Synthesis of New Peptide Mimetics

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of New Peptide Mimetics University of Bath PHD Synthesis of new peptide mimetics Hackett, Anne Award date: 1996 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Synthesis of New Peptide Mimetics Submitted by Anne Hackett for the degree of PhD of the University of Bath 1996 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may not be consulted, photocopied or lent to other libraries without the permission of the author from three years from the date of acceptance of the thesis. MocM UMI Number: U60169B All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U601693 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To Mum, Dad and Geraldine for their love, support and encouragement Acknowledgements I would like to thank my supervisors, Professor Malcolm Campbell, Professor Malcolm Sainsbury and Dr. Nigel Vicker for all their help, encouragement and enthusiasm throughout this project. I would also like to thank Mr. Harry Hartnell, Mr. Dave Wood, Mr. Alan Carver, Mr. Chris Cryer, Mr. John Bradley and Mr. Russell Barlow. A special thank you to Dr. Dave Brown, Dr. Ali Ninan and Dr. Richard Kinsmann for their help and advice along the way. Thank you too, to June, Freda and Angie for their help and good cheer. A big thank you to all at Rhone-Poulenc Rorer in Dagenham and to all my friends in Bath over the past three years, especially: Derradji Boumrah, Dave Corser, Simon Diston, Stuart Firth-Clark, Matt Fletcher, Barry Hayter, Lawrence Ho, Cida Kawamoto, Max Liu, Chris Rodriquez, Neil Smith and Jon Swift And finally, to Wilson - for his constant love and support Summary This project is concerned with the synthesis of a new family of peptide mimetics, 1: R3 T H PN H-V0^ R2 o 1 P = amino protecting group R l - R3 = amino acid sidechains R4 = alkyl It was aniticipated that a compound such as 1 would be resistant to enzymatic degradation, since incorporation of a reduced amide bond in place of an amide at a point of cleavage in a biologically active peptide is known to produce a protease enzyme inhibitor by mimicking the tetrahedral transition state for amide bond hydrolysis, which is itself resistant to hydrolysis. The conformation of such a compound was also of interest since molecular modelling studies suggest that reduction of certain amide bonds in a peptide chain causes the peptide to adopt a P turn structure. Synthetic routes to compound 1 via amide reduction, Mitsunobu alkylation, reductive amination of N-(t-butoxycarbonyl)amino aldehydes and tosylate displacement reactions are described. Contents Abbreviations i Nomenclature and terminology iii 1. Introduction 1.1 The history of peptide chemistry 1 1.2 Bioactive peptides 2 1.3 Why modify? 4 1.4 Modifications 5 1.5 Modification of the peptide backbone 6 1.6 A new family of peptide mimetics 8 1.7 The methyleneamino link as an amide bond isostere 9 1.8 Conformational studies on reduced peptides 13 1.9 Synthesis of reduced peptides 15 1.10 Aims 21 Results and discussion 2. Reduction 24 3. Mitsunobu alkylation 36 4. Reductive animation 49 5. Tosylate displacement 62 Conclusion 80 6. Experimental 81 References 108 Abbreviations Ac: acetyl ACE: angiotensin converting enzyme AcOH: acetic acid ADDP: 1, l'-(azodicarbonyl)dipiperidine Boc: N-(f-butoxycarbonyl) br: broad Bu: butyl *Bu: f-butyl Bzl: benzyl CD: circular dichroism d: doublet DCC: 1,3-dicyclohexylcarbodiimide DCU: 1,3-dicyclohexylurea DEAD: diethyl azodicaiboxylate DEPT: distortionless enhancement by polarisation transfer DIBAL-H: diisobutylaluminium hydride DIEA: N, N-diisopropylethylamine DMF: N, N-dimethylfomiamide DMSO: dimethylsulphoxide EDC: l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride El: electron impact FAB: fast atom bombardment HOBt: 1-hydroxybenzotriazole hydrate HOSu: N-hydroxysuccinimide Me: methyl m: multiplet NBA: m-nitrobenzyl alcohol Pht: phthalimide PMA: phosphomolybdic acid py: pyridine q: quartet Red-Al: sodium bis(2-methoxyethoxy)aluminium hydride s: singlet t: triplet TFA: trifluoroacetic acid THF: tetrahydrofuran Tic: 1 ,2 ,3 ,4-tetrahydroisoquinoline-3-carboxylic acid TIPA: N, N, N\ N’-tetraisopropylazodicarboxamide TMAD: N, N, N', N’-tetramethylazodicarboxamide TMSQ: chlorotrimethylsilane Tpi: 2 ,3 ,4 ,9-tetrahydro-1 H-pyrido-[3,4-6]indole-3-carboxylic acid Ts: p-toluenesulphonyl TsCl: p-toluenesulphonyl chloride Z: N-benzyloxycarbonyl Nomenclature and terminology IUPAC nomenclature for peptides and peptide analogues is used. The backbone of a homomeric, homodetic peptide is composed of three repeating units: the amide nitrogen, the a-carbon and the amide carbonyl (Figure 1). The unit in Figure 1 is referred to as an amino acid residue. R O Figure 1, The symbol "y" signals the absence of the amide bond. Within the brackets that follow is specified the structure that replaces the amide group, e.g. Figure 2. The replacing unit for the amide bond is "CH 2 NH"; the nomenclature symbol is "y[CH2NH]". O Figure 2. Alay[CH2NH]Ala The following terms are used in this thesis: agonist: a molecule that binds to a receptor and produces an effect; antagonist or inhibitor a molecule that binds to a receptor and prevents the receptor from transmitting a signal; IC5 0 : the concentration (of inhibitor) at which 50% inhibition of the enzyme is achieved. Turns A host of bioactive peptides have been discovered in the last 20 years. Turn structures have been proposed and implicated in the bioactivity of several of these naturally occurring peptides. Turns are intrinsically polar structures with backbone groups that pack together closely and sidechains that project outward. In peptides, turns are the conformations of choice for simultaneously optimising both backbone- chain compactness (intramolecular nonbonded contacts) and sidechain clustering (to facilitate intermolecular recognition). A turn is defined as a site where the peptide chain reverses its overall direction. A p turn contains four amino acid residues. The carbonyl of residue i is hydrogen bonded to the NH of residue i+3 (Figure 3). Figure 3. A p turn. Table 1 defines the dihedral angles for the eight types of p turns. 1 Table 1. Dihedral angles in p turns. i + 1 i + 2 P turn ♦ V ♦ V Type I -60 -30 -90 0 T ypel’ 60 30 90 0 Typell -60 120 80 0 Type IT 60 -120 -80 0 Type HI -60 -30 -60 -30 Type nr 60 30 60 30 Type IV -60 120 -90 0 Type IY' -120 120 -60 0 Chapter 1 Introduction 1. Introduction 1.1 The history of peptide chemistry 'To Emil Fischer we owe the systematic attack on a field of natural substances that had previously been avoided by chemists. "2 Emil Fischer is generally regarded as the father of peptide chemistry and this quote from Wieland and Bodanszky sums up his place in its history. Peptide chemistry had its beginnings early this century with the production of peptides containing simple amino acids by Fischer and his contemporaries. Without the coupling reagents and protecting groups available nowadays, syntheses were laborious. In former times the synthetic difficulties were alleviated somewhat by the discovery of the benzyloxycarbonyl protecting group by Bergmann and Zervas in 1932,3 allowing the use of polyfunctional amino acids. The synthesis of small peptides was now feasible and glutathione, a naturally occurring small peptide was synthesised by Harington and Mead in 1935.4 The synthesis, eighteen years later, of the octapeptide hormone, oxytocin by du Vigneaud et al$ is regarded as a major breakthrough in peptide chemistry. The next formative step occurred when Bodanszky and his co-workers, in 1967, now with a vast array of protecting groups and reagents at hand, synthesised the 27-residue sectretin peptide by solution phase stepwise addition methodsA? Wieland described the advances in peptide chemistry in the following way: "... the synthesis of glutathione opened the door to peptide synthesis a crack, and the synthesis of oxytocin pushed the door wide open."8 Grant^ extends this analogy, saying that the development of solid phase peptide synthesis by Merrifield in 1963 ^ "blew the door off its hinges".
Recommended publications
  • Qualitative Microanalysis of Non-Ferrous Metals
    Proceedings of the Iowa Academy of Science Volume 49 Annual Issue Article 53 1942 Qualitative Microanalysis of Non-Ferrous Metals George W. Brown University of Iowa Lothrop Smith University of Iowa Let us know how access to this document benefits ouy Copyright ©1942 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Brown, George W. and Smith, Lothrop (1942) "Qualitative Microanalysis of Non-Ferrous Metals," Proceedings of the Iowa Academy of Science, 49(1), 323-331. Available at: https://scholarworks.uni.edu/pias/vol49/iss1/53 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Brown and Smith: Qualitative Microanalysis of Non-Ferrous Metals QUALITATIVE MICROANALYSIS OF NON-FERROUS METALS GEOIWE w. BROWN AND LOTHROP SMITH During summer vacations, part of my school expense was earn­ ed as a purchaser of non-ferrous scrap metal for a small Chicago smelter. In such purchasing, it is very necessary to know some­ thing of the general composition of the metal. For example, in buying soldered articles, it is of vital importance to know whether the solder is high in tin or lead, and whether it contains antimony or bismuth. Other purchasers to whom I have talked have report~ ed the same difficulty. It is common practice in the purchase of metal from large smelt­ ers, to take the vendor's word for the composition, as the only al­ ternatives are either an expensive analysis by a commercial labor­ atory, or the establishment of a laboratory by the small foundry.
    [Show full text]
  • Disconnect by the Numbers: a Beginner's Guide to Synthesis
    Disconnect by the Numbers A Beginner’s Guide to Synthesis Michael B. Smith University of Connecticut, Storrs, CT 06269 A perennial problem in teaching organic chemistry is in- countered in undergraduate courses, however, quickly re- troduction of synthesis and the disconnection method. veals that such complexity is lacking in most cases and a Sophomores in the midst of the first organic course and first- simple bond-forming strategy is both reasonable and useful. year graduate students with a single undergraduate organic The protocol described in this work will begin by assigning course have only a limited knowledge of carbon bond form- numbers to each bond, based entirely on the small set of ing reactions and functional group interchange reactions. carbon bond forming reactions introduced in a typical two- The student often worries more about making the “correct semester organic chemistry course (7). These reactions are disconnection” rather than focusing attention on the chemi- listed in Table 1. Tables are provided to assign the numbers, cal reactions and concepts required to form that bond. When based on the importance of forming carbon bonds in mole- the student makes a reasonable disconnection, the choices to cules containing a polarized functional group. The proce- reform that bond are often limited and confusing. dure assigns priorities based on key regions of a molecule: (1) The synthesis of organic molecules dates to the 19th cen- the bond connected to a functional group X (C—/ /—X), (2) tury, but the work of Perkin, Robinson, and others in the to the second bond from X (C—//—C—X) and (3) to the early 20th century demonstrated the ability to plan a syn- third bond from X (C—/ /—C—C—X).
    [Show full text]
  • Organocatalytic Decomposition of Poly(Ethylene Terephthalate) Using Triazabicyclodecene Proposal
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2010 Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal Julien Matsumoto Lecuyer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lecuyer, Julien Matsumoto, "Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal" (2010). Master's Theses. 3873. DOI: https://doi.org/10.31979/etd.c3kc-xcdz https://scholarworks.sjsu.edu/etd_theses/3873 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE A Thesis Presented to The Faculty of the Department of Chemical and Materials Engineering San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Julien Matsumoto Lecuyer December 2010 © 2010 Julien Matsumoto Lecuyer ALL RIGHTS RESERVED ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE by Julien Lecuyer APPROVED FOR THE DEPARTMENT OF CHEMICAL & MATERIALS ENGINEERING SAN JOSÉ STATE UNIVERSITY August 2010 Dr. Melanie McNeil Department of Chemical & Materials Engineering Dr. Richard Chung Department of Chemical & Materials Engineering Dr. James Hedrick IBM Almaden Research Center Dr. Kazuki Fukushima IBM Almaden Research Center ABSTRACT ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE This study focuses on the organocatalytic decomposition of polyethylene terephthalate (PET) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to form a diverse library of aromatic amides.
    [Show full text]
  • Reduction of Vanillin to Vanillyl Alcohol
    Reduction of Vanillin to Vanillyl Alcohol. Background In this lab you will reduce vanillin (4-hydroxy-3-methoxybenzaldehyde) with sodium borohydride (NaBH4) to produce vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol), scheme 1. After isolating the product, you will determine its melting point, determine the isolated yield of the reaction and discuss how NMR may be used to verify the reaction. O H OH NaBH4 NaOH H3BO4 H2O OCH3 OCH3 OH OH Vanillin Vanillyl alcohol M.W. = 152.14 g/mole M.W. = 154.16 g/mole m.p. = 82 oC m.p. = 115 oC Scheme 1. Vanillin is an aromatic compound that can be isolated from the cured fruit of Vanilla planifolia. It is mostly used in foods (killer French toast) and perfumes (Ode de Keibler). However, most commercial vanilla flavoring is derived from the lignin of wood pulp, yummm... We will be using vanillin as a starting material for the production of vanillyl alcohol, a compound that can serve as a valuable intermediate in the production of novel flavorings and perfumes. An excess of sodium borohydride, a convenient and mild reducing agent, will be used as the reductant in this reaction. The experimental apparatus and a list of reagents are provided in figure 1, below. Procedure 1. Place 2g (13.2 mmol) of vanillin in a 25 mL round bottom flask followed by 4 mL ethanol. Add a stir bar, clamp the flask above a stir plate and commence stirring at room temperature to solublize the vanillin. 2. After the vanillin goes into solution, add an REAGENTS ice bath under your flask to cool the solution.
    [Show full text]
  • Reagents and Indicators R-1-1 List of Reagents
    REAGENTS AND INDICATORS R-1-1 LIST OF REAGENTS The following reagents and chemicals are specified for use in the Standard Analytical Methods. Certain of these materials may be subject to safe handling and disposal techniques. Users of these methods are requested to refer to Material Safety Data Sheets and/or other appropriate sources of hazard communication to insure compliance with safe handling and disposal methods. Acetaldehyde Calcium Hypochlorite Acetic Acid Calcium Hydroxide Ethylene Glycol Bis Acetone Calcium Oxalate (β-Aminoethyl Aflatoxins Carbazole Ether)-N, Alumina, Neutral Carbon Tetrachloride N'-Tetraacetic Acid Ammonium Citrate Celite Filter Aid Ethylidene Glucose Ammonium Cobalt Ceramic Fiber Sulfate Chlorine Gas Fermco Test S.F.G. Ammonium Dihydrogen Chloroform Ferric Ammonium Phosphate Copper Metal, Electrolytic Sulfate Ammonium Copper Selenite Ferric Perchlorate Metavanadate Copper Sulfate Ferroin Indicator Ammonium Hydroxide Copper Sulfate Ferrous Ammonium Sulfate Ammonium Molybdate Pentahydrate Filter Aid, HYFLO Ammonium Nitrate Creatine Filter Aid, CELITE Ammonium Oxalate Cresol Red Florisil Ammonium Sulfate Cystein Hydrochloride Formamide Amyl Alcohol Fructose Aniline Diethyl Ether Fuchsin Dye Antifoam, Dow Corning Diethyldithiocarbamate Arsenious Oxide Dimethylaminobenzaldehyde Gasoline Asbestos Diphenylamine Glass Wool Ascorbic Acid Diphenylcarbazone Glucose Dipotassium Acid Glucose Oxidase Barium Chloride Phosphate B-D-Glucose Benzene Disodium Pentaacetate Boric Acid (ethylenedinitrilo) Bromine Tetraacetic Acid
    [Show full text]
  • Novel Process for the Preparation of 9-Deoxo-8A-Aza-8A-Homoerythromycin a and Its 8A-Alkyl Derivatives
    Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number : 0 508 726 A1 12 EUROPEAN PATENT APPLICATION © Application number : 92303076.1 © int. ci.5: C07H 17/08, A61K 31/70 @ Date of filing : 07.04.92 © Priority: 11.04.91 US 683947 © Inventor : Wilkening, Robert R. 11 Salter Place Maplewood, NJ 07042 (US) @ Date of publication of application : 14.10.92 Bulletin 92/42 © Representative : Thompson, John Dr. et al Merck & Co., Inc. European Patent @ Designated Contracting States : Department Terlings Park Eastwick Road CH DE FR GB IT LI NL Harlow, Essex CM20 2QR (GB) © Applicant : MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065-0900 (US) © Novel process for the preparation of 9-deoxo-8a-aza-8a-homoerythromycin a and its 8a-alkyl derivatives. © A method of synthesizing compounds of the general structural formula Where R is hydrogen, hydroxyl or 1-10 carbon alkyl and n is 0 or 1, and the pharmaceutically acceptable salts thereof. These compounds are macrolides, useful as antibiotics, and also useful as intermediates to the synthesis of other macrolide antibotics. CO CM h- 00 o If) LU Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 508 726 A1 BACKGROUND OF THE INVENTION The present invention relates to a novel method of preparing novel chemical compounds having antibac- terial activity, which are useful in the therapy of bacterial infections in mammals. The compounds made by the 5 method of this invention are also themselves useful as antibacterial compounds. More specifically,
    [Show full text]
  • Reagents Status:Published Document ID: 1188 DATE EFFECTIVE APPROVED by PAGE 08/29/2019 Quality Assurance Manager 1 of 7
    FORENSIC BIOLOGY QUALITY ASSURANCE/QUALITY CONTROL MANUAL Reagents Status:Published Document ID: 1188 DATE EFFECTIVE APPROVED BY PAGE 08/29/2019 Quality Assurance Manager 1 OF 7 Reagents 1 Guiding Principles and Scope 1.1 A reagent is any substance used because of its chemical or biological activity. Reagents are used directly, or at a dilution, in a given analytical procedure. Reagents are different than chemicals, which are used in the preparation of in-house reagents. 1.2 Only reagents suitable for the methods employed may be used in the Department of Forensic Biology. This procedure describes in general terms the requirements for the documentation and quality control of commercial reagents and for the formulation, documentation, and quality control of in-house reagents. The last section in this document is a list of the reagents used by the Department. 2 Procedure 2.1 Reagents are classified into two general categories: 2.1.1 A critical reagent is determined by empirical studies or routine practice to require testing on established samples before use on evidentiary or casework reference samples in order to prevent unnecessary or irreparable loss of sample. “Critical reagents” includes a variety of test kits or systems used in DNA testing. 2.1.2 A non-critical reagent is a reagent whose failure to work properly will not cause irreparable loss of sample. Therefore, the use of a QC test procedure to check the reliability of the reagent prior to its use in casework is not an absolute requirement, but will be performed by the Department on a reagent-by-reagent basis.
    [Show full text]
  • Material Matters Vol.3 No.1
    TM Vol. 3, No. 1 3-D Nano and Micro Structures Inks for Direct-Write 3-D Assembly Colloidal Crystal Templating Small Structures Inspiring Electrospinning Big Technologies Quantum Dots: Nanoscale Synthesis and Micron-Scale Applications 2 Introduction TM Welcome to the first 2008 issue of Material Matters™, focusing on 3-dimensional (3D) micro- and nanostructures. New techniques to create materials ordered at micro- Vol. 3 No. 1 and nanoscale drive scientific and technological advances in many areas of science and engineering. For example, 3D-patterned metal oxides could enable construction of micro-fuel cells and high-capacity batteries smaller and more energy efficient compared to presently available devices. Ordered porous materials with exceedingly large surface areas are good candidates for highly efficient catalysts and sensors. Aldrich Chemical Co., Inc. New methods for periodic patterning of semiconductor materials are fundamental Sigma-Aldrich Corporation to next-generation electronics, while individual nanoscale semiconductor structures, 6000 N. Teutonia Ave. known as quantum dots (QDs), have remarkable optical properties for optoelectronics Milwaukee, WI 53209, USA and imaging applications. And biomedical engineers are using tailored nanofibers and patterned polymeric structures to develop tissue-engineering scaffolds, drug-delivery devices and microfluidic networks. To Place Orders The broad diversity of potentially relevant material types and architectures underscores Telephone 800-325-3010 (USA) the need for new approaches to make 3D micro- and nanostructures. In this issue, FAX 800-325-5052 (USA) Introduction Professor Jennifer Lewis (University of Illinois at Urbana-Champaign) describes direct- write printing of 3D periodic arrays. This work depends on formulation of suitable Customer & Technical Services inks, many of which can be prepared using particles and polyelectrolytes available Customer Inquiries 800-325-3010 from Sigma-Aldrich®.
    [Show full text]
  • Protecting Groups Are Attacked by the by Attacked Are Groups Protecting -Troc -Phthalimido), Benzylidene and Isopropyl- O N CO 2
    View Online / Journal Homepage / Table of Contents for this issue REVIEW Protecting groups Krzysztof Jarowicki and Philip Kocienski Department of Chemistry, University of Glasgow, Glasgow, UK G12 8QQ Covering: 1997 OBn H2N Previous review: Contemp. Org. Synth., 1997, 4, 454 NH NO RO O 2 3 RO SEt H2N 1 Introduction NH 3 (5 mmol) 2 Hydroxy protecting groups O 2.1 Esters O CCl3 MeONa (1 mmol) 2.2 Silyl ethers (in MeOH, 1 ml, 1 M) MeOH-CH2Cl2 2.3 Alkyl ethers 1 R = Ac 4 (6 ml) (50 ml, 9:1), rt 94% rt, 15 min 0.1 mmol scale 2.4 Alkoxyalkyl ethers 2 R = H 3 Thiol protecting groups G/GHNO3 4 Diol protecting groups 4 5 Carboxy protecting groups G = guanidine 6 Phosphate protecting groups Scheme 1 7 Carbonyl protecting groups 8 Amino protecting groups OTBS 9 Miscellaneous protecting groups 10 Reviews 11 References TESO O H OMe H 1 Introduction O O OMe The following review covers new developments in protecting OTES TBSO group methodology which appeared in 1997. As with our previ- O ous annual review, our coverage is a personal selection of OR methods which we deemed interesting or useful. Many of the O O references were selected through a Science Citation Index O search based on the root words block, protect and cleavage; AcO however, casual reading unearthed many facets of protecting OAc group chemistry which are beyond the pale of a typical key- word search. Inevitably our casual reading omits whole areas in OTES Downloaded by San Francisco State University on 14 September 2012 Published on 01 January 1998 http://pubs.rsc.org | doi:10.1039/A803688H which we lack expertise and so we cannot claim comprehensive coverage of the literature.
    [Show full text]
  • Surfactant Monographie
    Fundamentals 1 Fundamentals 1.1 What is a surfactant? 1.1.1 Physical and chemical properties «Surfactants, what on earth are they? Yes, Ive heard of them, arent they found in washing powders?» «What are they called again ?» An alternative term for a surfactant, «tenside», goes back to the Latin «tensio», which means tension and refers to the alteration in surface tension under the influence of surfactants1. This is why surfactants are also called «surface-active substances». Such a surface could be, for example, a water surface forming the boundary between water, the liquid medium and air, the gaseous medium. The surface of a potato in a cooking pot can also be the boundary surface between the solid medium (potato) and the liquid medium (water). Naturally there are also boundary surfaces be- tween two liquids such as fat droplets floating in a soup. If vegetable oil and water are brought together then the two immiscible liquids separate out and a boundary surface forms between them. It is exactly this boundary surface on which the surface-active substances, the surfactants, act. If a suitable surfactant is added then products such as mayonnaise or margarine can be formed from the immis- Fig. 1: Molecular structure of dodecyl sulphate (schematic) cible components vegetable oil and water. All typical surfactant properties can be traced back to their amphiphilic structure, i.e. to the presence of hydrophilic (water-loving) and hydrophobic (water-repellent) groups in the molecule. This structure has the ability to lower the surface tension. An example of this is the molecular struc- ture of dodecyl sulphate in Fig.
    [Show full text]
  • Supporting Info 10-29-2011
    Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012 Supporting Information Nickel-Catalyzed Regiodivergent Approach to Macrolide Motifs Abdur-Rafay Shareef, David H. Sherman*, John Montgomery* Life Science Institute and Departments of Chemistry, Medicinal Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, MI, 48109 [email protected]; [email protected] Materials and Methods. Unless stated otherwise, all reactions were performed in flame-dried glassware under a nitrogen or argon atmosphere. All solvents were purified under nitrogen using a solvent purification system unless specified (Innovative Technology, Inc., Model # SPS-400-3 and PS-400-3 or MBraun-MB-SPS # 08-113). All other commercially obtained reagents were used as received, unless otherwise stated. Ni(COD)2 (Strem Chemicals, Inc., used as received), potassium tert-butoxide (Aldrich), N-heterocyclic carbene salt (IMES-HCl), and [(±)-DP-IPr-BF4], were stored and weighed in an inert atmosphere glovebox. Reaction temperatures were controlled by a JKEM Scientific (Model 210) temperature modulator or IKA RET Control Visc (Serial RS 232 C). Analytical thin-layer chromatography (TLC) was conducted with Kieselgel 60 F254 pre-coated glass plates (0.25 mm) and visualized using a combination of UV (256 nm), p-anisaldehyde (20.5 mL, H2SO4, 530 mL EtOH, 28.0 mL H2O, 6.20 mL AcOH, 15.0 mL p-anisaldehyde) and KMnO4 (3.00 g KMnO4, 20.0 g K2CO3, 5.00 mL 5% NaOH (aq.), 300 mL H2O). Flash column chromatography was performed using Kieselgel 60 (230- 400 mesh) silica gel. 1H NMR spectra were recorded on a Varian Mercury 400, Varian Inova 500, Varian vnmrs 500, or Varian vnmrs 700, and are reported relative to residual 1 solvent peaks (CDCl3, δ 7.24).
    [Show full text]
  • Production of Ethanol from Cellulose (Sawdust)
    PRODUCTION OF ETHANOL FROM CELLULOSE (SAWDUST) Kingsley Otulugbu Degree Thesis Plastic Technology 2012 DEGREE THESIS Arcada Degree Programme: Plastic Technology Identification number: 9611 Author: Kingsley Otulugbu Title: Production of Ethanol from cellulose(SAWDUST) Supervisor (Arcada): Mariann Hölmberg Commissioned by: Abstract: The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage in food, inbalance in food chain, increased food price and indirect land use. This thesis thus explores using another feed for the production of ethanol- hence ethanol from cellulose. Sawdust was used to carry out the experiment from the production of ethanol and two methods were considered: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharication and Fermentation). The SHF proved more hazardous than SSF and also had waste products that are hazardous to the environment. However, it is less costly. On the other hand SSF produced more yield and the process took a longer duration compared to the SHF. The overall process was compared to previous work done on ethanol from an equal mass of corn and it was noted that more yield was experienced with corn (starch) and it was less costly. In conclusion, cellulose ethanol will only thrive well if strict bans are implemented on starch ethanol because evidently there is more yields from starch ethanol, safer and it is less expensive. However, a breakthrough in genetically engineering a microbe to directly convert cellulose to ethanol will be profitable. Keywords: Cellulose, Ethanol , Fermentation Number of pages: 47 Language: English Date of acceptance: March 2012 1 Acknowledgement First and foremost, I want to acknowledge the Almighty God for his infinite mercies without him everything have achieved would be impossible.
    [Show full text]