Active Gasdermin D Forms Plasma Membrane Pores And

Total Page:16

File Type:pdf, Size:1020Kb

Active Gasdermin D Forms Plasma Membrane Pores And ACTIVE GASDERMIN D FORMS PLASMA MEMBRANE PORES AND DISRUPTS INTRACELLULAR COMPARTMENTS TO EXECUTE PYROPTOTIC DEATH IN MACROPHAGES DURING CANONICAL INFLAMMASOME ACTIVATION by HANA RUSSO Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: George R. Dubyak, Ph.D. Department of Pathology Immunology Training Program CASE WESTERN RESERVE UNIVERSITY August, 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Hana Russo candidate for the degree of Doctor of Philosophy Alan Levine (Committee Chair) Clifford Harding Pamela Wearsch Carlos Subauste Clive Hamlin George Dubyak Date of Defense April 26, 2017 We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Figures iv List of Tables vii List of Abbreviations viii Acknowledgements xii Abstract 1 Chapter 1: Introduction 1.1: Clinical relevance of pyroptosis 4 1.2: Pyroptosis requires inflammasome activation 4 1.2a: Non-canonical inflammasome complex 6 1.2b: Canonical inflammasome complexes 6 1.3: Role of pyroptosis in host defense and disease 13 1.4: N-terminal Gsdmd constitutes the pyroptotic pore 15 1.5: IL-1β biology and mechanism of release 19 1.6: Cell type specificity of pyroptosis 25 1.7: The gasdermin family 26 1.8: Apoptotic signaling during inflammasome activation in the absence of caspase-1 or Gsdmd 28 1.9: NLRP3 inflammasome-mediated organelle dysfunction 29 1.10: Objective of Dissertation Research 31 i Chapter 2: Active caspase-1 induces plasma membrane pores that precede pyroptotic lysis and are blocked by lanthanides Abstract 33 Introduction 35 Materials and Methods 39 Results 46 Discussion 78 Chapter 3: Active Gasdermin D mediates ROS-dependent pyroptotic death signaling during NLRP3 inflammasome activation Abstract 89 Introduction 91 Materials and Methods 95 Results 101 Discussion 128 Chapter 4: Future Directions Research Summary 138 4.1: Gsdmd-mediated regulation of IL-1β release 140 4.2: Role of Gsdmd in IL-1β-mediated pathology 144 4.3: Mechanism by which lanthanides suppress pyroptosis and promote redox homeostasis during inflammasome activation 148 ii 4.4: Active Gsdmd-mediated organelle dysfunction independent of its plasma membrane pore function 151 4.4a: Mitochondria 153 4.4b: Lysosome 155 4.4c: Peroxisome 156 4.4d: Endoplasmic Reticulum 157 4.5: Mechanism of glycine cytoprotection during pyroptotic signaling 158 Concluding Remarks 160 Copyright Release 161 Bibliography 162 iii List of Figures Chapter 1 1.1: Canonical and non-canonical inflammasome complexes 5 1.2: N-terminal Gsdmd forms plasma membrane pores and induces pyroptotic cell death 16 Chapter 2 2.1: A rapidly induced propidium influx is triggered downstream of inflammasome activation but upstream of pyroptotic cell lysis 48 2.2: NLRP3 and Pyrin inflammasome activation licenses the opening of a large, nonselective cation- and anion-permeable pyroptotic pore 52 2.3: Gsdmd is required for caspase-1 induction of both the prelytic pyroptotic pores and subsequent pyroptotic lysis 56 2.4: Lanthanides coordinately suppress both the Gsdmd-dependent plasma membrane permeability change and pyroptotic lysis induced by NLRP3 inflammasome activation in iBMDM 58 2.5: Lanthanides coordinately suppress both the caspase-1-dependent PM permeability change and pyroptotic lysis induced by NLRP3 and Pyrin inflammasome activation 60 2.6: Lanthanides delay the execution of pyroptotic cell death following NLRP3 and Pyrin inflammasome activation and do not inhibit Pyrin inflammasome activation 64 iv 2.7: Lanthanides do not block NLRP3 inflammasome activation or IL-1β release, whereas Gsdmd deficiency also does not block NLRP3 inflammasome activation but does block IL-1β release 66 2.8: Lanthanides reversibly block the caspase-1-dependent pyroptotic pores and suppress pyroptosis 71 2.9: Lanthanides exhibit more potent suppression of pyroptotic propidium influx in the presence of glycine in a dose-dependent manner 72 2.10: Pannexin-1, P2X7R, and certain TRP channel family members are not required for caspase-1-dependent pyroptotic pore induction 76 Chapter 3 3.1: The absence of Gsdmd promotes redox homeostasis and sustains cellular bioenergetics during NLRP3 inflammasome activation 102 3.2: WT, Gsdmd-/-, and Nlrp3-/- iBMDMs have similar mitochondrial superoxide generation profiles in the absence of stimulation or in response to antimycin A 107 3.3: Extracellular lanthanum delays the perturbation in redox homeostasis and decline in cellular bioenergetics during NLRP3 inflammasome activation 110 3.4: Nigericin-induced changes in subcellular localization of Gsdmd is similar in the presence or absence of lanthanum 111 3.5: Active Gsdmd-mediated perturbation in redox homeostasis contributes to pyroptotic cell death signaling 114 v 3.6: Nigericin disrupts mitochondrial respiration independent of Gsdmd but induces an early, rapid lysosomal disruption dependent on Gsdmd 120 3.7: Glycine promotes redox homeostasis but does not maintain cellular bioenergetics during NLRP3 inflammasome activation 126 Chapter 4 4.1: Murine BMDMs undergo pyroptosis in the presence of punicalagin in response to nigericin stimulation 143 4.2: FlaTox induces a rapid and robust propidium influx 152 vi List of Tables Chapter 2 2.1: Physical properties of lanthanides and various DNA-intercalating cationic dyes 51 vii List of Abbreviations ANT: Adenine nucleotide translocase AIM2: Absent in Melanoma 2 ASC: Apoptosis-associated speck-like protein containing a CARD BMDC: Bone marrow-derived dendritic cell BMDM: Bone marrow-derived macrophage BMN: Bone marrow-derived neutrophil CAPS: Cryopyrinopathy-associated periodic syndrome CARD: Caspase activation and recruitment domain CINCA: Chronic infantile neurological, cutaneous and articular syndrome COX2: Cyclooxygenase 2 DAMP: Danger-associated molecular pattern DC: Dendritic cell EM: Electron microscopy ESCRT: Endosomal sorting complexes required for transport EthD4+: Ethidium homodimer-2 FCAS: Familial cold auto-inflammatory syndrome FIIND: Function to Find Domain FMF: Familial Mediterranean Fever Gbp: Guanylate binding protein Gd3+: Gadolinium Gsdmd: Gasdermin D HMGB1: High mobility group box 1 viii iBMDM: immortalized bone marrow-derived macrophage ICAD: Inhibitor of caspase-activated DNase ICAM-1: Intercellular adhesion molecule-1 IFI16: Interferon inducible protein 16 IFNAR: Type 1 interferon receptor IFNGR: IFNγ receptor IL-1β: Interleukin-1β IL-1AcP: IL-1 receptor accessory protein IL-1R1: Type 1 IL-1 receptor ILV: Intraluminal vesicle IMM: Inner mitochondrial membrane iNOS: Inducible nitric oxide synthase La3+: Lanthanum LAMP-1: Lysosomal-associated membrane protein-1 LDH: Lactate Dehydrogenase LIR: LC3-interacting region LPS: lipopolysaccharide MAC: Membrane attack complex MBL: Mannose binding lectin MCP-1: Monocyte chemoattractant protein 1 MPT: Mitochondrial permeability transition MVB: Multivesicular body MWS: Muckle-Wells syndrome ix NAC: N-acetylcysteine NAIP: NLR family, apoptosis inhibitor protein NEK7: NIMA-related kinase 7 NG: Nigericin N-Gsdmd: N-terminal gasdermin D NLRC4: NOD-like receptor containing a CARD Domain 4 NLRP1: NOD-like receptor containing a Pyrin Domain 1 NLRP3: NOD-like receptor containing a Pyrin Domain 3 OCR: Oxygen consumption rate OMM: Outer mitochondrial membrane oxPAPC: 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine PAMP: Pathogen-associated molecular pattern Panx1: Pannexin-1 PARP-1: Poly-ADP ribose polymerase-1 PF: Perforin PIT: Pore-induced intracellular trap PM: Plasma membrane Pro2+: Propidium2+ PRR: Pattern recognition receptor PTPC: Permeability transition pore complex PUN: Punicalagin PYD: Pyrin Domain RAGE: Receptor for advanced glycation end products x ROCK-1: Rho-effector kinase-1 ROS: Reactive Oxygen Species TcdB: C. difficile toxin B TLR: Toll-like receptor TRIF: TIR-domain-containing adaptor-inducing interferon-β T3SS: Type III secretion system UBA: Ubiquitin-associated Domain VDAC: Voltage-dependent anion channel Wdr1: WD repeat-containing protein xi Acknowledgements I would first like to thank my thesis advisor, Dr. George Dubyak, for his mentorship and support throughout my PhD. Also, thank you for giving me the freedom to direct my project the way I wanted; it really helped me develop as an independent scientist. I would like to thank all of my labmates for providing a supportive environment to share and discuss scientific ideas, which has helped me mature into a critically thinking scientist. I would also like to thank them and my other friends I have met during this journey for their continual support and for making graduate school a truly memorable experience. I would like to thank my mom for cheering me on through every academic and personal hardship and my dad for always pushing me to work hard in my academic and career pursuits. I would not be here without you both. Finally, I would like to thank my husband Cliff for his constant support and keeping me grounded throughout my PhD. Thank you for giving me the clarity to pursue my passion for scientific research. xii Active Gasdermin D Forms Plasma Membrane Pores and Disrupts Intracellular Compartments to Execute Pyroptotic Death in Macrophages During Canonical Inflammasome Activation Abstract by HANA RUSSO Pyroptosis is a regulated mode of lytic inflammatory cell death that promotes anti-microbial host defense but may contribute to sepsis. Pyroptosis requires canonical inflammasome assembly to mediate
Recommended publications
  • Gasdermin D Promotes AIM2 Inflammasome Activation and Is Required for Host Protection Against Francisella Novicida
    Gasdermin D Promotes AIM2 Inflammasome Activation and Is Required for Host Protection against Francisella novicida This information is current as Qifan Zhu, Min Zheng, Arjun Balakrishnan, Rajendra Karki of September 26, 2021. and Thirumala-Devi Kanneganti J Immunol published online 7 November 2018 http://www.jimmunol.org/content/early/2018/11/06/jimmun ol.1800788 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/11/06/jimmunol.180078 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 7, 2018, doi:10.4049/jimmunol.1800788 The Journal of Immunology Gasdermin D Promotes AIM2 Inflammasome Activation and Is Required for Host Protection against Francisella novicida Qifan Zhu,*,† Min Zheng,* Arjun Balakrishnan,* Rajendra Karki,* and Thirumala-Devi Kanneganti* The DNA sensor absent in melanoma 2 (AIM2) forms an inflammasome complex with ASC and caspase-1 in response to Francisella tularensis subspecies novicida infection, leading to maturation of IL-1b and IL-18 and pyroptosis.
    [Show full text]
  • RIPK1 Activates Distinct Gasdermins in Macrophages and Neutrophils Upon Pathogen Blockade of Innate Immune Signalling
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427379; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. RIPK1 activates distinct gasdermins in macrophages and neutrophils upon pathogen blockade of innate immune signalling Kaiwen W. Chen1,2,#, Benjamin Demarco1, Rosalie Heilig1, Saray P Ramos1, James P Grayczyk3, Charles-Antoine Assenmacher3, Enrico Radaelli3, Leonel D. Joannas4,5, Jorge Henao-Mejia4,5,6, Igor E Brodsky3,5, Petr Broz1# 1Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland 2Immunology Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 3Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA 4Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 5Institue for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 6Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA. #Correspondence to: [email protected] or [email protected] Keywords: gasdermin, RIPK1, Yersinia, caspase-8, IL-1 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427379; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • ATP-Binding and Hydrolysis in Inflammasome Activation
    molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure.
    [Show full text]
  • Gasdermin D: the Long-Awaited Executioner of Pyroptosis Cell Research (2015) 25:1183-1184
    Cell Research (2015) 25:1183-1184. npg © 2015 IBCB, SIBS, CAS All rights reserved 1001-0602/15 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr Gasdermin D: the long-awaited executioner of pyroptosis Cell Research (2015) 25:1183-1184. doi:10.1038/cr.2015.124; published online 20 October 2015 Inflammatory caspases drive a screen for mutations that would impair cell membrane that mediates release of lytic form of cell death called pyropto- activation of the caspase-11-dependent matured IL-1β from the cell. sis in response to microbial infection pathway. Through this screen, the au- To further dissect how gasdermin and endogenous damage-associated thors found that peritoneal macrophages D might contribute to the caspase- signals. Two studies now demonstrate harvested from a mouse strain harboring 11-dependent pathway, both groups that cleavage of the substrate gas- a mutation in the gene encoding gasder- performed a series of biochemical as- dermin D by inflammatory caspases min D, called GsdmdI105N/I105N (owing to says to demonstrate that recombinant necessitates eventual pyroptotic de- an isoleucine-to-asparagine substitu- caspase-11 cleaved gasdermin D be- mise of a cell. tion mutation at position 105), did not tween the Asp276 and Gly277 residues Inflammatory caspases, including undergo pyroptosis and release IL-1β of mouse gasdermin D, generating an N- caspase-1, -4, -5 and -11, are crucial in response to LPS transfection. On the terminal (30-31-kDa) and a C-terminal mediators of inflammation and cell other hand, Shao and colleagues utilized fragment (22-kDa). Caspase-4 or -5 also death.
    [Show full text]
  • 1 INVITED REVIEW Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death Shouya Feng,* Daniel Fox,* Si M
    INVITED REVIEW Mechanisms of Gasdermin family members in inflammasome signaling and cell death Shouya Feng,* Daniel Fox,* Si Ming Man Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia. * S.F. and D.F. equally contributed to this work Correspondence to Si Ming Man: Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, 2601, Australia. [email protected] 1 Abstract The Gasdermin (GSDM) family consists of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME) and Pejvakin (PJVK). GSDMD is activated by inflammasome-associated inflammatory caspases. Cleavage of GSDMD by human or mouse caspase-1, human caspase-4, human caspase-5, and mouse caspase-11, liberates the N-terminal effector domain from the C-terminal inhibitory domain. The N-terminal domain oligomerizes in the cell membrane and forms a pore of 10-16 nm in diameter, through which substrates of a smaller diameter, such as interleukin (IL)-1β and IL- 18, are secreted. The increasing abundance of membrane pores ultimately leads to membrane rupture and pyroptosis, releasing the entire cellular content. Other than GSDMD, the N-terminal domain of all GSDMs, with the exception of PJVK, have the ability to form pores. There is evidence to suggest that GSDMB and GSDME are cleaved by apoptotic caspases. Here, we review the mechanistic functions of GSDM proteins with respect to their expression and signaling profile in the cell, with more focused discussions on inflammasome activation and cell death.
    [Show full text]
  • E3 Ubiquitin Ligase SYVN1 Is a Key Positive Regulator for GSDMD
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453219; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 E3 ubiquitin ligase SYVN1 is a key positive regulator for 2 GSDMD-mediated pyroptosis 3 4 Yuhua Shi 1,2,#, Yang Yang3,#, Weilv Xu1,#, Wei Xu1, Xinyu Fu1, Qian Lv1, Jie Xia1, 5 Fushan Shi1,2,* 6 1 Department of Veterinary Medicine, College of Animal Sciences, Zhejiang 7 University, Hangzhou 310058, Zhejiang, PR China 8 2 Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang 9 University, Hangzhou 310058, Zhejiang, PR China 10 3 Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of 11 Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health 12 Inspection & Internet Technology, College of Animal Science and Technology & 13 College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, 14 Zhejiang, China 15 # These authors contributed equally to this work 16 *Corresponding author: Fushan Shi, E-mail: [email protected], Tel: 17 +086-0571-88982275 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453219; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Gasdermin D (GSDMD) participates in activation of inflammasomes and pyroptosis. 21 Meanwhile, ubiquitination strictly regulates inflammatory responses. However, how 22 ubiquitination regulates Gasdermin D activity is not well understood.
    [Show full text]
  • Mechanism of Gasdermin D Recognition by Inflammatory Caspases and Their Inhibition by a Gasdermin D-Derived Peptide Inhibitor
    Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor Jie Yanga,b, Zhonghua Liua, Chuanping Wanga, Rui Yanga,c, Joseph K. Rathkeya, Otis W. Pinkarda, Wuxian Shid, Yinghua Chene, George R. Dubyaka,f, Derek W. Abbotta, and Tsan Sam Xiaoa,g,1 aDepartment of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; bGraduate Program in Physiology and Biophysics, Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106; cDepartment of Biology, Case Western Reserve University, Cleveland, OH 44106; dCenter for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106; eProtein Expression Purification Crystallization and Molecular Biophysics Core, Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106; fDepartment of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106; and gCleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 Edited by Hao Wu, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, and approved May 22, 2018 (received for review January 10, 2018) The inflammasomes are signaling platforms that promote the response to intracellular bacterial infections (17–19). The caspase activation of inflammatory caspases such as caspases-1, -4, -5, and activation and recruitment domains (CARDs) of caspases-4, -5, -11. Recent studies identified gasdermin D (GSDMD) as an effector and -11 can directly bind to lipopolysaccharides (LPSs) and me- for pyroptosis downstream of the inflammasome signaling pathways.
    [Show full text]
  • Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner
    The Journal of Neuroscience, March 29, 2017 • 37(13):3447–3464 • 3447 Neurobiology of Disease Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner X Marcin Kazmierczak,1* Piotr Kazmierczak,2* XAnthony W. Peng,3,4 Suzan L. Harris,1 Prahar Shah,1 Jean-Luc Puel,2 Marc Lenoir,2 XSantos J. Franco,5 and Martin Schwander1 1Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey 08854, 2Inserm U1051, Institute for Neurosciences of Montpellier, 34091, Montpellier cedex 5, France, 3Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California 94305, 4Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, and 5Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045 Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-inducedperoxisomeproliferationinauditoryhaircellsandneurons.Herewedemonstratethatlossofpejvakininhaircells,butnot in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.
    [Show full text]
  • Mechanisms and Therapeutic Regulation of Pyroptosis in Inflammatory Diseases and Cancer
    International Journal of Molecular Sciences Review Mechanisms and Therapeutic Regulation of Pyroptosis in Inflammatory Diseases and Cancer Zhaodi Zheng and Guorong Li * Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China; [email protected] * Correspondence: [email protected]; Tel.: +86-531-8618-2690 Received: 24 January 2020; Accepted: 17 February 2020; Published: 20 February 2020 Abstract: Programmed Cell Death (PCD) is considered to be a pathological form of cell death when mediated by an intracellular program and it balances cell death with survival of normal cells. Pyroptosis, a type of PCD, is induced by the inflammatory caspase cleavage of gasdermin D (GSDMD) and apoptotic caspase cleavage of gasdermin E (GSDME). This review aims to summarize the latest molecular mechanisms about pyroptosis mediated by pore-forming GSDMD and GSDME proteins that permeabilize plasma and mitochondrial membrane activating pyroptosis and apoptosis. We also discuss the potentiality of pyroptosis as a therapeutic target in human diseases. Blockade of pyroptosis by compounds can treat inflammatory disease and pyroptosis activation contributes to cancer therapy. Keywords: pyroptosis; GSDMD; GSDME; inflammatory disease; cancer therapy 1. Introduction Many disease states are cross-linked with cell death. The Nomenclature Committee on Cell Death make a series of recommendations to systematically classify cell death [1,2]. Programmed Cell Death (PCD) is mediated by specific cellular mechanisms and some signaling pathways are activated in these processes [3]. Apoptosis, autophagy and programmed necrosis are the three main types of PCD [4], and they may jointly determine the fate of malignant tumor cells.
    [Show full text]
  • Acute Stress Induces the Rapid and Transient Induction of Caspase-1, Gasdermin D
    Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1 protein in dorsal hippocampus Matthew G. Frank *a, Michael V. Baratta a, Kaixin Zhang b,c, Isabella P. Fallon a, Mikayleigh A. Pearson a, Guozhen Liu c,d, Mark R. Hutchinson e, Linda R. Watkins a, Ewa M. Goldys c and Steven F. Maier a. a Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO; b ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde, Australia; c Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia; d International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China; e Adelaide Medical School & ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide, Australia *Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience Campus Box 603 University of Colorado Boulder Boulder, CO, 80301, USA Tel: +1-303-919-8116 Email: [email protected] 1 Abstract The proinflammatory cytokine interleukin (IL)-1 plays a pivotal role in the behavioral manifestations (i.e., sickness) of the stress response. Indeed, exposure to acute and chronic stressors induces the expression of IL-1 in stress-sensitive brain regions. Thus, it is typically presumed that exposure to stressors induces the extra- cellular release of IL-1 in the brain parenchyma. However, this stress-evoked neuroimmune phenomenon has not been directly demonstrated nor has the cellular process of IL-1 release into the extracellular milieu been characterized in brain.
    [Show full text]
  • Salmonella Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages
    Salmonella Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages This information is current as Anna M. Gram, John A. Wright, Robert J. Pickering, of September 28, 2021. Nathaniel L. Lam, Lee M. Booty, Steve J. Webster and Clare E. Bryant J Immunol published online 30 December 2020 http://www.jimmunol.org/content/early/2020/12/29/jimmun ol.2000382 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/12/29/jimmunol.200038 Material 2.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 30, 2020, doi:10.4049/jimmunol.2000382 The Journal of Immunology Salmonella Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages Anna M. Gram,* John A. Wright,*,1 Robert J. Pickering,* Nathaniel L. Lam,*,† Lee M.
    [Show full text]
  • N-GSDMD Trafficking to Neutrophil Organelles Facilitates IL-1β Release
    ARTICLE https://doi.org/10.1038/s41467-020-16043-9 OPEN N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis Mausita Karmakar1, Martin Minns 2, Elyse N. Greenberg2, Jose Diaz-Aponte1, Kersi Pestonjamasp3, Jennifer L. Johnson3, Joseph K. Rathkey4, Derek W. Abbott4, Kun Wang5, Feng Shao 5, Sergio D. Catz3, ✉ ✉ George R. Dubyak1,4 & Eric Pearlman2 1234567890():,; Gasdermin-D (GSDMD) in inflammasome-activated macrophages is cleaved by caspase-1 to generate N-GSDMD fragments. N-GSDMD then oligomerizes in the plasma membrane (PM) to form pores that increase membrane permeability, leading to pyroptosis and IL-1β release. In contrast, we report that although N-GSDMD is required for IL-1β secretion in NLRP3- activated human and murine neutrophils, N-GSDMD does not localize to the PM or increase PM permeability or pyroptosis. Instead, biochemical and microscopy studies reveal that N- GSDMD in neutrophils predominantly associates with azurophilic granules and LC3+ autophagosomes. N-GSDMD trafficking to azurophilic granules causes leakage of neutrophil elastase into the cytosol, resulting in secondary cleavage of GSDMD to an alternatively cleaved N-GSDMD product. Genetic analyses using ATG7-deficient cells indicate that neu- trophils secrete IL-1β via an autophagy-dependent mechanism. These findings reveal fun- damental differences in GSDMD trafficking between neutrophils and macrophages that underlie neutrophil-specific functions during inflammasome activation. 1 Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA. 2 Department of Physiology and Biophysics, and the Department of Ophthalmology, University of California, Irvine, CA, USA. 3 The Scripps Research Institute, La Jolla, CA, USA.
    [Show full text]