Diversity of Peptides Produced by Nodularia Spumigena from Various Geographical Regions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Effect of Soybean Oligopeptide on the Growth and Metabolism Of
RSC Advances View Article Online PAPER View Journal | View Issue Effect of soybean oligopeptide on the growth and metabolism of Lactobacillus acidophilus JCM 1132 Cite this: RSC Adv., 2020, 10,16737 Wenhui Li, Yinxiao Zhang, He Li, * Chi Zhang, Jian Zhang, Jalal Uddin and Xinqi Liu* Soybean protein (Pro) and soybean oligopeptide (Pep) were subjected to simulated digestion in vitro to study the effect of Pep on the growth and metabolism of Lactobacillus acidophilus JCM 1132. First, the molecular weight distribution differences of samples before and after digestion were compared, and the samples were used to replace the nitrogen source components in the culture media. Then, the viable cell numbers, lactic acid and acetic acid content, differential metabolites, and metabolic pathways during the culturing process were measured. Results showed that the digested soybean oligopeptide (dPep) was less efficient than MRS medium in promoting the growth, but by increasing the content of the intermediates during the tricarboxylic acid (TCA) cycle, its metabolic capacity was significantly improved. Received 20th February 2020 Besides, due to the low molecular weight of dPep, it can be better transported and utilized. And dPep Creative Commons Attribution 3.0 Unported Licence. Accepted 20th April 2020 significantly strengthened the amino acid metabolism and weakened the glycerol phospholipid DOI: 10.1039/d0ra01632b metabolism, so the ability of dPep in promoting the growth and metabolism of Lactobacillus acidophilus rsc.li/rsc-advances JCM 1132 is higher than the digested soybean protein (dPro). 1. Introduction represent those that reach the intestine and directly acts on the intestinal ora aer digestion by the human body.13,14 Although Pro is a high-quality, nutritionally balanced plant Probiotics are mainly composed of Lactobacillus and Bido- protein displaying an excellent amino acid composition, it has bacterium. -
Cyanobacterial Peptide Toxins
CYANOBACTERIAL PEPTIDE TOXINS CYANOBACTERIAL PEPTIDE TOXINS 1. Exposure data 1.1 Introduction Cyanobacteria, also known as blue-green algae, are widely distributed in fresh, brackish and marine environments, in soil and on moist surfaces. They are an ancient group of prokaryotic organisms that are found all over the world in environments as diverse as Antarctic soils and volcanic hot springs, often where no other vegetation can exist (Knoll, 2008). Cyanobacteria are considered to be the organisms responsible for the early accumulation of oxygen in the earth’s atmosphere (Knoll, 2008). The name ‘blue- green’ algae derives from the fact that these organisms contain a specific pigment, phycocyanin, which gives many species a slightly blue-green appearance. Cyanobacterial metabolites can be lethally toxic to wildlife, domestic livestock and even humans. Cyanotoxins fall into three broad groups of chemical structure: cyclic peptides, alkaloids and lipopolysaccharides. Table 1.1 gives an overview of the specific toxic substances within these broad groups that are produced by different genera of cyanobacteria together, with their primary target organs in mammals. However, not all cyanobacterial blooms are toxic and neither are all strains within one species. Toxic and non-toxic strains show no predictable difference in appearance and, therefore, physicochemical, biochemical and biological methods are essential for the detection of cyanobacterial toxins. The most frequently reported cyanobacterial toxins are cyclic heptapeptide toxins known as microcystins which can be isolated from several species of the freshwater genera Microcystis , Planktothrix ( Oscillatoria ), Anabaena and Nostoc . More than 70 structural variants of microcystins are known. A structurally very similar class of cyanobacterial toxins is nodularins ( < 10 structural variants), which are cyclic pentapeptide hepatotoxins that are found in the brackish-water cyanobacterium Nodularia . -
Identification of the Toxic Pentapeptide Nodularin in A
A tica nal eu yt c ic a a m A r a c t h a P Pacheco et al., Pharm Anal Acta 2016, 7:5 Pharmaceutica Analytica Acta DOI: 10.4172/2153-2435.1000479 ISSN: 2153-2435 Research Article Open Access Identification of the Toxic Pentapeptide Nodularin in a Cyanobacterial Bloom in a Shrimp Farm in South American Atlantic Coast Pacheco LA1,3, Kunrath N1, Costa CM1,4, Costa LDF1, Foes GK2, Wasielesky W2 and Yunes JS1* 1Laboratory of Cyanobacteria and Phycotoxins, Institute of Oceanography, Federal University of Rio Grande, RS, Brazil 2Aquaculture Marine Station (EMA), Institute of Oceanography, Federal University of Rio Grande, RS, Brazil 3Post Graduate Program in Physical, Chemical and Geological Oceanography , Institute of Oceanography, Federal University of Rio Grande, RS, Brazil 4Post Graduate Program in Aquaculture, Institute of Oceanography, Federal University of Rio Grande, RS, Brazil *Corresponding author: Yunes JS, Laboratório de Cianobactérias e Ficotoxinas, IOFURG, Universidade Federal do Rio Grande, 96.203-270 - Rio Grande, RS, Brazil, Tel: +55 53 32336737; E-mail: [email protected] Received date: Apr 28, 2016; Accepted date: May 23, 2016; Published date: May 25, 2016 Copyright: © 2016 Pacheco LA et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Since 2010, blooms of the brackish cyanobacteria Nodularia spumigena are recurrent in the shrimp growth tanks of the Marine Aquaculture Station during summer in Southern Brazil. Cyanobacterial growth led to a decrease in the white shrimp Litopenaeus vannamei productivity. -
Cyanobacteria 101 (And Why You Need to Know More)
Cyanobacteria 101 (and why you need to know more) Barry H. Rosen, Ph. D. Office of the Southeast Regional Director (CFLWSC) Orlando, FL [email protected] 407-803-5508 algae algae 32 million cyanobacteria cyanobacteria 2.9 million HABs 372 K HABs microcystin 314 K saxitoxin 195 K microcystin paralytic 143 K amnesic 56 K saxitoxin cyanotoxins 48 K *paralytic shellfish poisoning (PSP) amnesic shellfish poisoning (ASP) cyanotoxins *coastal & marine Cyanobacteria (aka blue- green algae; cyanoHABs) •gram negative bacteria •pigments in thylakoids WhereWhere are cyanobacteriaare they a problem? a problem? Lakes, reservoirs, rivers, streams, wetlands Estuaries and coastal systems Marine systems CyanoHABs NOAA, OSU, SeaGrant Why are we concerned about cyanoHABs? Toxicity Hypoxia Taste and odors Aesthetics So why do we care about them? Some produce cyanobacteria toxins Cyanotoxins Hepatotoxins Disrupt proteins that keep microcystin (90+ variants) the liver functioning, may nodularin act slowly (days to weeks) cylindrospermopsin Neurotoxins anatoxin -a Cause rapid paralysis of anatoxin -a (s) skeletal and respiratory saxitoxin muscles (minutes) neosaxitoxin Dermatotoxins lyngbyatoxin Produce rashes and other skin reactions, usually within a day (hours) b-N-methylamino-L-alanine BMAA Neurological: linked to ALS Cyanotoxins are highly potent Compounds & LD50 (ug/kg) Saxitoxin 9 Ricin 0.02 Anatoxin-a(s) 20 Cobra toxin 20 Microcystin LR 50 Curare 500 Anatoxin-a 200-250 Strychnine 2000 Nodularin 50 Cylindrospermopsins 200 How common are toxic blooms? -
Terminology of Bioanalytical Methods (IUPAC Recommendations 2018) Received November 21, 2016; Accepted February 1, 2018
Pure Appl. Chem. 2018; 90(7): 1121–1198 IUPAC Recommendations Ján Labuda, Richard P. Bowater, Miroslav Fojta, Günter Gauglitz, Zdeněk Glatz, Ivan Hapala, Jan Havliš, Ferenc Kilar, Aniko Kilar, Lenka Malinovská, Heli M. M. Sirén, Petr Skládal, Federico Torta, Martin Valachovič, Michaela Wimmerová, Zbyněk Zdráhal and David Brynn Hibbert* Terminology of bioanalytical methods (IUPAC Recommendations 2018) https://doi.org/10.1515/pac-2016-1120 Received November 21, 2016; accepted February 1, 2018 Abstract: Recommendations are given concerning the terminology of methods of bioanalytical chemistry. With respect to dynamic development particularly in the analysis and investigation of biomacromolecules, terms related to bioanalytical samples, enzymatic methods, immunoanalytical methods, methods used in genomics and nucleic acid analysis, proteomics, metabolomics, glycomics, lipidomics, and biomolecules interaction studies are introduced. Keywords: bioanalytical samples; biomolecule interaction studies; enzymatic methods; genomics; glycom- ics; immunoanalytical methods; lipidomics; metabolomics; nucleic acid analysis; proteomics. CONTENTS 1. PREFACE �������������������������������������������������������������������������������������������������������������������������������������� 1122 2. INTRODUCTION ��������������������������������������������������������������������������������������������������������������������������� 1122 3. BIOANALYTICAL SAMPLES ���������������������������������������������������������������������������������������������������������� -
The Neurotoxin Β-N-Methylamino-L-Alanine (BMAA)
The neurotoxin β-N-methylamino-L-alanine (BMAA) Sources, bioaccumulation and extraction procedures Sandra Ferreira Lage ©Sandra Ferreira Lage, Stockholm University 2016 Cover image: Cyanobacteria, diatoms and dinoflagellates microscopic pictures taken by Sandra Ferreira Lage ISBN 978-91-7649-455-4 Printed in Sweden by Holmbergs, Malmö 2016 Distributor: Department of Ecology, Environment and Plant Sciences, Stockholm University “Sinto mais longe o passado, sinto a saudade mais perto.” Fernando Pessoa, 1914. Abstract β-methylamino-L-alanine (BMAA) is a neurotoxin linked to neurodegeneration, which is manifested in the devastating human diseases amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s disease. This neurotoxin is known to be produced by almost all tested species within the cyanobacterial phylum including free living as well as the symbiotic strains. The global distribution of the BMAA producers ranges from a terrestrial ecosystem on the Island of Guam in the Pacific Ocean to an aquatic ecosystem in Northern Europe, the Baltic Sea, where annually massive surface blooms occur. BMAA had been shown to accumulate in the Baltic Sea food web, with highest levels in the bottom dwelling fish-species as well as in mollusks. One of the aims of this thesis was to test the bottom-dwelling bioaccumulation hy- pothesis by using a larger number of samples allowing a statistical evaluation. Hence, a large set of fish individuals from the lake Finjasjön, were caught and the BMAA concentrations in different tissues were related to the season of catching, fish gender, total weight and species. The results reveal that fish total weight and fish species were positively correlated with BMAA concentration in the fish brain. -
Applications of Oligopeptide-Functionalized
APPLICATIONS OF OLIGOPEPTIDE-FUNCTIONALIZED SURFACES AND MICROPARTICLES IN LIQUID CRYSTALS- BASED ASSAYS ONG LIAN HAO (B.ENG. (HONS.), NANYANG TECHNOLOGICAL UNIVERSITY) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2016 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Ong Lian Hao 10 September 2016 i ACKNOWLEDGEMENTS First of all, I am utmost grateful for the opportunity presented by my advisor, Dr. Yang Kun-Lin, to complete this thesis under his guidance. His insightful perspectives and open-door policy provided a conducive environment for me to develop and hone my research skills and ideologies. I am also thankful for the engaging, and more importantly enlightening discussions with our group members, and they include Dr. Liu Fengli, Dr. Chen Chih-Hsin, Dr. Ding Xiaokang, Ms. Liu Yanyang, Ms. Nguyen Le Truc and Dr. Arumugam Kamayan Rajagopalan G. I am also fortunate to receive guidance and advice from Dr. Saif Khan and his group members during our regular intergroup sharing sessions. I would also like to thank the friendly laboratory staff for their assistance in the procurement and operation of equipment, and they include Mr. Boey Kok Hong, Ms. Lee Chai Keng, Mr. Liu Zhicheng, Ms. Lim Kwee Mei, Dr. Yuan Ze Liang and Dr. Yang Liming. Finally, I am grateful to my parents and parents-in-law for their support. -
Synthesis of Equimolar Multiple Oligomer Mixtures
Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 558 671 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C07K1/04, C07K7/06, of the grant of the patent: A61 K 38/00, G01 N 33/53 27.01.1999 Bulletin 1999/04 (86) International application number: (21) Application number: 92902209.3 PCT/US91/08694 Date of 20.11.1991 (22) filing: (87) International publication number: WO 92/09300 (11.06.1992 Gazette 1992/13) (54) SYNTHESIS OF EQUIMOLAR MULTIPLE OLIGOMER MIXTURES, ESPECIALLY OF OLIGOPEPTIDE MIXTURES SYNTHESE AQUIMOLARER MISCHUNGEN VIELZAHLIGER OLIGOMERE, SPEZIELL OLIGOPEPTIDMISCHUNGEN SYNTHESE DE MELANGES OLIGOMERES MULTIPLES EQUIMOLAIRES, NOTAMMENT DE MELANGES D'OLIGOPEPTIDES (84) Designated Contracting States: (56) References cited: AT BE CH DE DK ES FR GB GR IT LI LU NL SE US-A- 4 631 211 US-A-5 010 175 (30) Priority: 21.11.1990 US 617023 BANBURY REP. vol. 29, 1988, pages 151-161 16.05.1991 US 701658 HOUGHTEN, R.A. 'Exact amino acid involvement 19.11.1991 US 797551 in the interactions of peptide antigens with monoclonal antibodies' (43) Date of publication of application: PROTIDES BIOL. FLUIDS vol. 34, 1986, pages 19 08.09.1993 Bulletin 1993/36 - 22 HOUGHTEN, R.A. 'Facile determination of exact amino acid involvement in peptide (73) Proprietor: ITEREX PHARMACEUTICALS LTD. antigen/monoclonal antibody interactions' PARTNERSHIP J. IMMUNOL, vol. 144, no. 3, 1 February 1990, San Diego, C A 92121 (US) pages 976 - 983 APPEL J.R. ET AL. 'Elucidation of discontinuous linear determinants in (72) Inventors: peptides' • HOUGHTEN, Richard, A. -
Amide Bond Formation in Nonribosomal Peptide Synthesis
Amide Bond Formation in Nonribosomal Peptide Synthesis: The Formylation and Condensation Domains Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Chemie der Philipps-Universität Marburg vorgelegt von Georg Schönafinger aus München Marburg/Lahn 2007 Vom Fachbereich Chemie der Philipps-Universität Marburg als Dissertation am _______________ angenommen. Erstgutachter : Prof. Dr. M. A. Marahiel (Philipps-Universität, Marburg) Zweitgutachter : Prof. Dr. L.-O. Essen (Philipps-Universität, Marburg) Tag der Disputation: 20. Dezember 2007 2 The majority of the work presented here has been published: Samel, S.A.†, Schoenafinger, G. †, Knappe, T.A., Marahiel, M.A., Essen, L.O. 2007. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15(7): 781-92. † equal contribution Schoenafinger, G., Schracke, N., Linne, U., Marahiel, M.A. 2006. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc. 128(23): 7406-7. Schoenafinger, G., Marahiel, M.A. accepted 2007. Nonribosomal Peptides. Wiley Encyclopaedia of Chemical Biology. In press. 3 To Anke 4 Summary Nonribosomal peptides are of outstanding pharmacological interest, since many representatives of this highly diverse class of natural products exhibit therapeutically important activities, such as antibacterial, antitumor and immunosuppressive properties. Understanding their biosynthesis performed by multimodular mega-enzymes, the nonribosomal peptide synthetases (NRPSs), is one of the key determinants in order to be able to reprogram these machineries for the production of novel therapeutics. The central structural motif of all peptides is the peptide (or amide) bond. In this work, two different amide bond forming catalytic entities from NRPSs were studied: The condensation (C) and formylation (F) domains. -
A Simplified Reconstitution of Mrna-Directed Peptide Synthesis: Activity of the Epsilon Enhancer and an Unnatural Amino Acid1
Analytical Biochemistry 297, 60–70 (2001) doi:10.1006/abio.2001.5329, available online at http://www.idealibrary.com on A Simplified Reconstitution of mRNA-Directed Peptide Synthesis: Activity of the Epsilon Enhancer and an Unnatural Amino Acid1 Anthony C. Forster,*,2 Herbert Weissbach,† and Stephen C. Blacklow*,2 *Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115; and †Center for Molecular Biology and Biotechnology, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431 Received March 13, 2001; published online August 30, 2001 Key Words: translation; reconstitution; E. coli; ribo- The study of the early events in translation would some; initiation factor; elongation factor; tRNA; en- be greatly facilitated by reconstitution with easily hancer; epsilon; peptide; unnatural amino acid; biotin. purified components. Here, Escherichia coli oli- gopeptide synthesis has been reconstituted using five purified recombinant His-tagged E. coli initia- tion and elongation factors. Highly purified ribo- The initiation of translation is a major control point somes are required to yield products with strong in gene expression and is the target of a number of dependencies on the translation factors. Based on cytotoxic agents (1). Initiation is less well understood HPLC separation of radiolabeled translation prod- than elongation and termination in eubacteria (2–4), ucts from an mRNA encoding a tetrapeptide, approx- and initiation is much more complex in eukaryotes (5). imately 80% of peptide products are full length, and It therefore seems likely that the study of the simpler the remaining 20% are the dipeptide and tripeptide eubacterial initiation process may be helpful both in products resulting from pausing or premature ter- the elucidation of general mechanistic principles em- mination. -
Occurrence of a Cyanobacterial Neurotoxin, Anatoxin-A, in New
OCCURRENCE OF THE CYANOBACTERIAL NEUROTOXIN, ANATOXIN-A, IN NEW YORK STATE WATERS by Xingye Yang A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree State University of New York College of Environmental Science and Forestry Syracuse, New York January 2007 Approved: Faculty of Chemistry ---------------------------------------------- ------------------------------------------------ Gregory L. Boyer, Major Professor William Shields, Chairperson, Examination Committee ------------------------------------------------ ------------------------------------------------- John P. Hassett, Faculty Chair Dudley J. Raynal, Dean, Instruction and Graduate Studies UMI Number: 3290535 Copyright 2008 by Yang, Xingye All rights reserved. UMI Microform 3290535 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 Acknowledgements I would like to express my sincerest gratitude to Dr. Gregory L. Boyer, my major professor and academic advisor for his guidance, support, and assistance over the past years. He has provided me with invaluable knowledge and skills. I thank Dr. David J. Kieber for his advice and instrument support. I acknowledge Dr. John P. Hassett for his support on both my research and my career. I appreciate Dr. Francis X. Webster for his help on chemical characterization. I thank Dr. James P. Nakas for advice on my career development. Thanks are also due to Dr. William Shields for serving as chairman of this examination committee. I appreciate critical reviews and comments on the thesis from all the examiners on this committee. I would like to thank Dr. Israel Cabasso and Dr.