Pipettes Resource Guide 2018 Pipettes Resource Guide

Total Page:16

File Type:pdf, Size:1020Kb

Pipettes Resource Guide 2018 Pipettes Resource Guide PIPETTES RESOURCE GUIDE 2018 PIPETTES RESOURCE GUIDE INTRODUCTION LESSON IN LIQUID HANDLING by Trevor Henderson, PhD by Erica Tennenhouse, PhD QUESTIONS TO ASK WHEN FOCUS ON PIPETTE TIP DESIGN BUYING A PIPETTE by Angelo DePalma, PhD by Lab Manager INSIGHTS INTO... PURCHASING TIPS • Personalized Pipettes by Angelo DePalma, PhD • Low-Volume Pipetting by Mike May, PhD and Angelo MAINTENANCE MATTERS DePalma, PhD by Rachel Muenz Lab Manager 2017 1 LabManager.com Introduction by Trevor Henderson, PhD Pipetting is part of nearly every laboratory’s workflow. The goal of pipetting is to ensure maximum accuracy and repeatability when transferring fluids. Research and development labs in the chemicals, foods, materials, and paints industries use pipettes routinely. However, it is in the life sciences that the greatest number of pipettes and related supplies are found. This established technology continues to undergo improvements, most related to usability and consistency. If you’re looking to buy one, there are many different features to take into consideration before making your purchase, including ergonomics, low force, fitting, ease of use, reliability, accuracy, and precision. Lab Manager 2017 2 LabManager.com PIPETTES RESOURCE GUIDE Questions to Ask When Buying a Bath or Chiller by Lab Manager How does my sample volume influence which pipette is the best fit? Pipettes come in a variety of different sizes to suit whichever volume needs are required. If you know you will always be pipetting the same volume of liquid, then a fixed volume pipette will be best. If the amount to be pipetted is changing from sample to sample, then a variable pipette will be ideal. How does sample viscosity impact my selection of a pipette? The viscosity of the sample will have a direct influence on which pipette is required. For aqueous samples which are low viscosity, an air displacement pipette is ideal. These pipettes are driven by a piston in an airtight sleeve which generates a vacuum. For more viscous or heavy liquids, a positive displacement pipette should be used. These pipettes are driven by a disposable piston which comes into direct contact with the sample. What pipette should I use for PCR, ELISA, or other immunoassay applications? PCR, ELISA, and many other immunoassay methods utilize microwell plates. Microplates come in many configurations: 6, 24, 96, 384, and 1536 well plates arranged in a 2x3 matrix are typically used. In order to accommodate faster throughput with such methods, many pipette manufacturers offer multichannel pipettes. These allow for faster pipetting of multiple samples: instead of having to fill 96 wells individually, an 8 channel pipette can be used, reducing the number of aspirations and dispenses to 12. Lab Manager 2017 3 LabManager.com PIPETTES RESOURCE GUIDE Purchasing Tips by Angelo DePalma, PhD • Find a comfortable, ergonomic fit to prevent poor pipetting technique, which affects accuracy and precision. • Look for pipettes and tips that were designed together. • Don’t skimp on consumables: consistency in pipette tips reduces fit variability and benefits overall performance. • Be sure to select a vendor with robust global manufacturing capabilities to ensure uninterrupted pipette tip supply. • Lab managers typically believe that if manual pipettes are not enough, they have to splurge on a robotic system. That’s untrue. They should consider options in between, which may be more economical and, for many workflows, more efficient. Lab Manager 2017 4 LabManager.com PIPETTES RESOURCE GUIDE Maintenance Matters by Rachel Muenz 3 THINGS TO CONSIDER BEFORE SIGNING UP FOR A PIPETTE MAINTENANCE AGREEMENT 1. Ask what a calibration involves. Some companies will simply check if the pipette is calibrated, whereas others will provide a more in-depth check and pipette cleaning. 2. If you’re using a third-party company, find out if they are familiar with your brand of pipette. 3. Check whether they offer in-lab calibration/maintenance or if you need to send the pipette away. Pipette abuse; unfortunately, it’s as common in labs There are many common errors people make when as the instruments themselves. However, a few simple maintaining or calibrating their pipettes, though the main maintenance tasks, along with proper calibration are all you one is simply not doing maintenance at all. Errors most need to keep your pipettes at their best. often happen in pipette storage, handling, overall usage, and pipetting technique as there is a lot of variability from user Educating users on proper technique is essential to avoiding to user. pipette neglect. The key to a really good pipette calibration program is being proactive. A good calibration program will Overly-aggressive tolerance limits, people calibrating their be able to trend a particular pipette’s performance over time. pipette in a different environment from the one the pipette Another thing that’s very useful is being able to establish is actually used in or with different tips than the ones action limits because the key to being proactive is to be normally used on the pipette, are other key mistakes. Some able to know how your pipettes are performing before they users clean their pipettes with bleach or other corrosive actually have a failure. agents but don’t give the pipette a final rinse with deionized water. That means salts crystallize and disrupt the movement Though when to calibrate depends on what the pipette of the pistons. Another error is users wiping off all the is being used for and how often, guidelines for pipette grease on the pipettes’ pistons when cleaning them but not calibration are also set by the American Society for Testing re-greasing the pistons afterward. and Materials. Those recommend quarterly control checks of ten data points, and monthly verification checks of four To avoid such mistakes, the user’s manual, manufacturer’s data points. customer service department and literature, as well as third- party calibration companies, and companies that provide Labs should use the guidelines of whatever body they are training, education, and calibration systems are all good accredited by for pipette calibration/ maintenance and resources to consult. recommends users should check their pipettes at least every year to make sure they’re in calibration. As for general maintenance, that all depends on what the lab is doing. For example, in some cell culture or PCR applications, pipettes may need to be cleaned after each use or experiment. Lab Manager 2017 5 LabManager.com PIPETTES RESOURCE GUIDE Focus on Pipette Tip Design by Angelo DePalma, PhD dispense volumes in the microliter range, molding quality, physical integrity, and uniformity become critical for accurate, reproducible liquid movement within the pipette tip. For pipette tips, fit dictates function. Tip height is critical, particularly in multichannel pipettes and devices where 96 or 384 tips are expected to draw and deliver precisely the same volume. Tips seated too high on a pipette tip fitting may not reach fluid level and thereby aspirate air. Failing to make contact when touching off during dispensing causes liquid to remain within the tip. Affected wells become dead points. These problems are magnified with today’s ultra- low volume pipetting. The volumetric margin of error Pipette tips appear to be technically simple, almost shrinks when dispensing 0.2 microliters compared with 500 commoditized, yet their design and manufacture require microliters. significant thought and engineering. Some liquid handling applications demand purpose-driven pipette tips with Contamination and cross-contamination are perennial features like low retention or binding, used for high-viscosity issues in pipetting. Pipetting creates aerosols of the pipetted liquids containing sugars or glycerin or highly concentrated sample that are suspended in the air space inside the pipette salts. tip between the drawn liquid and the pipette nose cone. Absent some sort of barrier, aerosols enter the pipette, Exquisite engineering notwithstanding, no pipetting system remain inside, and carry over to subsequent samples. Cross- performs reliably if the tip discharges contaminants during contamination occurs as previously aspirated air is dispensed operation. Slip agents, which are chemicals employed along with the sample. during the manufacture of injection-molded plastic parts to enhance manufacturability, are one potential contamination Filtered pipette tips prevent aerosols from reaching the source. Tips not manufactured under pristine conditions and innards of the pipette and carrying over to the next liquid thoroughly inspected may harbor adventitious biological or transfer. Several filter and barrier designs are available, chemical contaminants as well. constructed from different materials and each with specific effectiveness related to contamination control. For plastics, of which tips are made, leachables and extractables may affect data fidelity and experimental results Filter tips prevent contamination of the pipette and sample- in insidious ways. Buffers, salts, acids, bases, and organic to-sample cross-contamination. DNA/RNA applications chemical constituents may initiate leaching of residual often employ these tips to mitigate the activity of DNases monomers, polymerization agents, or even metals. and RNases, enzymes that hydrolyze nucleic acids. Filter tips are also appropriate for manipulation of radioisotopes, Minimum compositional requirements should therefore which many labs still use due to legacy methods or the
Recommended publications
  • CO2 and Mass Chemistry
    CSI: Climate Status Investigations-High School CO2 and Mass Chemistry Background: Many students believe that gases like carbon dioxide (CO2) do not have mass. The fact is that atmospheric gases like CO2 and methane (CH4) have a tremendous amount of mass if you consider how much there is of them in our atmosphere. Goal: Students will determine if CO2 and CH4 have mass. Objectives: Students will … Identify that CO2 and CH4 have mass Use chemistry to determine the mass of CO2 and CH4 Learn about the density of CH4(g) Materials (per lab group): 1 - 125ml flask 1 large 12 inch balloon 1 pin (or scissors) 1 microspoon spatula 30g of baking soda 60ml of vinegar 50ml beaker Triple beam balance or similar scale Metal pie tin Safety glasses for each student CO2 and Mass – Data Sheet and Lab Procedure for each student CO2 and mass – CH4 Lab Procedure and Student Sheet for each student 60ml syringe of CH4 from Trapping CO2 lab Large bulb polyethylene transfer pipette Scissors Candle in holder Matches or lighter 3% dish soap solution Safety glasses for each student 2cm length latex tubing Time Required: Two, 45-60 minute periods Standards Met: S1, S2, S3, S6, S7 Procedure: PREP Gather all of the necessary lab materials and run a test lab to be certain of safety procedures. Give each group one lab set-up. Explain that they will be creating CO2 and CH4 in class and using these gases to examine mass and density. 1 The Keystone Center CSI: Climate Status Investigations-High School DAY ONE Review safety procedures with the students.
    [Show full text]
  • Carolina Biological Supply Staining Rack and Tray, a General Utility Stainless Steel Tray and Rack Well Is 8" L X 6" W and 1 1/2" S
    Bid # 18‐26 Science Supplies and Equipment Form of Proposal Item No. Item Description QTY Unit Vendor Names for Reference Purposes Only Carolina Biological Supply Staining rack and tray, a general utility stainless steel tray and rack well is 8" L x 6" W and 1 1/2" S. Overall size is 9" L x 7" W x 1 1/2" D. 4ea 1 # 742001 Electrophoresis chamber Tray makes a gel 3 1/4" W x 3 3/4" L. Safety interlock lid prevents operation unless lid is securely in place. Features 6ea 1/4" durable acrylic construction. Includes heavy, nonwarping gel‐ casting tray, makred to assist in easy sample loading and two 8‐tooth 2 combs for running 8 or 16 samples, # 213668 Microscope slide with 3 separate smears showing the characteristic 24 ea size and form of the following types of bacteria: baciluss, coccus and 3 spirillum Gram stain, # 293964 A whole mount of E. coli bacteria on a prepared microscope slide, # 24 ea 4 294546 24 ea 5 Streptococcus, wm gram stain slide, # 294738 1ea 6 Practice Pipetting stations Kit, # 211145 NOTE: THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY. THIS IS NOT AN OFFICIAL BID DOCUMENT. 24 ea 7 Floating Microtube Racks, # 215578 Pyrex Glass Graduated Cylinder, Single Metric Scale, 1000 ml, # 4ea 8 721794 Page 1 of 14 Bid # 18‐26 Science Supplies and Equipment Form of Proposal Item No. Item Description QTY Unit Total Cost Vendor Names for Reference Purposes Only 10 ea 9 Sunflower Older Stem l.s. 12µm Microscope slide, # 303104 10 ea 10 Oscillatoria Slide, w.m.
    [Show full text]
  • BRAND - Your Partner in the Lab
    BRAND - Your Partner in the Lab. Worldwide. General Catalog 900 ® Trademark Index accu-jet®, BIO-CERT®, BLAUBRAND®, BRAND®, BRANDplates ®, cell-culture™, cellGrade™, Dispensette®, EASYCAL™, HandyStep®, hydroGrade™, immunoGrade™, inertGrade™, lipoGrade™, nano-cap™, PLASTIBRAND®, pureGrade™, QuikSip™, SafetyPrime™, seripettor®, Titrette®, Transferpette®, as well as the logo design marks depicted here, are trademarks of BRAND GMBH + CO KG, Germany. The following brands and trademarks as referenced in the current catalog are property of their respective third-party owners as listed below: Referenced brand/trademark Owner AMERSHAM® GE HEALTHCARE LIMITED, GB APPLIED BIOSYSTEMS® Applied Biosystems LLC, USA AR-GLAS® SCHOTT AKTIENGESELLSCHAFT, Germany AutoRep™ Rainin Instrument, LLC, USA BECKMAN® Beckman Coulter, Inc., USA BIOHIT® Sartorius Biohit Liquid Handling Oy, Finland BIOMETRA® Biometra Biomedizinische Analytik GmbH, Germany BIORAD® BIO-RAD LABORATORIES GMBH, Germany Combitips® Eppendorf AG, Germany COULTER COUNTER® BECKMAN COULTER INC., USA EDISONITE® Schülke & Mayr GbmH, Germany Encode™ Rainin Instrument, LLC, USA Eppendorf® Eppendorf AG, Germany FINNPIPETTE® Thermo Fisher Scientific Oy, Finland GILSON® Gilson, Inc., USA LightCycler® Roche Diagnostics GmbH, Germany MegaBace® GE Healthcare Bio-Sciences AB, GB METTLER TOLEDO® Mettler-Toledo AG, Switzerland MICROSOFT® MICROSOFT CORPORATION, USA MJ RESEARCH® BIO-RAD LABORATORIES, INC., USA Mucasol® Schülke & Mayr GbmH, Germany Mucocit® Schülke & Mayr GbmH, Germany Multipette® Eppendorf AG,
    [Show full text]
  • Inquiry-Based Laboratory Work in Chemistry
    INQUIRY-BASED LABORATORY WORK IN CHEMISTRY TEACHER’S GUIDE Derek Cheung Department of Curriculum and Instruction The Chinese University of Hong Kong Inquiry-based Laboratory Work in Chemistry: Teacher’s Guide / Derek Cheung Copyright © 2006 by Quality Education Fund, Hong Kong All rights reserved. Published by the Department of Curriculum and Instruction, The Chinese University of Hong Kong. No part of this book may be reproduced in any manner whatsoever without written permission, except in the case of use as instructional material in a school by a teacher. Note: The material in this teacher’s guide is for information only. No matter which inquiry-based lab activity teachers choose to try out, they should always conduct risks assessment in advance and highlight safety awareness before the lab begins. While every effort has been made in the preparation of this teacher’s guide to assure its accuracy, the Chinese University of Hong Kong and Quality Education Fund assume no liability resulting from errors or omissions in this teacher’s guide. In no event will the Chinese University of Hong Kong or Quality Education Fund be liable to users for any incidental, consequential or indirect damages resulting from the use of the information contained in the teacher’s guide. ISBN 962-85523-0-9 Printed and bound by Potential Technology and Internet Ltd. Contents Preface iv Teachers’ Concerns about Inquiry-based Laboratory Work 1 Secondary 4 – 5 Guided Inquiries 1. How much sodium bicarbonate is in one effervescent tablet? 4 2. What is the rate of a lightstick reaction? 18 3. Does toothpaste protect teeth? 29 4.
    [Show full text]
  • 2021 Product Guide
    2021 PRODUCT GUIDE | LIQUID HANDLING | PURIFICATION | EXTRACTION | SERVICES TABLE OF CONTENTS 2 | ABOUT GILSON 56 | FRACTION COLLECTORS 4 | COVID-19 Solutions 56 | Fraction Collector FC 203B 6 | Service Experts Ready to Help 57 | Fraction Collector FC 204 7 | Services & Support 8 | OEM Capabilities 58 | AUTOMATED LIQUID HANDLERS 58 | Liquid Handler Overview/selection Guide 10 | LIQUID HANDLING 59 | GX-271 Liquid Handler 11 | Pipette Selection Guide 12 | Pipette Families 60 | PUMPS 14 | TRACKMAN® Connected 60 | Pumps Overview/Selection Guide 16 | PIPETMAN® M Connected 61 | VERITY® 3011 18 | PIPETMAN® M 62 | Sample Loading System/Selection Guide 20 | PIPETMAN® L 63 | VERITY® 4120 22 | PIPETMAN® G 64 | DETECTORS 24 | PIPETMAN® Classic 26 | PIPETMAN® Fixed Models 66 | PURIFICATION 28 | Pipette Accessories 67 | VERITY® CPC Lab 30 | PIPETMAN® DIAMOND Tips 68 | VERITY® CPC Process 34 | PIPETMAN® EXPERT Tips 70 | LC Purification Systems 36 | MICROMAN® E 71 | Gilson Glider Software 38 | DISTRIMAN® 72 | VERITY® Oligonucleotide Purification System 39 | REPET-TIPS 74 | Accessories Overview/Selection Guide 40 | MACROMAN® 75 | Racks 41 | Serological Pipettes 43 | PLATEMASTER® 76 | GEL PERMEATION 44 | PIPETMAX® CHROMATOGRAPHY (GPC) 76 | GPC Overview/Selection Guide 46 | BENCHTOP INSTRUMENTS 77 | VERITY® GPC Cleanup System 46 | Safe Aspiration Station & Kit 47 | DISPENSMAN® 78 | EXTRACTION 48 | TRACKMAN® 78 | Automated Extraction Overview/ 49 | Digital Dry Bath Series Selection Guide 49 | Roto-Mini Plus 80 | ASPEC® 274 System 50 | Mini Vortex Mixer 81 | ASPEC® PPM 50 | Vortex Mixer 82 | ASPEC® SPE Cartridges 51 | Digital Mini Incubator 84 | Gilson SupaTop™ Syringe Filters 86 | EXTRACTMAN® 52 | CENTRIFUGES 52 | CENTRY™ 103 Minicentrifuge 88 | SOFTWARE 53 | CENTRY™ 117 Microcentrifuge 88 | Software Selection Guide 53 | CENTRY™ 101 Plate Centrifuge 54 | PERISTALTIC PUMP 54 | MINIPULS® 3 Pump & MINIPULS Tubing SHOP ONLINE WWW.GILSON.COM 1 ABOUT US Gilson is a family-owned global manufacturer of sample management and purification solutions for the life sciences industry.
    [Show full text]
  • Practical Laboratory Skills for Molecular Biologists.Pdf 3.0 MB
    Practical laboratory skills for molecular biologists skills best practice training training best practice skills Practical laboratory skills for molecular biologists First Edition 2016 Co-authors Elena Sanchez Timothy Wilkes Contributors Nicholas Redshaw Acknowledgements With special thanks to Alison Woolford and Vicki Barwick for their help in the production of this guide. Production of this Guide was funded by the UK National Measurement System. First edition 2016 ISBN: 978-0-948926-28-0 This publication should be cited as: E Sanchez, T Wilkes, Practical laboratory skills for Copyright © 2016 LGC molecular biologists, LGC 2016. ISBN: 978-0-948926-28-0 Practical laboratory skills for molecular biologists OBJECTIVES OF THIS GUIDE 3 1 WORKING IN THE LABORATORY 4 1.1 Health and Safety issues 4 1.2 Laboratory environment 10 1.3 Equipment 14 1.4 Method selection 15 2 MEASURING VOLUME 16 2.1 Types of equipment available 16 2.2 Markings on equipment used for volumetric measurements 22 2.3 Selecting a suitable piece of equipment 24 2.4 Cleaning and maintenance of volumetric equipment 26 2.5 Checking the accuracy of volumetric equipment 27 2.6 Checklists for making measurements of volume 28 3 MEASURING MASS 33 3.1 Mass versus weight 33 3.2 Types of balance available 33 3.3 Selecting a suitable balance 34 4 QUANTIFICATION OF NUCLEIC ACID MATERIAL 41 4.1 Measurement of nucleic acid concentration using UV spectroscopy 41 4.2 Fluorescent based systems. 43 4.3 Gel electrophoresis 45 5 MEASURING PH 47 5.1 What is pH? 47 5.2 Equipment for measuring
    [Show full text]
  • Improvement of Biochemistry 2002 Through Experimental Modification and Organization
    Improvement of Biochemistry 2002 through experimental modification and organization of course materials A Thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Science By Michael Taylor Mitchell Dr. David W. Emerich, Thesis Supervisor May 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled Improvement of Biochemistry 2002 through experimental modification and organization of course materials presented by Michael Mitchell, a candidate for the degree of master of sciences, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Brenda Peculis Dr. Gerald Hazelbauer Dr. David Emerich Acknowledgements The Sophomore Biochemistry Lab, Biochm 2002, is an elective course in the Biochemistry Department. Over the past 3 years, this laboratory course was overseen by various instructors, Postdoctoral fellows, Teaching Assistants and Peer Learning Assistants. These individuals created, modified or adapted a variety of laboratory experiments and generated the starting material which became the foundation of this thesis. The attached body of work was generated in partial completion of the requirements for the Masters degree in Biochemistry. I acknowledge the assistance of previous contributors and the ongoing support of several people who gave oversight during the development and implementation of this course development activity including: Jan Judy-March, Dr. Benda Peculis, Dr. Christopher Foote, Dr. David Emerich, Dr. Shuqun Zhang, Dr. Norma Houston, and Dr. Astrid Stromhaug. This body of work was generated with the specific intent that the documents and materials described here would continue to be used by future Biochemistry Department faculty and appointed instructors of this course in future years.
    [Show full text]
  • Gilson Liquid Handling Catalogue 2016-2017 Pipette Selection Guide MECHANICAL PIPETTES PIPETMAN® L & Fixed
    Gilson Liquid Handling Catalogue 2016-2017 pipette selection guide MECHANICAL PIPETTES PIPETMAN® L & Fixed ............................................................ 4 - 5 PIPETTES PIPETMAN® L Multi ................................................................. 6 - 7 Choosing the right pipette for your application welcome to Gilson PIPETMAN® G ........................................................................... 8 - 9 PIPETMAN Neo® Single & Multi ........................................10 - 11 PIPETMAN Classic™ & Fixed ..............................................12 - 13 PIPETTE SELECTION GUIDE ELECTRONIC - MOTORISED PIPETTES PIPETMAN® M Single ..........................................................14 - 15 Description Throughput Comfort Features Page PIPETMAN® M Multi............................................................16 - 17 SPECIALITY PIPETTES Reliable, Accurate and Cost Effective Low The original world renowned pipetting standard. 12-13 How To Order PIPETMAN Fixed volume also available. SPECIALITY PIPETTES - Positive Displacement MICROMAN® E ......................................................................18 -19 An Evolution of the Classic Ordering from Gilson has never been MICROMAN®& Capillary Pistons ......................................20 - 21 Lower pipetting and ejection forces PIPETTE ACC Low 10 reduce potential for RSI. easier. You can order online, by phone, fax DISTRIMAN® & REPETMAN® ..............................................22 - 23 or email. SPECIALITY PIPETTES - Large Volume Pipettor Extremely
    [Show full text]
  • GUIDE to PIPETTING Third Edition HOW the PIPETTE STORY BEGAN
    GUIDE TO PIPETTING Third Edition HOW THEHOW PIPETTE BEGAN... STORY HOW THE PIPETTE STORY BEGAN… Over a century ago, Louis Pasteur invented the glass Pasteur pipette to reduce contamination when transferring samples. The Pasteur pipette is still in use today. The next significant improvement on pipettes occurred in the late 1950s with the introduction of a handheld, piston-operated pipette as a safe alternative to potentially dangerous mouth pipetting. The first handheld pipettes had pre- established volume setting (fixed volume pipettes). Further improvement was provided with the more flexible stepper volume setting (variable volume pipettes). In 1972, Dr. Warren Gilson invented the first continuously adjustable pipette. As an original error-preventing feature, the selected volume was now clearly displayed on the Gilson pipette (direct digital readout). Today, Gilson precision pipettes are still the world standard for accuracy, precision, and reliability. Today, the company still maintains its continuous effort of creativity and offers innovative, robust, and reliable pipettes to help scientists in their daily work. The pipetting system is our core expertise, and we truly enjoy sharing this knowledge and experience with pipette users so that they may achieve their goals. This guide will provide you with keys to understand how pipettes should be used and to get the most out of them. Examples given are based on our own pipette range, but the techniques described are equally applicable to other brands of pipettes and tips. Gilson is one of
    [Show full text]
  • Liquid Handling
    © Tadao Yamamoto/amana images/Getty Images Liquid Handling One of the most important, fundamental activities in modern laboratories is the careful handling of the ever smaller quantities of liquids used. The precision transfer of liquids in quantities from milliliters down to nanoliters is still a challenge today. Their impressive ergonomic design, high preci- sion, and superb quality have contributed to making BRAND liquid handling instruments known around the world for excellence. Overview Liquid Handling Bottle-top dispensers Dispensette® from page 19 seripettor® Bottle-top burette Titrette® from page 39 Single and multichannel microliter ® pipettes and pipette tips Transferpette from page 45 Transferpettor Repetitive pipettes ® and PD-Tips HandyStep from page 87 Pipetting aids accu-jet® from page 97 macro, micro Bottle-top aspirator QuikSip™ from page 103 Pipette leak testing unit PLT unit from page 105 Calibration software EASYCAL™ from page 109 18 [email protected] Dispensette® III Dispensette® Organic Dispensette® TA NEW! The Dispensette® bottle-top dispenser has proven itself the world over with its wide ® range of practical applications. Dispensette It has been continuously improved over de- cades to meet the increasing demands of Bottle-top Dispenser the laboratory. Dispensette® III Dispensette® Organic Liquid Handling Models The wide range of Dispensette® bottle-top dispensers provides premium dispensing options for the complete spectrum of liquid reagents: Dispensette® III Dispensette® Organic (red color-code) (yellow color-code) ■ Digital · Easy Calibration type ■ Digital · Easy Calibration type ■ Analog-adjustable type ■ Analog-adjustable type ■ Fixed-volume type ■ Fixed-volume type For dispensing aggressive reagents For dispensing organic solvents including concentrated acids such as H3PO4, H2SO4, including chlorinated and fluorinated hydrocarbons (e.g., bases like NaOH, KOH, saline solutions, as well as trichlorotrifluoro-ethane and dichloromethane), concen- many organic solvents.
    [Show full text]
  • C:\My Files\Toxicology\QA Procedures\Pipette Calibration SOP.Wpd
    Shared Analytical Services Laboratory Air Displacement Pipette Calibration University of Colorado at Denver October 28, 2003 - Revision 1.00 Page 1 of 7 Standard Operating Procedure Air Displacement Pipette Calibration 1 Background: An accurate pipette is one of the most important tools in performing accurate analytical work. An inaccurate or imprecise pipette will invariable lead to a poor analytical work product, regardless of how much care and skill is used in performing the procedure. With use (and abuse), pipettes will become worn and less reliable. To maintain a valid work product, the state of all pipettes must be periodically checked and verified. 2 References: 2.1 Curtis, RH. Performance reification of manual action pipettes, Part I. Am Clin Lab October 1994. 2.2 Curtis, RH. Performance reification of manual action pipettes, Part II. Am Clin Lab December 1994. 2.3 Eppendorf SOP: Standard Operating Procedure for pipettes. www.eppendorf.com/pipet/SOP 2.4 Clark, John P, Shull, A. Harper. Gravimetric & Spectrophotometric Errors Impact on Pipette Calibration Certainty. Cal Lab, Jan, Feb, Mar 2003. 2.5 The Handbook of Chemistry and Physics, 58th Edition. CRC Press, 1978, p F-11. 3 Scope and Application: 3.1 This procedure describes the procedure for verifying the proper operation and calibration of all makes of air displacement (manual plunger type) pipettes. 4 Method Summary: Aliquots of Type II water are delivered into a weighing boat, located on a scale, and weighed. If the temperature of the water is well known, the using the density of water will result in the volume of water actually pipetted.
    [Show full text]
  • 2021 Product Guide
    2021 PRODUCT GUIDE | LIQUID HANDLING | PURIFICATION | EXTRACTION | SERVICES TABLE OF CONTENTS 2 | ABOUT GILSON 56 | FRACTION COLLECTORS 4 | COVID-19 Solutions 56 | Fraction Collector FC 203B 6 | Service Experts Ready to Help 57 | Fraction Collector FC 204 7 | Services & Support 8 | OEM Capabilities 58 | AUTOMATED LIQUID HANDLERS 58 | Liquid Handler Overview/selection Guide 10 | LIQUID HANDLING 59 | GX-271 Liquid Handler 11 | Pipette Selection Guide 12 | Pipette Families 60 | PUMPS 14 | TRACKMAN® Connected 60 | Pumps Overview/Selection Guide 16 | PIPETMAN® M Connected 61 | VERITY® 3011 18 | PIPETMAN® M 62 | Sample Loading System/Selection Guide 20 | PIPETMAN® L 63 | VERITY® 4120 22 | PIPETMAN® G 64 | DETECTORS 24 | PIPETMAN® Classic 26 | PIPETMAN® Fixed Models 66 | PURIFICATION 28 | Pipette Accessories 67 | VERITY® CPC Lab 30 | PIPETMAN® DIAMOND Tips 68 | VERITY® CPC Process 34 | PIPETMAN® EXPERT Tips 70 | LC Purification Systems 36 | MICROMAN® E 71 | Gilson Glider Software 38 | DISTRIMAN® 72 | VERITY® Oligonucleotide Purification System 39 | REPET-TIPS 74 | Accessories Overview/Selection Guide 40 | MACROMAN® 75 | Racks 41 | Serological Pipettes 43 | PLATEMASTER® 76 | GEL PERMEATION 44 | PIPETMAX® CHROMATOGRAPHY (GPC) 76 | GPC Overview/Selection Guide 46 | BENCHTOP INSTRUMENTS 77 | VERITY® GPC Cleanup System 46 | Safe Aspiration Station & Kit 47 | DISPENSMAN® 78 | EXTRACTION 48 | TRACKMAN® 78 | Automated Extraction Overview/ 49 | Digital Dry Bath Series Selection Guide 49 | Roto-Mini Plus 80 | ASPEC® 274 System 50 | Mini Vortex Mixer 81 | ASPEC® PPM 50 | Vortex Mixer 82 | ASPEC® SPE Cartridges 51 | Digital Mini Incubator 84 | Gilson SupaTop™ Syringe Filters 86 | EXTRACTMAN® 52 | CENTRIFUGES 52 | CENTRY™ 103 Minicentrifuge 88 | SOFTWARE 53 | CENTRY™ 117 Microcentrifuge 88 | Software Selection Guide 53 | CENTRY™ 101 Plate Centrifuge 54 | PERISTALTIC PUMP 54 | MINIPULS® 3 Pump & MINIPULS Tubing SHOP ONLINE WWW.GILSON.COM 1 ABOUT US Gilson is a family-owned global manufacturer of sample management and purification solutions for the life sciences industry.
    [Show full text]