Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1 protein in dorsal hippocampus Matthew G. Frank *a, Michael V. Baratta a, Kaixin Zhang b,c, Isabella P. Fallon a, Mikayleigh A. Pearson a, Guozhen Liu c,d, Mark R. Hutchinson e, Linda R. Watkins a, Ewa M. Goldys c and Steven F. Maier a. a Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO; b ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde, Australia; c Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia; d International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China; e Adelaide Medical School & ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide, Australia *Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience Campus Box 603 University of Colorado Boulder Boulder, CO, 80301, USA Tel: +1-303-919-8116 Email:
[email protected] 1 Abstract The proinflammatory cytokine interleukin (IL)-1 plays a pivotal role in the behavioral manifestations (i.e., sickness) of the stress response. Indeed, exposure to acute and chronic stressors induces the expression of IL-1 in stress-sensitive brain regions. Thus, it is typically presumed that exposure to stressors induces the extra- cellular release of IL-1 in the brain parenchyma. However, this stress-evoked neuroimmune phenomenon has not been directly demonstrated nor has the cellular process of IL-1 release into the extracellular milieu been characterized in brain.