GC-MS) Method for the Detection of Listed Impurities in Hand Sanitizers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2011 Toxics Sampling Results for Benzene, Acetaldehyde, and Fromaldehyde
Iowa Toxics Sampling 2011 Results for Benzene, Acetaldehyde, and Formaldehyde Air Quality Bureau Iowa Department of Natural Resources Table of Contents Summary: Scope ..................................................................................................................................................................... 1 Sampling Schedules................................................................................................................................................................. 1 Data Capture ........................................................................................................................................................................... 1 Data Handling .......................................................................................................................................................................... 1 Precision Data ......................................................................................................................................................................... 1 Results of the Analysis ............................................................................................................................................................ 1 References .............................................................................................................................................................................. 2 Air Toxics Monitoring Network 2011 ..................................................................................................................................... -
EPA Method 8315A (SW-846): Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC)
METHOD 8315A DETERMINATION OF CARBONYL COMPOUNDS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 1.0 SCOPE AND APPLICATION 1.1 This method provides procedures for the determination of free carbonyl compounds in various matrices by derivatization with 2,4-dinitrophenylhydrazine (DNPH). The method utilizes high performance liquid chromatography (HPLC) with ultraviolet/visible (UV/vis) detection to identify and quantitate the target analytes. This method includes two procedures encompassing all aspects of the analysis (extraction to determination of concentration). Procedure 1 is appropriate for the analysis of aqueous, soil and waste samples and stack samples collected by Method 0011. Procedure 2 is appropriate for the analysis of indoor air samples collected by Method 0100. The list of target analytes differs by procedure. The appropriate procedure for each target analyte is listed in the table below. Compound CAS No. a Proc. 1b Proc. 2 b Acetaldehyde 75-07-0 X X Acetone 67-64-1 X Acrolein 107-02-8 X Benzaldehyde 100-52-7 X Butanal (Butyraldehyde) 123-72-8 X X Crotonaldehyde 123-73-9 X X Cyclohexanone 108-94-1 X Decanal 112-31-2 X 2,5-Dimethylbenzaldehyde 5779-94-2 X Formaldehyde 50-00-0 X X Heptanal 111-71-7 X Hexanal (Hexaldehyde) 66-25-1 X X Isovaleraldehyde 590-86-3 X Nonanal 124-19-6 X Octanal 124-13-0 X Pentanal (Valeraldehyde) 110-62-3 X X Propanal (Propionaldehyde) 123-38-6 X X m-Tolualdehyde 620-23-5 X X o-Tolualdehyde 529-20-4 X p-Tolualdehyde 104-87-0 X a Chemical Abstract Service Registry Number. -
Qualitative Microanalysis of Non-Ferrous Metals
Proceedings of the Iowa Academy of Science Volume 49 Annual Issue Article 53 1942 Qualitative Microanalysis of Non-Ferrous Metals George W. Brown University of Iowa Lothrop Smith University of Iowa Let us know how access to this document benefits ouy Copyright ©1942 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Brown, George W. and Smith, Lothrop (1942) "Qualitative Microanalysis of Non-Ferrous Metals," Proceedings of the Iowa Academy of Science, 49(1), 323-331. Available at: https://scholarworks.uni.edu/pias/vol49/iss1/53 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Brown and Smith: Qualitative Microanalysis of Non-Ferrous Metals QUALITATIVE MICROANALYSIS OF NON-FERROUS METALS GEOIWE w. BROWN AND LOTHROP SMITH During summer vacations, part of my school expense was earn ed as a purchaser of non-ferrous scrap metal for a small Chicago smelter. In such purchasing, it is very necessary to know some thing of the general composition of the metal. For example, in buying soldered articles, it is of vital importance to know whether the solder is high in tin or lead, and whether it contains antimony or bismuth. Other purchasers to whom I have talked have report~ ed the same difficulty. It is common practice in the purchase of metal from large smelt ers, to take the vendor's word for the composition, as the only al ternatives are either an expensive analysis by a commercial labor atory, or the establishment of a laboratory by the small foundry. -
1.0 Introduction. This Method Describes the Sampling and Analysis Procedures of the Acetyl Acetone Colorimetric Method For
Method 323 8/7/2017 While we have taken steps to ensure the accuracy of this Internet version of the document, it is not the official version. To see a complete version including any recent edits, visit: https://www.ecfr.gov/cgi-bin/ECFR?page=browse and search under Title 40, Protection of Environment. METHOD 323—MEASUREMENT OF FORMALDEHYDE EMISSIONS FROM NATURAL GAS-FIRED STATIONARY SOURCES—ACETYL ACETONE DERIVITIZATION METHOD 1.0 Introduction. This method describes the sampling and analysis procedures of the acetyl acetone colorimetric method for measuring formaldehyde emissions in the exhaust of natural gas-fired, stationary combustion sources. This method, which was prepared by the Gas Research Institute (GRI), is based on the Chilled Impinger Train Method for Methanol, Acetone, Acetaldehyde, Methyl Ethyl Ketone, and Formaldehyde (Technical Bulletin No. 684) developed and published by the National Council of the Paper Industry for Air and Stream Improvement, Inc. (NCASI). However, this method has been prepared specifically for formaldehyde and does not include specifications (e.g., equipment and supplies) and procedures (e.g., sampling and analytical) for methanol, acetone, acetaldehyde, and methyl ethyl ketone. To obtain reliable results, persons using this method should have a thorough knowledge of at least Methods 1 and 2 of 40 CFR part 60, appendix A-1; Method 3 of 40 CFR part 60, appendix A-2; and Method 4 of 40 CFR part 60, appendix A-3. 1.1 Scope and Application 1.1.1 Analytes. The only analyte measured by this method is formaldehyde (CAS Number 50- 00-0). 1.1.2 Applicability. -
CO2 and Mass Chemistry
CSI: Climate Status Investigations-High School CO2 and Mass Chemistry Background: Many students believe that gases like carbon dioxide (CO2) do not have mass. The fact is that atmospheric gases like CO2 and methane (CH4) have a tremendous amount of mass if you consider how much there is of them in our atmosphere. Goal: Students will determine if CO2 and CH4 have mass. Objectives: Students will … Identify that CO2 and CH4 have mass Use chemistry to determine the mass of CO2 and CH4 Learn about the density of CH4(g) Materials (per lab group): 1 - 125ml flask 1 large 12 inch balloon 1 pin (or scissors) 1 microspoon spatula 30g of baking soda 60ml of vinegar 50ml beaker Triple beam balance or similar scale Metal pie tin Safety glasses for each student CO2 and Mass – Data Sheet and Lab Procedure for each student CO2 and mass – CH4 Lab Procedure and Student Sheet for each student 60ml syringe of CH4 from Trapping CO2 lab Large bulb polyethylene transfer pipette Scissors Candle in holder Matches or lighter 3% dish soap solution Safety glasses for each student 2cm length latex tubing Time Required: Two, 45-60 minute periods Standards Met: S1, S2, S3, S6, S7 Procedure: PREP Gather all of the necessary lab materials and run a test lab to be certain of safety procedures. Give each group one lab set-up. Explain that they will be creating CO2 and CH4 in class and using these gases to examine mass and density. 1 The Keystone Center CSI: Climate Status Investigations-High School DAY ONE Review safety procedures with the students. -
Synthesis of New Peptide Mimetics
University of Bath PHD Synthesis of new peptide mimetics Hackett, Anne Award date: 1996 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Synthesis of New Peptide Mimetics Submitted by Anne Hackett for the degree of PhD of the University of Bath 1996 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may not be consulted, photocopied or lent to other libraries without the permission of the author from three years from the date of acceptance of the thesis. -
Ion-Molecule Reactions in Acetaldehyde and Methanol
MASS SPECTROSCOPY Original Papers Vol.20,No.4,December1972 Ion-Molecule Reactions in Acetaldehyde and Methanol SATOSHI OKADA*,AKIRA MATSUMOTO**,TAKAAKI DOHMARU*, SETSUO TANIGUCHI*AND TERUO HAYAKAWA** (Received10November1972) The thermal energy ion-molecule reactions in acetaldehyde and methanol have been studied by mass spectrometry using a pulsed ion source.The rate constants of transfer of light hydrogen and deuterium from methyl and formyl groups of acetaldehyde have been separately treated ,and those of transfer of light hyd rogen from methyl and formyl groups have been estimated to be0 .98•~10-9and1.97•~10-9cm3.molecule-1•E sec-1,respectively.In the methanol system ,the indirect isotope effect and the ion repeller voltage dependence on the rate constants for hydrogen transfer reactions are given and compared with the results reported by other workers. 1.Introduction these points,we have studied the thermal The studies of the ion-molecule re energy ion-molecule reactions of acetal actions involving polar molecules like dehyde and methanol including those acetaldehyde1),2)and methanol3),4)are of labeled with deuterium. interest in the field of ion-molecule reac tions itself,and have also given us many 2.Experimental important informations on the mechanisms The experiments were performed on a of the radiation chemical reactions in these Hitachi-RMU5 mass spectrometer pro systems. vided with the pulsed ion source which In the formation of protonated acetal had been described by Harrison and co dehyde from the reaction between the workers.7)The operating condition in this acetaldehyde ion and its neutral molecule, study was•|10V bias and10V pulse of however,the respective probabilities of 0.2ƒÊsec width to the electron beam slit, hydrogen transfer from methyl and formyl and10V pulse of1ƒÊsec width to the ion groups have not yet been evaluated. -
Acetaldehyde Production by Ethanol Dehydrogenation
Acetaldehyde Production by Ethanol Dehydrogenation Background Acetaldehyde is a colorless liquid with a pungent, fruity odor. It is primarily used as a chemical intermediate, principally for the production of acetic acid, pyridine and pyridine bases, peracetic acid, pentaeythritol, butylene glycol, and chloral. Acetaldehyde is a volatile and flammable liquid that is miscible in water, alcohol, ether, benzene, gasoline, and other common organic solvents. The goal of this project is to design a grass-roots facility that is capable of producing 95,000 tons of acetaldehyde per year by ethanol dehydrogenation. Process Description A preliminary base case BFD for the overall process is shown in Figure 1. Unit 100 A PFD of Unit 100 is shown in Figure 2. Ethanol, an 85-wt.% solution in water, Stream 1, is combined with 85-wt.% ethanol recycle stream, Stream 23, from Unit 200. The resultant stream, Stream 2, is then pumped to 100 psia and heated to 626°F in E-101 and E-102 before being fed to R-101, an isothermal, catalytic, packed-bed reactor, where the ethanol is dehydrogenated to form acetaldehyde. The reactor effluent is then cooled in E-103 and E-104. The resultant two-phase stream, Stream 8, is then separated in V- 101. The vapor, Stream 9, is sent to T-101 where it is contacted with water, which absorbs the acetaldehyde and ethanol from the vapor stream. The resulting vapor effluent, Stream 11, is then sent for further processing and recovery of valuable 2 hydrogen. Alternatively, this stream could be used as fuel. Stream 12, the liquid, is combined with Stream 14, the liquid effluent from V-101, and sent to Unit 200. -
Carolina Biological Supply Staining Rack and Tray, a General Utility Stainless Steel Tray and Rack Well Is 8" L X 6" W and 1 1/2" S
Bid # 18‐26 Science Supplies and Equipment Form of Proposal Item No. Item Description QTY Unit Vendor Names for Reference Purposes Only Carolina Biological Supply Staining rack and tray, a general utility stainless steel tray and rack well is 8" L x 6" W and 1 1/2" S. Overall size is 9" L x 7" W x 1 1/2" D. 4ea 1 # 742001 Electrophoresis chamber Tray makes a gel 3 1/4" W x 3 3/4" L. Safety interlock lid prevents operation unless lid is securely in place. Features 6ea 1/4" durable acrylic construction. Includes heavy, nonwarping gel‐ casting tray, makred to assist in easy sample loading and two 8‐tooth 2 combs for running 8 or 16 samples, # 213668 Microscope slide with 3 separate smears showing the characteristic 24 ea size and form of the following types of bacteria: baciluss, coccus and 3 spirillum Gram stain, # 293964 A whole mount of E. coli bacteria on a prepared microscope slide, # 24 ea 4 294546 24 ea 5 Streptococcus, wm gram stain slide, # 294738 1ea 6 Practice Pipetting stations Kit, # 211145 NOTE: THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY. THIS IS NOT AN OFFICIAL BID DOCUMENT. 24 ea 7 Floating Microtube Racks, # 215578 Pyrex Glass Graduated Cylinder, Single Metric Scale, 1000 ml, # 4ea 8 721794 Page 1 of 14 Bid # 18‐26 Science Supplies and Equipment Form of Proposal Item No. Item Description QTY Unit Total Cost Vendor Names for Reference Purposes Only 10 ea 9 Sunflower Older Stem l.s. 12µm Microscope slide, # 303104 10 ea 10 Oscillatoria Slide, w.m. -
Dehydrogenation of Ethanol to Acetaldehyde Over Different Metals Supported on Carbon Catalysts
catalysts Article Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts Jeerati Ob-eye , Piyasan Praserthdam and Bunjerd Jongsomjit * Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (J.O.-e.); [email protected] (P.P.) * Correspondence: [email protected]; Tel.: +66-2-218-6874 Received: 29 November 2018; Accepted: 27 December 2018; Published: 9 January 2019 Abstract: Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 ◦C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 ◦C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%). -
BRAND - Your Partner in the Lab
BRAND - Your Partner in the Lab. Worldwide. General Catalog 900 ® Trademark Index accu-jet®, BIO-CERT®, BLAUBRAND®, BRAND®, BRANDplates ®, cell-culture™, cellGrade™, Dispensette®, EASYCAL™, HandyStep®, hydroGrade™, immunoGrade™, inertGrade™, lipoGrade™, nano-cap™, PLASTIBRAND®, pureGrade™, QuikSip™, SafetyPrime™, seripettor®, Titrette®, Transferpette®, as well as the logo design marks depicted here, are trademarks of BRAND GMBH + CO KG, Germany. The following brands and trademarks as referenced in the current catalog are property of their respective third-party owners as listed below: Referenced brand/trademark Owner AMERSHAM® GE HEALTHCARE LIMITED, GB APPLIED BIOSYSTEMS® Applied Biosystems LLC, USA AR-GLAS® SCHOTT AKTIENGESELLSCHAFT, Germany AutoRep™ Rainin Instrument, LLC, USA BECKMAN® Beckman Coulter, Inc., USA BIOHIT® Sartorius Biohit Liquid Handling Oy, Finland BIOMETRA® Biometra Biomedizinische Analytik GmbH, Germany BIORAD® BIO-RAD LABORATORIES GMBH, Germany Combitips® Eppendorf AG, Germany COULTER COUNTER® BECKMAN COULTER INC., USA EDISONITE® Schülke & Mayr GbmH, Germany Encode™ Rainin Instrument, LLC, USA Eppendorf® Eppendorf AG, Germany FINNPIPETTE® Thermo Fisher Scientific Oy, Finland GILSON® Gilson, Inc., USA LightCycler® Roche Diagnostics GmbH, Germany MegaBace® GE Healthcare Bio-Sciences AB, GB METTLER TOLEDO® Mettler-Toledo AG, Switzerland MICROSOFT® MICROSOFT CORPORATION, USA MJ RESEARCH® BIO-RAD LABORATORIES, INC., USA Mucasol® Schülke & Mayr GbmH, Germany Mucocit® Schülke & Mayr GbmH, Germany Multipette® Eppendorf AG, -
Aldehydes Can React with Alcohols to Form Hemiacetals
340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.