Project Idea Catalogue Final

Total Page:16

File Type:pdf, Size:1020Kb

Project Idea Catalogue Final PROJECT IDEA CATALOGUE EUREKA Umbrella PRO-FACTORY Brokerage Event Gothenburg May 5th-6th 2008 Manufacturing in the Automotive Industry 1 Virtual manufacturing and IT-related project ideas 1. 3D Interaction in Design and production planning. 2. Advanced Driver Risk and Mechanical Profiling solution including Real‐Time Alerts on Accidents, Monitoring of Fuel Consumption and Air Pollution – for OEMs, Insurance Companies, Leasing, Large Fleets and Traffic/Transportation Projects 3. The Digital Factory Warehouse Sheet metal forming and other sheet metal project ideas 4. Coil design and manufacturing in Magnetic Pulse forming applications 5. Electrohydraulic sheet metal forming 6. Electromagnetic pulse forming to make functional sheet metal surfaces 7. Hot Stamping with Direct Resistive Heating 8. Lightweight & high-strength structural parts and component 9. Magnetic Pulse Forming of Automotive Parts from Aluminium sheets 10. Titanium and Magnesium forming for structural parts. Surface project ideas 11. Competitive Finishing Machining 12. Development of a scratch resistant coating using a molecular self assembly nano- technology 13. Measurement and modeling of surface appearance in automotive industry 14. Recycling of metallised plastics. 15. Smart visual surfaces –to measure the immeasurable - feelSURF, 16. Surface shielding or screening 016. 3D Surface inspection Laser processing project ideas 17. Functional gradual materials for automotive parts with thermal barrier functions. 18. Geometric variation prediction in automotive assembling 19. Laser decoating of break tubes for automotive industry 20. Reduced Friction in Power Train Through Laser Surface Texturing (LST) 21. Laser Welding of Small Diameter Steel Tubes 22. Painted body repair, correction of micro-embedded particles. Products, equipment, systems project ideas 23. Adaptive Rear Combination Lamp with L.E.D. and with ambient light and soiling sensor for vehicle 24. APAC - Advanced Production of Automotive Components 25. Central-controlled New Style Intelligent Service Set 26. Electromagnetic pulse joining of cables 27. European benchmark study of production efficiency at shop-floor level 28. Lightweight Grippers and Fixtures 29. Manufacturing Life-cycle Management (MLM) for full Change Impact Evaluation 30. New generation interior lighting with LED instead of conventional incandescent bulb and fluorescent for vehicle 31. Study of recycled painted plastic and/or chrome-plated parts using supercritical C02 technologies 32. Vehicle independent electric transmission architecture 33. Welding of dissimilar sheet materials, electromagnetic pulse welding 34. Hybrid Electric Transmission for Light Duty Vehicles 2 Project ideas Virtual manufacturing and IT-related ideas 3 PRO-FACTORY Project Idea Form > Title 3D Interaction in Design and production planning. > Describe your project idea The goal of the project is to develop a full color multi view 3D goggle free table top display, built on holographic principles and provided with a real time interaction system. It is supported by ordinary PCs running CAD and Multimedia presentation software. The system will be utilized for testing applications and as demonstrator in product development, process planning at the participating companies. It will also be tested for training and education purposes. The feedback received in these tests and demonstrations will be implemented into the supporting software platform in order to fit it to the industrial needs. In the first phase of the project the research will focus on the development of an efficient manufacturing technique for the fundamental optical element of the display table – the high quality full colour holographic element. With that goal achieved, the research will concentrate on development, adaption and evaluation of the multi view display in practical tests with industry and research partners. Two systems will also be developed for a virtually co-located meeting environment utilizing high speed internet. The concept of this project has already been demonstrated as a monochrome (black – red) display and it has created a paradigm shift by bringing virtual models out to reality instead of having people going into virtual world. People can sit around the table and without glasses see the presented model in 3D on the table. They can discuss and interact and at the same time have eye contact and see mimics and gestures of each other, see Figure 1. At the same time they can make changes to the model, interrogate it for more detailed information and get related information from the data base. > Please explain briefly your expertise Optics and holography, Software design and application development for design and manufacturing, information and activity modelling, solid modelling. > Explain what kind of partner/expertise you are looking for Partners that can contribute application feedback and testing of new principles for interaction in design, production and process planning. Partners from cognitive and perception science for contributing 3D table design requirements and evaluation. Contact information Full name Torsten Kjellberg, Lars Mattsson Email address [email protected], [email protected] 4 Organisation name KTH, Royal Institute of technology, IIP Address Brinellv 66 City Stockholm Zip SE 100 44 Country Sweden Tel. +4687909069, +4687909175 Fax. +468210851 Workshop Priority D Kind of partner expected I, R, C (Please select one or more from the list below) (please select one or more from the list below) Workshop Priorities: - A: Surfaces in automotive applications - B: Laser processing in automotive manufacturing - C: Sheet metal forming for automotive parts - D: Virtual tools in manufacturing Kind of partner expected: - I: Industry - R: RTD&I (Research, Training, Development and Innovation) - C: Clients & Users - O: Others Latest Please send to [email protected] date for 2008-04-15 proposals PRO-FACTORY Project Idea 5 PRO‐FACTORY Project Idea Form > Title Advanced Driver Risk and Mechanical Profiling solution including Real‐Time Alerts on Accidents, Monitoring of Fuel Consumption and Air Polution – for OEMs, Insurance Companies, Leasing, Large Fleets and Traffic/Transportation Projects > Describe your project idea Traffilog would like to provide an advanced Driver Risk and Mechanical Profiling solution that includes: • Profiling of Drivers Behaviour per Trip • Driver Risk Profiling • Real‐Time Alerts on Accidents – without any action of the Driver (he could be unconscious) • Mechanical Profiling of the Vehicle • Profiling of the Driver’s Mechanical Driving Skills • Monitoring of Fuel Consumption per Driver and/or Vehicle • Monitoring of Air Polution and CO2 Emission • Real‐Time Alerts on Fuel theft and Extended Air pollution > Please explain briefly your expertise Established in 2003, Traffilog has developed a web based, technologically innovative solution to better administer fleets. The Traffilog solution focuses on assisting organizations and managers significantly reduce fleet running costs. In this ‘information rich’ era which we live in, the question is not how much we know, but rather what we do with the knowledge. The Traffilog solution has the advanced ability to filter relevant and important data out of the mass of information it receives, thereby providing answers to relevant questions and allowing for cost reduction and improved efficiency of working processes. Traffilog goes ahead of other LBS solutions and offer a product that add value beyond the regular Location‐Based Real‐Time Fleet Management and Track & Trace solutions offered by other companies on the market today. We have developed a unique solution that responds to mobile asset management requirements at all corporate levels. Our solution includes: A) Advance fleet management ‐ vehicle tracking with geo‐fencing for both vehicles and personnel – with routing, replays, maps, interface for SVR and more. B) Risk and Mechanical Driver Profiling – Profiling of driver behaviour and driver mechanical skills, based on G‐sensor (accelerometer) data and CANBUS/OBDII diagnostics data, analyzed by advanced algorithms developed together with the leading Israeli technical university Technion. C) Real‐Time Remote CAN/OBD diagnostics, full reading of all CAN data, management of fuel theft and consumption, load temperature and additional features. > Explain what kind of partner/expertise you are looking for With a vision to become an integral part of all vehicles, the Traffilog solution is well on its way to becoming a standard safety feature; (just like airbags and ABS brakes – can easily be removed), installed by the manufacturer, in all vehicles. Moreover, as they act as an additional safeguard for both the driver and vehicle the Traffilog products have come to justify a reduction in insurance costs. Traffilog is looking for partners who has a local market reach and are interested in the development of a system that is suitable, not only for the Heavy Vehicle market which is 6 Traffilog’s main market today, but rather for the large consumer/personal vehicle market. Relevant partners could be within: OEMs Insurance Companies Vehicle Emergency Service Providers Tier 1/2/3 AVL/SVR Providers National Traffic/Road Safety Projects National Infrastructures Large Fleet Companies Integrators and Distributors with reach of Large Fleets And any other interested company... Contact information Full name David Lexner Email address [email protected] Organisation name Traffilog Ltd. Address 10 HaAmal
Recommended publications
  • Jet Composition in Magnetic Pulse Welding: Al-Al and Al-Mg Couples
    Stern Supplement Aug2014112_Layout 1 7/14/15 2:31 PM Page 257 WELDING RESEARCH Jet Composition in Magnetic Pulse Welding: Al-Al and Al-Mg Couples MPW jet phenomena were investigated and jet material composition for similar Al alloys and two samples of dissimilar Al-Mg alloy couples were observed BY A. STERN, O. BECHER, M. NAHMANY, D. ASHKENAZI, AND V. SHRIBMAN the maximum magnetic pressure. The ABSTRACT acceleration of the outer tube through the standoff gap is higher near the open Magnetic pulse welding (MPW) produces a mechanically induced essentially solid end of the tube due to higher magnetic state but partially fusion-type weld, with an extremely small fusion zone and pressure and decreases down to zero at extremely high cooling rates. Composition of material jet emission in MPW was inves- the weld end where there is no move- tigated for similar and dissimilar metal lap joints. The jet residues emitted from Al/Al ment of the outer tube (Refs. 6–8). As a and Al/Mg lap joints were collected and characterized, and their composition was mi- croanalyzed by scanning electron microscopy with energy-dispersive spectometry result, the collision is oblique and the (SEM-EDS). The composition of the jet remains was governed by the degree of rela- initial part of the joint collides at a high tive density difference between the two metal components. The metal jet emitted collision angle and at very high collision during Al/Mg welding was mainly composed of Mg, the metal component with lower velocity; frequently, no bond is formed density.
    [Show full text]
  • Solid State Welding
    EAA Aluminium Automotive Manual – Joining 7. Solid state welding Content: 7. Solid state welding 7.0 Introduction 7.1 Friction welding 7.1.1 Friction welding of components 7.1.1.1 Rotational friction welding 7.1.1.2 Linear friction welding 7.1.1.3 Orbital and multi-orbital friction welding 7.1.2 Linear friction stir welding 7.1.2.1 The linear friction stir welding process 7.1.2.2 Application of linear friction stir welding 7.1.2.3 Variants of the linear friction stir welding technique 7.1.3 Friction stir spot welding 7.1.3.1 The friction stir spot welding technique 7.1.3.2 Further developments of the friction stir spot welding technique 7.1.4 Friction stud welding 7.1.5 Friction element welding 7.2 Pressure welding processes 7.2.1 Contact and cold pressure welding 7.2.2 Diffusion and hot pressure welding 7.2.3 Explosion welding 7.2.4 Electromagnetic pulse welding 7.2.5 Roll bonding 7.2.6 Co-extrusion welding 7.3 Ultrasonic welding Version 2015 ©European Aluminium Association ([email protected]) 1 7.0 Introduction Solid-state welding describes a group of joining techniques which produces coalescence at temperatures below the melting point of the parent materials without the addition of third material. External pressure and relative movement may or may not be used to enhance the joining process. This group of joining techniques includes e.g. friction (stir) welding, cold pressure welding, diffusion welding, explosion welding, electromagnetic pulse welding, , and ultrasonic welding.
    [Show full text]
  • Magnetic Pulse Welding and Spot Welding with Improved Coil Efficiency—Application for Dissimilar Welding of Automotive Metal Alloys
    Journal of Manufacturing and Materials Processing Article Magnetic Pulse Welding and Spot Welding with Improved Coil Efficiency—Application for Dissimilar Welding of Automotive Metal Alloys Chady Khalil, Surendar Marya and Guillaume Racineux * Research Institute in Civil and Mechanical Engineering (GeM, UMR 6183 CNRS), Ecole Centrale de Nantes, 1 rue de la Noë, F-44321 Nantes, France; [email protected] (C.K.); [email protected] (S.M.) * Correspondence: [email protected] Received: 4 June 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: Lightweight structures in the automotive and transportation industry are increasingly researched. Multiple materials with tailored properties are integrated into structures via a large spectrum of joining techniques. Welding is a viable solution in mass scale production in an automotive sector still dominated by steels, although hybrid structures involving other materials like aluminum are becoming increasingly important. The welding of dissimilar metals is difficult if not impossible, due to their differential thermo mechanical properties along with the formation of intermetallic compounds, particularly when fusion welding is envisioned. Solid-state welding, as with magnetic pulse welding, is of particular interest due to its short processing cycles. However, electromagnetic pulse welding is constrained by the selection of processing parameters, particularly the coil design and its life cycle. This paper investigates two inductor designs, a linear (I) and O shape, for the joining of sheet metals involving aluminum and steels. The O shape inductor is found to be more efficient both with magnetic pulse (MPW) and magnetic pulse spot welding (MPSW) and offers a better life cycle.
    [Show full text]
  • Monthly Jurnal 2020 [January]
    IIM METAL NEWS Vol. 23 No. 1 January 2020 C O Obituary 3 N T G D Birla Gold Medal Lecture 2019 Joining of Advanced Materials for E 4 Defence Systems N - G Madhusudhan Reddy T S IIM Chapter Activities 26 Seminars & Conferences 30 Members’ News 30 The IIM Metal News and The Indian Institute of Metals do not accept any responsibility for the statements made and the opinion expressed by the author(s) in the technical articles. Printed and Published by Shri Kushal Saha, Secretary General, on behalf of “The Indian Institute of Metals”, and printed at Print Max, 44, Biplabi Pulindas Street, Kolkata-700009 • Email : [email protected] and published at ‘Metal House’, Plot 13/4, Block AQ, Sector V, Salt Lake, Kolkata-700091, West Bengal, India E-mail: [email protected], [email protected] Phone: 033-2367 9768 / 2367 5004 Website: www.iim-india.net Fax: (033) 2367 5335 Editor : Dr. Santanu Ray Vol.23 No.1 JANUARY 2020 1 IIM METAL NEWS THE INDIAN INSTITUTE OF METALS PATRONS Mr R M Dastur Mr Sajjan Jindal Dr Baba Kalyani Mr Satish Pai ADVISORY COMMITTEE OF FORMER PRESIDENTS Mr R N Parbat Dr Dipankar Banerjee Prof K Chattopadhyay Mr L Pugazhenthy Mr M Narayana Rao Dr R N Patra Dr Sanak Mishra Mr H M Nerurkar Mr S S Mohanty Dr U Kamachi Mudali, Convenor COUNCIL FOR THE YEAR 2019-20 PRESIDENT Dr U Kamachi Mudali VICE PRESIDENT & CHAIRMAN VICE PRESIDENT & CHAIRMAN VICE PRESIDENT & CHAIRMAN Non-Ferrous Division Ferrous Division Metal Science Division Prof Amol A Gokhale Mr T V Narendran Dr Samir V Kamat IMMEDIATE FORMER PRESIDENT Mr Anand Sen SECRETARY GENERAL Mr Kushal Saha HON TREASURER CONTROLLER OF EXAMINATION CHIEF EDITOR, TRANSACTIONS MANAGING EDITOR, IIM METAL NEWS Mr Somnath Guha Prof P K Mitra Prof B S Murty Dr Santanu Ray Jt.
    [Show full text]
  • VOCABULARI DE SOLDADURA Institut Tècnic Català De La Soldadura
    VVOOCCAABBUULLAARRII DDEE SSOOLLDDAADDUURRAA VVOOCCAABBUULLAARRIIOO DDEE SSOOLLDDEEOO WWEELLDDIINNGG VVOOCCAABBUULLAARRYY CCCaaatttaaalllààà CCCaaasssttteeellllllààà AAAnnnggglllèèèsss CCCaaatttaaalllááánnn CCCaaasssttteeellllllaaannnooo IIInnnggglllééésss CCCaaatttaaalllaaannn SSSpppaaannniiissshhh EEEnnngggllliiissshhh 2a Edició VOCABULARI DE SOLDADURA institut tècnic català de la soldadura Rubí, Desembre de 2010 2a Edició www.itcsoldadura.org PRESENTACIÓ L’ITCS, mitjançant aquest recull de més de 3.000 paraules i termes en llengua catalana, castellana* i anglesa* relacionades principalment amb la soldadura i les tecnologies connexes, pretén la difusió del català en el sector del metall i, especialment, entre els professionals de la indústria catalana propers als processos de soldadura. * Els termes recollits tant en llengua castellana com en llengua anglesa responen, majoritàriament, a les equivalències que s’empren a Europa, és a dir, el significat d’aquests termes castellans i anglesos pot ser diferent a Amèrica. 1a Edició: Recull de 2.200 paraules i termes 2a Edició: Recull de 3.500 paraules i termes PRESENTACIÓN El ITCS, a través de esta recopilación de más de 3.000 palabras y términos en lengua catalana, castellana* e inglesa* relacionadas principalmente con la soldadura y las tecnologías conexas, pretende la difusión del catalán en el sector del metal y, especialmente, entre los profesionales de la industria catalana próximos a los procesos de soldadura. * Los términos recogidos tanto en lengua castellana como en lengua inglesa
    [Show full text]
  • Probing Magnetic Pulse Welding of Thin-Walled Tubes
    Journal of Manufacturing and Materials Processing Article Probing Magnetic Pulse Welding of Thin-Walled Tubes Koen Faes 1,* , Rishabh Shotri 2 and Amitava De 2 1 Belgian Welding Institute, Technologiepark Zwijnaarde 935, B-9052 Ghent, Belgium 2 Indian Institute of Technology, Bombay, Mumbai 400076, India; [email protected] (R.S.); [email protected] (A.D.) * Correspondence: [email protected] Received: 29 October 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Magnetic pulse welding is a solid-state joining technology, based on the use of electromagnetic forces to deform and to weld workpieces. Since no external heat sources are used during the magnetic pulse welding process, it offers important advantages for the joining of dissimilar material combinations. Although magnetic pulse welding has emerged as a novel technique to join metallic tubes, the dimensional consistency of the joint assembly due to the strong impact of the flyer tube onto the target tube and the resulting plastic deformation is a major concern. Often, an internal support inside the target tube is considered as a solution to improve the stiffness of the joint assembly. A detailed investigation of magnetic pulse welding of Cu-DHP flyer tubes and 11SMnPb30 steel target tubes is performed, with and without an internal support inside the target tubes, and using a range of experimental conditions. The influence of the key process conditions on the evolution of the joint between the tubes with progress in time has been determined using experimental investigations and numerical modelling. As the process is extremely fast, real-time monitoring of the process conditions and evolution of important responses such as impact velocity and angle, and collision velocity, which determine the formation of a metallic bond, is impossible.
    [Show full text]
  • Development of Analytical and Experimental Tools for Magnetic Pulse Welding Ethan Hunter Thibaudeau University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2013 Development of analytical and experimental tools for magnetic pulse welding Ethan Hunter Thibaudeau University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Thibaudeau, Ethan Hunter, "Development of analytical and experimental tools for magnetic pulse welding" (2013). Master's Theses and Capstones. 826. https://scholars.unh.edu/thesis/826 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. DEVELOPMENT OF ANALYTICAL AND EXPERIMENTAL TOOLS FOR MAGNETIC PULSE WELDING BY ETHAN HUNTER THIBAUDEAU B.S., University of New Hampshire, 2011 Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Master of Science in Mechanical Engineering September, 2013 UMI Number: 1524460 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss0?t&iori Piiblist’Mlg UMI 1524460 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC.
    [Show full text]
  • 1 Intro and Contents
    Steel Buildings Publication No. 35/03 Steel Buildings Publication No. 35/03 Apart from any fair dealing for the purposes of research The British Constructional Steelwork Association or private study or criticism or review, as permitted Limited (BCSA) is the national organisation for the steel under the Copyright Design and Patents Act 1988, this construction industry: its Member companies publication may not be reproduced, stored or undertake the design, fabrication and erection of transmitted in any form by any means without the prior steelwork for all forms of construction in building and permission of the publishers or in the case of civil engineering. Associate Members are those reprographic reproduction only in accordance with the principal companies involved in the purchase, design terms of the licences issued by the UK Copyright or supply of components, materials, services related to Licensing Agency, or in accordance with the terms of the industry. Corporate Members are clients, licences issued by the appropriate Reproduction professional offices, educational establishments which Rights Organisation outside the UK. support the development of national specifications, quality, fabrication and erection techniques, overall Enquiries concerning reproduction outside the terms industry efficiency and good practice. stated here should be sent to the publishers, The British Constructional Steelwork Association Ltd at the The principal objectives of the Association are to address given below. promote the use of structural steelwork; to assist specifiers and clients; to ensure that the capabilities and Although care has been taken to ensure, to the best of activities of the industry are widely understood and to our knowledge, that all data and information contained provide members with professional services in herein are accurate to the extent that they relate to technical, commercial, contractual and quality either matters of fact or accepted practice or matters assurance matters.
    [Show full text]
  • An Exploratory Study Into the Feasibility of Magnetic Pulse Welding
    An exploratory study into the feasibility of magnetic pulse welding Kevin Loncke Promotor: prof. dr. ir. Wim De Waele Begeleiders: Koen Faes (BIL) Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: bouwkunde Vakgroep Mechanische constructie en productie Voorzitter: prof. dr. ir. Patrick De Baets Faculteit Ingenieurswetenschappen Academiejaar 2008-2009 De auteur en promotor geven de toelating deze scriptie voor consultatie beschikbaar te stellen en delen ervan te kopi¨eren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkin- gen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit deze scriptie. The author and promoter give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using from this thesis. Gent, Juni 2009 De promotor De begeleider De auteur Prof. dr. ir. W. De Waele ir. K. Faes Kevin Loncke Acknowledgments With the finishing of this master thesis, my time at Ghent University has almost come to an end. I am truly grateful to a large number of people who have helped me throughout my study and the fulfilling of this master thesis. First and foremost, I would like to express my appreciation to my promotor Prof. Dr. Ir. Wim De Waele, and my mentor Ir. Koen Faes. They were always prepared to give advice and feedback during the experimental research. I very much appreciate the time they took to read and re-read the numerous drafts of this thesis.
    [Show full text]
  • High-Velocity Impact Welding Process: a Review
    metals Review High-Velocity Impact Welding Process: A Review Huimin Wang 1 and Yuliang Wang 2,3,* 1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 2 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 3 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China * Correspondence: [email protected]; Tel.: +86-1861-252-5756 Received: 26 December 2018; Accepted: 27 January 2019; Published: 28 January 2019 Abstract: High-velocity impact welding is a kind of solid-state welding process that is one of the solutions for the joining of dissimilar materials that avoids intermetallics. Five main methods have been developed to date. These are gas gun welding (GGW), explosive welding (EXW), magnetic pulse welding (MPW), vaporizing foil actuator welding (VFAW), and laser impact welding (LIW). They all share a similar welding mechanism, but they also have different energy sources and different applications. This review mainly focuses on research related to the experimental setups of various welding methods, jet phenomenon, welding interface characteristics, and welding parameters. The introduction states the importance of high-velocity impact welding in the joining of dissimilar materials. The review of experimental setups provides the current situation and limitations of various welding processes. Jet phenomenon, welding interface characteristics, and welding parameters are all related to the welding mechanism. The conclusion and future work are summarized. Keywords: impact welding; impact velocity; impact angle; welding interface 1. Introduction Welding technique has wide applications in the areas of aerospace, automobiles, shipbuilding, pressure vessels, and bridges.
    [Show full text]
  • Magnetic Field Measurements During Magnetic Pulse Welding Using CMR-B-Scalar Sensors
    sensors Article Magnetic Field Measurements during Magnetic Pulse Welding Using CMR-B-Scalar Sensors Voitech Stankevic 1,2,* , Joern Lueg-Althoff 3 , Marlon Hahn 3 , A. Erman Tekkaya 3, Nerija Zurauskiene 1,2 , Justas Dilys 1, Jonas Klimantavicius 1, Skirmantas Kersulis 1 , Ceslovas Simkevicius 1 and Saulius Balevicius 1 1 Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Sauletekio ave. 3, LT-10257 Vilnius, Lithuania; [email protected] (N.Z.); [email protected] (J.D.); [email protected] (J.K.); [email protected] (S.K.); [email protected] (C.S.); [email protected] (S.B.) 2 Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko 41, LT-03227 Vilnius, Lithuania 3 Institute of Forming Technology and Lightweight Components, TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany; joern.lueg-althoff@iul.tu-dortmund.de (J.L.-A.); [email protected] (M.H.); [email protected] (A.E.T.) * Correspondence: [email protected]; Tel.: +370-610-47928 Received: 16 September 2020; Accepted: 16 October 2020; Published: 20 October 2020 Abstract: The possibility of applying CMR-B-scalar sensors made from thin manganite films exhibiting the colossal magnetoresistance effect as a fast-nondestructive method for the evaluation of the quality of the magnetic pulse welding (MPW) process is investigated in this paper. This method based on magnetic field magnitude measurements in the vicinity of the tools and joining parts was tested during the electromagnetic compression and MPW of an aluminum flyer tube with a steel parent.
    [Show full text]
  • Diploma Engineering Mechanical (Packaging) Project - Djj5141 Session December 2019
    DIPLOMA ENGINEERING MECHANICAL (PACKAGING) PROJECT - DJJ5141 SESSION DECEMBER 2019 TITTLE: AUTOMATIC ARC WELDING MACHINE PROJECT ADVISOR: MR ROSLAN BIN KAMARUDDINN CLASS: DMP5B PREPARED BY: MUHAMMAD HAZIQ HAKIMI BIN MOHAD SHAHRIZAL (08DMP18F1080) 1 ACKNOWLEDGEMENT Grateful for divine intentions, we are able to successfully complete the final project within a set time frame without facing any difficult issues. We would like to thank everyone involved directly and indirectly especially our supervisor ENCIK ROSLAN BIN KAMARUDDIN who has provided us with all the guidance, advice, encouragement and constructive criticism we have been able to complete in the final report on this project. Please do not forget our friends and family members and our academic advisor SIR BRYAN TZE KEON HEE who was very helpful in terms of vision and finances in completing this final project assignment. We are grateful to Allah SWT for this final project. We hope that this report will serve as an example and a guide to future parties. 2 ABSTRACT Safety in welding is a very important aspect. Welding is one of the most widely used metal fabrication methods in world wide. Welding is safe operation when carried out under normal and correct workshop conditions, but it must be pointed out that equipment free from defects and well arranged, properly ventilated , tidy workplace are important factors for safe working. Even though, welding is carried out widely across the world, when certain basic measures and precautions are not followed, it results in injuries, discomfort, loss of eye sight after a longer period, or sometimes even leading to death of the people work there.
    [Show full text]