cl eluding the answer to ultimate questions like how, when and whether Dimebon might still be an effective N drug for AD patients [12, 13]. In addition, our recent studies showed that Aβ induced mitochondrial perme- abilization is attenuated by Dimebon [14]. The quest of Fig. (1). Structure of Dimebon [78]. understanding molecular mechanisms/targets that aid mild-to-moderate AD patients [6]. A double blind, pla- Dimebon in boosting AD patients’ cognition proclaims cebo-controlled phase II trial with pre-selected mild-to- the need to explore Dimoben’s action in terms of stabi- moderate AD patients showed significant clinical im- lization of energy balance, modulation of cell clearance provements in cognition assessed by AD cooperative systems, and activation of innate defense mechanism. study-activities of daily living (ADL) as a measure of Earlier studies have shown Dimebon as an inhibitor self care and function, and AD assessment scale on of AchE and BchE [15], blocker of L-type Ca2+ chan- cognitive subscale tests with respect to baseline [7]. nels [16], weak competitive agonist of NDMAR [17], However, the phase III trial on a heterogeneous popula- positive modulator of AMPA receptor [18], and have a tion exhibiting multiple neuropathies (with non-AD high affinity for serotonin 5-HT6 and 5-HT7 receptors symptoms as well) failed to reciprocate the promising [19].. Recent studies have shown that Dimebon lowers findings of phase II trials [8]. Both phase II and III tri- formation and subsequent accumulation of pathological als included the dynamics of deterioration of patients’ proteins [20-25], initiate autophagy [26-29], and stabi- health, recruitment age and use of Dimebon formula- lizes mitochondrial functions by blocking permeability tion, thus making it really tough to understand the re- transition [14, 30-33], thus clearly showing its in- markable distinctions between these two trials. Certain volvement in multiple mechanisms of action (Table 1). discrepancy between the results in clinical trials II and Some new findings also suggest that Dimebon could be III was addressed by Bharadwaj et al [9]. The authors used for potential treatment of ischemia, anxiety and argue that phase III failure could be due to either poor depression [34, 35]. All the above discussed data heav- drug efficacy or lack of trial optimization leading to ily support the re-evaluation of therapeutic significance difficulties in interpreting the results. However, it is of Dimebon, so as to position the newly designed ana- worth mentioning that the results in phase II AD study logs as promising therapeutic agents for NDDs [9, 36]. were reflected by overall improvements in Dimebon group and worsening in placebo group; yet, in phase ROLE OF DIMEBON IN NEUROBLASTOMA III, patients in either group did not significantly dete- CELL LINE SH-SY5Y riorate implying the heterogeneous and diverse patho- A transactive response binding protein 43 kDa logical features in each cohort. Moreover, parameters (TDP-43) is the major component of inclusions in FTD such as Dimebon formulation, age of the recruited pa- and ALS patients [37-40]. The ubiquitin-positive intra- tients (mean age of 68.1 and 74.4 years in phase II and cytoplasmic deposits in nerve and glial cells cause III, respectively), and Baseline Mini Mental State Ex- pathological conditions and inevitable neuronal dam- amination (MMSE) were also altered, thus suggesting age. As a result, we proposed that protection effect that phase III results cannot be interpreted in terms of from Dimebon treatment might be due to its inhibitory drug efficacy. This observation calls for new and alter- effect on formation of deposits. To test this hypothesis, native ways of assaying these findings. Also, the failure we used human neuroblastoma cell line SH-SY5Y with of possible Dimebon protective effects on clinical trials two distinct overexpressing pathological isoforms – a might be due to insufficient knowledge about its TDP-43 mutant lacking nuclear localization signal and mechanism of action. Hence, novel studies are required residues 187–192 or another TDP-43 mutant lacking to establish the effect of Dimebon on N-methyl-D- the C-terminal fragment (162–414) fused with green aspartic acid receptor (NMDAR). In addition, there is a fluorescent protein (GFP) reporter [21]. As a result, need for discovery of affected target proteins as well as Dimebon treatment reduced the formation of TDP-43- Dimebon actions on mitochondria and activation of cell positive deposits in a concentration dependent manner clearance pathways. However, a recent twist in the Dimebon as a Neuroprotective Agent Current Medicinal Chemistry, 2016, Vol. 23, No. 30 3 Table 1. Summary of Dimebon effects recapitulating our current in vitro and in vivo findings. In vivo models Dimebon treatment gamma-synucleinopathy Increased average lifespan of transgenic animals Delay in the development of locomotor and coordination pathology Reduced amyloid deposits in spinal cord gray matter Tauopathy Reduced accumulation of hyperphosphorylated tau in spinal cord Slower decline of motor function compared
Recommended publications
  • Copyrighted Material
    Index Note: page numbers in italics refer to figures; those in bold to tables or boxes. abacavir 686 tolerability 536–537 children and adolescents 461 acamprosate vascular dementia 549 haematological 798, 805–807 alcohol dependence 397, 397, 402–403 see also donepezil; galantamine; hepatic impairment 636 eating disorders 669 rivastigmine HIV infection 680 re‐starting after non‐adherence 795 acetylcysteine (N‐acetylcysteine) learning disability 700 ACE inhibitors see angiotensin‐converting autism spectrum disorders 505 medication adherence and 788, 790 enzyme inhibitors obsessive compulsive disorder 364 Naranjo probability scale 811, 812 acetaldehyde 753 refractory schizophrenia 163 older people 525 acetaminophen, in dementia 564, 571 acetyl‐L‐carnitine 159 psychiatric see psychiatric adverse effects acetylcholinesterase (AChE) 529 activated partial thromboplastin time 805 renal impairment 647 acetylcholinesterase (AChE) acute intoxication see intoxication, acute see also teratogenicity inhibitors 529–543, 530–531 acute kidney injury 647 affective disorders adverse effects 537–538, 539 acutely disturbed behaviour 54–64 caffeine consumption 762 Alzheimer’s disease 529–543, 544, 576 intoxication with street drugs 56, 450 non‐psychotropics causing 808, atrial fibrillation 720 rapid tranquillisation 54–59 809, 810 clinical guidelines 544, 551, 551 acute mania see mania, acute stupor 107, 108, 109 combination therapy 536 addictions 385–457 see also bipolar disorder; depression; delirium 675 S‐adenosyl‐l‐methionine 275 mania dosing 535 ADHD
    [Show full text]
  • Clinical Review Huntington's Disease
    CLINICAL REVIEW For the full versions of these articles see bmj.com Huntington’s disease Marianne J U Novak,1 2 Sarah J Tabrizi1 3 1National Hospital for Neurology Huntington’s disease is a devastating inherited and Neurosurgery, London neurodegenerative disease characterised by progressive motor, WC1N 3BG cognitive, and psychiatric symptoms. Patients may present 2Wellcome Trust Centre for Neuroimaging, UCL Institute of with any of these symptoms, and familiarity with the pheno- Neurology, London WC1N 3BG type is therefore important. Chorea and loss of balance are 3Department of Neurodegenerative early symptoms that patients notice, although families often Disease, UCL Institute of Neurology notice cognitive or personality changes before this. Correspondence to: S Tabrizi [email protected] The disease occurs in all racial groups but is most common in people of northern European origin. Its prevalence in the Cite this as: BMJ 2010;340:c3109 Western hemisphere is 7-10/100 000.w1 The mean age of onset doi: 10.1136/bmj.c3109 of symptoms is 40 years, but juvenile onset (<20 years) and older onset (>70 years) forms are well recognised. The Hunt- ington’s Disease Association (HDA) has records of 6161 adults with symptomatic Huntington’s disease and 541 children with juvenile Huntington’s disease (in England and Wales) at the Fig 1 | Statistical parametric map showing grey matter volume loss in patient groups compared with controls. Pre-A and time of writing. This is a conservative estimate of prevalence pre-B are premanifest Huntington’s disease gene carriers with because it includes only those people in contact with the HDA, estimated time to clinical disease onset greater than and less and it suggests that the true prevalence of the disease is higher than 10.8 years, respectively.
    [Show full text]
  • 2009 Nhamcs Micro-Data File Documentation Page 1
    2009 NHAMCS MICRO-DATA FILE DOCUMENTATION PAGE 1 ABSTRACT This material provides documentation for users of the public use micro-data files of the 2009 National Hospital Ambulatory Medical Care Survey (NHAMCS). NHAMCS is a national probability sample survey of visits to hospital outpatient and emergency departments, conducted by the National Center for Health Statistics, Centers for Disease Control and Prevention. The survey is a component of the National Health Care Surveys, which measure health care utilization across a variety of health care providers. There are two micro-data files produced from NHAMCS, one for outpatient department records and one for emergency department records. Section I of this documentation, “Description of the National Hospital Ambulatory Medical Care Survey,” includes information on the scope of the survey, the sample, field activities, data collection procedures, medical coding procedures, and population estimates. Section II provides detailed descriptions of the contents of each file’s data record by location. Section III contains marginal data for selected items on each file. The appendixes contain sampling errors, instructions and definitions for completing the Patient Record forms, and lists of codes used in the survey. PAGE 2 2009 NHAMCS MICRO-DATA FILE DOCUMENTATION SUMMARY OF CHANGES FOR 2009 The 2009 NHAMCS Emergency Department and Outpatient Department public use micro-data files are, for the most part, similar to the 2008 files, but there are some important changes. These are described in more detail below and reflect changes to the survey instrument, the Patient Record form. Emergency Departments 1. New or Modified Items a. In item 1, Patient Information, there is a new checkbox item “Arrival by Ambulance.” This replaces the 2008 item, “Mode of Arrival.” b.
    [Show full text]
  • Drug Delivery System for Use in the Treatment Or Diagnosis of Neurological Disorders
    (19) TZZ __T (11) EP 2 774 991 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 10.09.2014 Bulletin 2014/37 C12N 15/86 (2006.01) A61K 48/00 (2006.01) (21) Application number: 13001491.3 (22) Date of filing: 22.03.2013 (84) Designated Contracting States: • Manninga, Heiko AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 37073 Göttingen (DE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO •Götzke,Armin PL PT RO RS SE SI SK SM TR 97070 Würzburg (DE) Designated Extension States: • Glassmann, Alexander BA ME 50999 Köln (DE) (30) Priority: 06.03.2013 PCT/EP2013/000656 (74) Representative: von Renesse, Dorothea et al König-Szynka-Tilmann-von Renesse (71) Applicant: Life Science Inkubator Betriebs GmbH Patentanwälte Partnerschaft mbB & Co. KG Postfach 11 09 46 53175 Bonn (DE) 40509 Düsseldorf (DE) (72) Inventors: • Demina, Victoria 53175 Bonn (DE) (54) Drug delivery system for use in the treatment or diagnosis of neurological disorders (57) The invention relates to VLP derived from poly- ment or diagnosis of a neurological disease, in particular oma virus loaded with a drug (cargo) as a drug delivery multiple sclerosis, Parkinsons’s disease or Alzheimer’s system for transporting said drug into the CNS for treat- disease. EP 2 774 991 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 774 991 A1 Description FIELD OF THE INVENTION 5 [0001] The invention relates to the use of virus like particles (VLP) of the type of human polyoma virus for use as drug delivery system for the treatment or diagnosis of neurological disorders.
    [Show full text]
  • 2-The Putative Neurodegenerative Links.Pdf
    Progress in Neurobiology 91 (2010) 362–375 Contents lists available at ScienceDirect Progress in Neurobiology journal homepage: www.elsevier.com/locate/pneurobio The putative neurodegenerative links between depression and Alzheimer’s disease Suthicha Wuwongse a,b, Raymond Chuen-Chung Chang b,c,d,*, Andrew C.K. Law a,c,d,** a Department of Psychiatry, LKS Faculty of Medicine, Hong Kong b Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, Hong Kong c Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, Hong Kong d State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong ARTICLE INFO ABSTRACT Article history: Alzheimer’s disease (AD) is the leading neurodegenerative cause of dementia in the elderly. Thus far, Received 11 September 2009 there is no curative treatment for this devastating condition, thereby creating significant social and Received in revised form 16 April 2010 medical burdens. AD is characterized by progressive cognitive decline along with various Accepted 27 April 2010 neuropsychiatric symptoms, including depression and psychosis. Depression is a common psychiatric disorder affecting individuals across the life span. Although the Keywords: ‘‘monoamine hypothesis’’ of depression has long been proposed, the pathologies and mechanisms for Alzheimer’s disease depressive disorders remain only partially understood. Pharmacotherapies targeting the monoaminer- Depression gic pathways have been the mainstay in treating depression. Additional therapeutic approaches focusing Neuroinflammation Brain-derived nerve growth factor other pathological mechanisms of depression are currently being explored. Neurodegeneration Interestingly, a number of proposed mechanisms for depression appear to be similar to those Cortisol implicated in neurodegenerative diseases, including AD.
    [Show full text]
  • Serotonergic System Antagonists Target Breast Tumor Initiating Cells and Synergize with Chemotherapy to Shrink Human Breast Tumor Xenografts
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 19), pp: 32101-32116 Research Paper Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts William D. Gwynne1, Robin M. Hallett1, Adele Girgis-Gabardo1, Bojana Bojovic1, Anna Dvorkin-Gheva2, Craig Aarts1, Kay Dias2, Anita Bane2 and John A. Hassell1,2 1Department of Biochemistry and Biomedical Sciences, McMaster University, Canada 2Department of Pathology and Molecular Medicine, McMaster University, Canada Correspondence to: John A. Hassell, email: [email protected] Keywords: breast cancer stem cells, tumor-initiating cells, serotonin antagonists, antidepressants, cytotoxic chemotherapy Received: November 25, 2016 Accepted: March 01, 2017 Published: March 29, 2017 Copyright: Gwynne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Démence, Suivies Par La Fiche De Transparence De Juillet 2008
    Cette version online contient toutes les mises à jour disponibles au sujet de la prise en charge médicamenteuse de la démence, suivies par la Fiche de transparence de juillet 2008. Démence Date de recherche jusqu’au 15 septembre 2015 Épidémiologie Les résultats d’une étude cas-témoins canadienne menée auprès d’environ 1.800 personnes âgées suggèrent que l’usage prolongé (3 mois ou plus) de benzodiazépines constitue un facteur de risque pour le développement de la maladie d’Alzheimer. Ce type d’étude ne permet toutefois pas d’établir un lien causal : en effet, les benzodiazépines sont souvent prescrites en cas d’insomnie ou d’anxiété, qui peuvent être les symptômes précurseurs d’un syndrome démentiel a, 1, 2. Par ailleurs, les auteurs n’ont pas étudié le lien avec les médicaments psychotropes autres que les benzodiazépines, ce qui est nécessaire pour pouvoir déterminer si l’association constatée est spécifique aux benzodiazépines 3. En tout cas, les benzodiazépines ont un effet négatif sur la mémoire, et chez les personnes âgées, il convient de rester prudent et d’évaluer attentivement le rapport bénéfice/risque 4. a. Des personnes âgées (> 66 ans, n = 1.796) ayant reçu pour la première fois le diagnostic de la maladie d’Alzheimer après une période de suivi d’au moins 6 ans, ont été comparées à un groupe témoin (n = 7.184) apparié en âge, sexe et durée de suivi. La prise de benzodiazépines doit avoir commencée au moins 5 ans auparavant, afin de diminuer le risque d’un lien causal inverse. Dans l’analyse, on a tenu compte de la dose quotidienne cumulative et de la demi-vie.
    [Show full text]
  • A Physician's Guide to the Management of Huntington's Disease
    A Physician’s Guide to the Management of Huntington’s Disease Third Edition Martha Nance, M.D. Jane S. Paulsen, Ph.D. Adam Rosenblatt, M.D. Vicki Wheelock, M.D. Front Cover Image: Volumetric 3 Tesla MRI scan from an individual carrying the HD mutation, with full manifestation of the disease. The scan shows atrophy of the caudate. Acknowledgements: Images were acquired as part of the TRACK-HD study of which Professor Sarah Tabrizi is the Principal Investigator. TRACK-HD is funded by CHDI Foundation, Inc., a not-for-profit organization dedicated to funding treatments for Huntington¹s disease. A Physician’s Guide to the Management of Huntington’s Disease Third Edition Martha Nance, M.D. Director, HDSA Center of Excellence at Hennepin County Medical Center Medical Director, Struthers Parkinson’s Center, Minneapolis, MN Adjunct Professor, Department of Neurology, University of Minnesota Jane S. Paulsen, Ph.D. Director HDSA Center of Excellence at the University of Iowa Professor of Neurology, Psychiatry, Psychology, and Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA Principal Investigator, PREDICT-HD, Study of Early Markers in HD Adam Rosenblatt, M.D. Director, HDSA Center of Excellence at Johns Hopkins, Baltimore Maryland Associate Professor of Psychiatry, and Director of Neuropsychiatry, Johns Hopkins University School of Medicine Vicki Wheelock, M.D. Director, HDSA Center of Excellence at University of California Clinical Professor, Neurology, University of California, Davis Medical Center, Sacramento, CA Site Investigator, Huntington Study Group Editors: Debra Lovecky Director of Programs, Services & Advocacy, HDSA Karen Tarapata Designer: J&R Graphics Printed with funding from an educational grant provided by 1 Disclaimer The indications and dosages of drugs in this book have either been recommended in the medical literature or conform to the practices of physicians’ expert in the care of people with Huntington’s Disease.
    [Show full text]
  • Histamine Receptor
    Histamine Receptor Histamine Receptors are a class of G protein-coupled receptors with histamine as their endogenous ligand. There are four known histamine receptors: H1 receptor, H2 receptor, H3 receptor, H4 receptor. The H1 receptor is a histamine receptor belonging to the family of Rhodopsin-like G-protein-coupled receptors. This receptor, which is activated by the biogenic amine histamine, is expressed throughout the body, to be specific, in smooth muscles, on vascular endothelial cells, in the heart, and in the central nervous system. H2 receptors are positively coupled to adenylate cyclase via Gs. It is a potent stimulant of cAMP production, which leads to activation of Protein Kinase A. Histamine H3 receptors are expressed in the central nervous system and to a lesser extent the peripheral nervous system, where they act asautoreceptors in presynaptic histaminergic neurons, and also control histamine turnover by feedback inhibition of histamine synthesis and release. The Histamine H4 receptor has been shown to be involved in mediating eosinophil shape change and mast cell chemotaxis. www.MedChemExpress.com 1 Histamine Receptor Inhibitors & Modulators (±)-Methotrimeprazine (D6) (±)-Tazifylline (dl-Methotrimeprazine D6) Cat. No.: HY-19489S Cat. No.: HY-U00018 Bioactivity: (±)-Methotrimeprazine (D6) is the deuterium labeled Bioactivity: (±)-Tazifylline is a potent, selective and long-acting Methotrimeprazine, which is a D3 dopamine and Histamine H1 histamine H1 receptor antagonist. receptor antagonist. Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg Size: 1 mg, 5 mg, 10 mg, 20 mg ABT-239 Acrivastine Cat. No.: HY-12195 (BW825C) Cat. No.: HY-B1510 Bioactivity: ABT-239 is a novel, highly efficacious, Bioactivity: Acrivastine (BW825C) is a short acting histamine 1 non-imidazole class of H3R antagonist and a transient receptor antagonist for the treatment of allergic rhinitis.
    [Show full text]
  • Lessons Learned
    Prevention and Reversal of Chronic Disease Copyright © 2019 RN Kostoff PREVENTION AND REVERSAL OF CHRONIC DISEASE: LESSONS LEARNED By Ronald N. Kostoff, Ph.D., School of Public Policy, Georgia Institute of Technology 13500 Tallyrand Way, Gainesville, VA, 20155 [email protected] KEYWORDS Chronic disease prevention; chronic disease reversal; chronic kidney disease; Alzheimer’s Disease; peripheral neuropathy; peripheral arterial disease; contributing factors; treatments; biomarkers; literature-based discovery; text mining ABSTRACT For a decade, our research group has been developing protocols to prevent and reverse chronic diseases. The present monograph outlines the lessons we have learned from both conducting the studies and identifying common patterns in the results. The main product of our studies is a five-step treatment protocol to reverse any chronic disease, based on the following systemic medical principle: at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective. Implementation of the five-step treatment protocol is as follows: FIVE-STEP TREATMENT PROTOCOL TO REVERSE ANY CHRONIC DISEASE Step 1: Obtain a detailed medical and habit/exposure history from the patient. Step 2: Administer written and clinical performance and behavioral tests to assess the severity of symptoms and performance measures. Step 3: Administer laboratory tests (blood, urine, imaging, etc) Step 4: Eliminate ongoing contributing factors to the chronic disease Step 5: Implement treatments for the chronic disease This individually-tailored chronic disease treatment protocol can be implemented with the data available in the biomedical literature now. It is general and applicable to any chronic disease that has an associated substantial research literature (with the possible exceptions of individuals with strong genetic predispositions to the disease in question or who have suffered irreversible damage from the disease).
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]