Expérimentation Et Déploiement Du Véhicule Autonome En Île-De-France Le Rôle Facilitateur Des Pouvoirs Publics

Total Page:16

File Type:pdf, Size:1020Kb

Expérimentation Et Déploiement Du Véhicule Autonome En Île-De-France Le Rôle Facilitateur Des Pouvoirs Publics Expérimentation et déploiement du véhicule autonome en Île-de-France Le rôle facilitateur des pouvoirs publics Mai 2019 IAU île-de-France 15, rue Falguière 75740 Paris cedex 15 Tél. : + 33 (1) 77 49 77 49 - Fax : + 33 (1) 77 49 76 02 http://www.iau-idf.fr Directeur général : Fouad Awada Étude réalisée par Dany Nguyen-Luong, Directeur du Département Mobilité transports Avec la collaboration de Cédric Cariou, Alexandra Cocquière, Jérémy Courel, Jan Durdevic, Thierry Petit, Frédérique Prédali, Dominique Riou, Daniel Thépin N° d’ordonnancement : 5.18.012 Crédit photo couverture : Coralie RENARD / Transdev Sommaire 1. Introduction ............................................................................ 5 2. Etat des lieux .......................................................................... 6 2.1 Le véhicule autonome : un mode parmi d’autres de la mobilité du futur ........................... 6 2.2 Les usages du véhicule autonome ..................................................................................... 6 2.3 Les bénéfices du véhicule autonome ................................................................................. 9 2.4 Les freins au véhicule autonome ..................................................................................... 11 2.5 La convergence du véhicule autonome et du véhicule partagé ....................................... 12 2.6 La gestion de la mixité véhicule autonome-véhicule privé : une transition à risque ........ 13 2.7 La technologie : encore des progrès à faire pour circuler sur route ouverte ................... 14 2.8 Des préoccupations en matière de cyber-sécurité et de responsabilité .......................... 17 2.9 Des expérimentations en France encore trop timides ..................................................... 17 3. Leviers réglementaires ......................................................... 19 3.1 Le cadre réglementaire international ................................................................................ 19 3.2 Le cadre réglementaire européen .................................................................................... 20 3.3 Le cadre réglementaire français ....................................................................................... 20 3.4 Mettre en place une expérimentation en France: le parcours du combattant .................. 25 3.5 Le cadre réglementaire américain .................................................................................... 29 3.6 Le cadre réglementaire allemand ..................................................................................... 30 3.7 Le cadre réglementaire ailleurs ........................................................................................ 31 4. Politiques d’aide des Etats et des collectivités locales ..... 32 4.1 La législation pour faciliter l’expérimentation ................................................................... 32 4.2 L’aide par financement direct ........................................................................................... 38 4.3 L’aide par financement indirect ........................................................................................ 41 5. Niveau d’avancement et de maturité des acteurs privés ... 46 5.1 Une multitude d’acteurs privés ......................................................................................... 46 5.2 Des partenariats tous azimuts .......................................................................................... 51 5.3 Distinguer l’avancement de la maturité ............................................................................ 54 6. Conclusion ............................................................................ 55 Fiches 1 à 22 ............................................................................. 60 Fiche 1 : Expérimentation Paris, Pont Charles de Gaulle ..................................................... 61 Fiche 2 : Expérimentation Puteaux, Esplanade de la Défense ............................................. 63 Fiche 3 : Expérimentation Vincennes .................................................................................... 66 Fiche 4 : Projet « Tornado », sur la commune de Rambouillet ............................................. 68 Fiche 5 : Expérimentation Rungis, Parc Icade ...................................................................... 69 Fiche 6 : Expérimentation Issy-les-Moulineaux, Île Saint-Germain ....................................... 71 3 IAU îdF – Véhicule autonome Fiche 7 : Expérimentation Saclay, site du CEA ..................................................................... 72 Fiche 8 : Navettes VEDECOM autonomes sur le plateau de Satory .................................... 74 Fiche 9 : Expérimentation de Rouen ..................................................................................... 76 Fiche 10 : Expérimentation de Verdun .................................................................................. 78 Fiche 11 : Projet SCOOP : préparer l’arrivée du VA via une infrastructure routière connectée79 Fiche 12 : Initiative Road 5.0 de la Région d’Île-de-France .................................................. 82 Fiche 13 : Plan national d’expérimentations .......................................................................... 83 Fiche 14 : Projet Drive Me - Suède ....................................................................................... 85 Fiche 15 : Projet Sohjoa - Finlande ....................................................................................... 87 Fiche 16 : Transpolis - Lyon .................................................................................................. 89 Fiche 17 : ZALAZone – Hongrie ............................................................................................ 91 Fiche 18 : K-City – Corée du sud .......................................................................................... 93 Fiche 19 : Mcity – Etats-Unis ................................................................................................. 95 Fiche 20 : OmniCAV - Grande Bretagne ............................................................................... 96 Fiche 21 : VRX, SCANeRTM et ROADS - France ................................................................ 97 Fiche 22 : PTV MaaS Modeller .............................................................................................. 98 4 IAU îdF – Véhicule autonome 1. Introduction Cette étude s’inscrit dans le cadre des réflexions menées par les services du Conseil régional pour faciliter les expérimentations et le déploiement des véhicules autonomes (VA) en Île-de-France. L’expérimentation est en effet une phase indispensable pour tester les solutions technologiques et la fiabilité en matière de sécurité, évaluer les usages et l’acceptabilité. Plusieurs expérimentations simples de navettes autonomes sur voie dédiée ont déjà été réalisées comme à la Défense ou à Vincennes. Quelle stratégie et actions la région peut-elle mener au-delà de l’aide apportée à ces expérimentations, dans un contexte extrêmement mouvant sur l’avenir du véhicule autonome ? Régulièrement, les constructeurs automobiles, un GAFAM ou un BATX annoncent le déploiement prochain d’une flotte de véhicules autonomes ou d’une nouvelle avancée de l’Intelligence Artificielle (IA) qui alimente la conduite autonome, annonce aussitôt commentée par un expert qui affirme que ce n’est pas pour demain. La réglementation française sur le sujet évolue pour s’adapter aux évolutions technologiques tout en mettant la priorité sur la sécurité routière. Le véhicule autonome s’inscrit dans le cadre d’une mobilité du futur qui sera polymorphe, à la fois connectée, partagée, électrique et autonome. Les nouveaux services de mobilité (VTC, covoiturage, autopartage) sont foisonnants et pourraient converger à terme avec le véhicule autonome. La place de la voiture individuelle diminue en ville et dans les têtes de la génération Y, ceux nés après 1980. Une course effrénée se joue entre les acteurs privés (Waymo loin devant, VTC, entreprises technologiques, constructeurs automobiles, équipementiers, gestionnaires de flottes, énergéticiens, start-up de services de mobilité et d’applications mobiles) qui sont nombreux, entreprenants et demandeurs de soutien de la puissance publique. Des partenariats de toutes sortes se nouent en permanence. Le contexte s’avère darwinien et au final sans doute un certain nombre d’acteurs n’y survivront pas. Quant aux citoyens, ils s’interrogent, notamment sur les questions de coûts d’achat, de sécurité et sur le côté « orwellien » de la technologie capable de suivre en temps réel tous nos déplacements en véhicule autonome. Il est important de noter que l’étude se limite à la phase amont d’expérimentation et de déploiement du véhicule autonome, phase qui précède celle de la régulation du véhicule autonome. Sous le terme de régulation, nous entendons la manière des pouvoirs publics d’organiser les différentes flottes de véhicules autonomes et partagés (par exemple par attribution de licences), de contrôler et reprendre en main à distance un VA, de limiter l’autosolisme en véhicule autonome (par exemple par un péage), de favoriser le partage des VA (par exemple avec des aménagements routiers réservés), d’assurer la sécurité des personnes dans les véhicules partagés (par exemple la nuit), de veiller à la complémentarité entre véhicules autonomes et transports collectifs, etc. Des pistes sont proposées dans le projet de la loi Lom. La régulation du
Recommended publications
  • Självkörande Bussar I Stadstrafik
    Självkörande bussar i stadstrafik - förstudie Jan Jacobson, Kari Westgaard Berg, Daniel Bügel, Kristian Flink, Anders Thorsén, Charlotta Tornvall, Mari Lie Venjum RISE Rapport 2018:63 Självkörande bussar i stadstrafik - förstudie Jan Jacobson, Kari Westgaard Berg, Daniel Bügel, Kristian Flink, Anders Thorsén, Charlotta Tornvall, Mari Lie Venjum 1 Abstract Automated buses in urban traffic - prestudy Automated road transport is regarded as a key enabler for sustainable transport. One example is the use of small automated buses as a supplement to already existing public transport services. There are several manufacturers of these kind of buses, and field trials are in progress. The goal of the pre-project is to evaluate the feasibility and criteria for transport with automated buses in two middle-sized Nordic municipalities, Lørenskog in Norway and Borås in Sweden, by analyzing at least two different test-cases in each location. Feasibility, adaptation to existing traffic and conditions for public acceptance are described. The pre-project concludes that automated buses are possible in these two municipalities. Further test and demonstrations should be made. Key words: automated driving, shuttle bus, automated transport RISE Research Institutes of Sweden AB RISE Rapport 2018:63 ISBN: 978-91-88907-06-6 Borås 2018 2 Innehåll Abstract ....................................................................................................... 1 Innehåll .....................................................................................................
    [Show full text]
  • Personal Automated Transportation
    Personal Automated Transportation: Status and Potential of Personal Rapid Transit Technology Evaluation January 2003 by the Advanced Transit Association Bob Dunning, committee chair Ian Ford, report editor Committee Members Rob Bernstein Joe Shapiro Catie Burke Markus Szillat Dennis Cannon Göran Tegnér George Haikalis Ron Thorstad Jerry Kieffer David Ward Dennis Manning Michael Weidler David Maymudes William Wilde Jeral Poskey NOTE: This report is published in a group of documents. Other documents in the group include an executive summary, a discussion and rationale for PRT, technology primer, FAQ, and other supporting reports. The full set is detailed on the web site: www.advancedtransit.org/pub/2002/prt ATRA: Personal Transportation, Evaluation (January 2003) Page 1 Contents Purpose..........................................................................................................................................................4 Study process ................................................................................................................................................5 Non-participating vendors ............................................................................................................................8 Study organization ........................................................................................................................................9 Sources........................................................................................................................................................10
    [Show full text]
  • Mechatronics Design of an Unmanned Ground Vehicle for Military Applications 237
    Mechatronics Design of an Unmanned Ground Vehicle for Military Applications 237 Mechatronics Design of an Unmanned Ground Vehicle for Military 15X Applications Pekka Appelqvist, Jere Knuuttila and Juhana Ahtiainen Mechatronics Design of an Unmanned Ground Vehicle for Military Applications Pekka Appelqvist, Jere Knuuttila and Juhana Ahtiainen Helsinki University of Technology Finland 1. Introduction In this chapter the development of an Unmanned Ground Vehicle (UGV) for task-oriented military applications is described. The instrumentation and software architecture of the vehicle platform, communication links, remote control station, and human-machine interface are presented along with observations from various field tests. Communication delay and usability tests are addressed as well. The research was conducted as a part of the FinUVS (Finnish Unmanned Vehicle Systems) technology program for the Finnish Defense Forces. The consortium responsible for this project included both industry and research institutions. Since the primary interest of the project was in the tactical utilization scenarios of the UGV and the available resources were relatively limited, the implementation of the vehicle control and navigation systems was tried to be kept as light and cost-effective as possible. The resources were focused on developing systems level solutions. The UGV was developed as a technology demonstrator using mainly affordable COTS components to perform as a platform for the conceptual testing of the UGV system with various types of payloads and missions. Therefore, the research methodology was rather experimental by nature, combining complex systems engineering and mechatronics design, trying to find feasible solutions. The ultimate goal of the research and development work was set to achieve high level of autonomy, i.e., to be able to realistically demonstrate capability potential of the system with the given mission.
    [Show full text]
  • Las Estrategias De Las Empresas Automovilísticas Con El Coche
    Facultad de Ciencias Económicas y Empresariales LAS ESTRATEGIAS DE LAS EMPRESAS AUTOMOVILÍSTICAS CON EL COCHE AUTÓNOMO Y LOS NUEVOS JUGADORES Autor: María Gabriela Anitua Galdón Director: Miguel Á ngel López Gómez MADRID | Abril 2019 2 RESUMEN El presente trabajo analiza las diversas estrategias concernientes al coche autónomo, implementadas por los nuevos jugadores en contraposición con los competidores tradicionales. En primer lugar, se contextualiza la temática en cuestión, a través de un enfoque histórico y conceptual del vehículo automatizado. Posteriormente, se presentan una serie de teorías estratégicas relacionadas con la temática planteada y las implicaciones de éstas. A continuación, a través del estudio de casos, se extraen determinadas conclusiones relativas al futuro del sector automovilístico, así como una serie de posibles líneas de investigación y estrategias ganadoras para los competidores, con el fin de alcanzar la victoria en la carrera planteada, que supondrá el cambio más relevante de los próximos siglos en relación a la industria automovilística. Palabras clave: vehículo autónomo, estrategia, transporte, nuevos jugadores, industria automovilística, innovación disruptiva y automatización. 3 ABSTRACT This paper analyses the various strategies concerning the autonomous vehicle, implemented by new players in contrast to traditional competitors. First of all, the subject matter is contextualized, through a historical and conceptual approach of the automated vehicle. Subsequently, a series of strategic theories related to the proposed theme and its consequences are presented. The case studies draw certain conclusions regarding the future of the automobile sector, as well as a series of possible lines of research and winning strategies for competitors, in order to achieve victory in the proposed race, which will represent the most important change in the coming centuries in relation to the automotive sector.
    [Show full text]
  • A Behavioural Lens on Transportation Systems: the Psychology of Commuter Behaviour and Transportation Choices
    A Behavioural Lens on Transportation Systems: The Psychology of Commuter Behaviour and Transportation Choices Kim Ly, Saurabh Sati, and Erica Singer, and Dilip Soman Research Paper originally prepared for the Regional Municipality of York Region 22 March 2017 Research Report Series Behavioural Economics in Action, Rotman School of Management University of Toronto 2 Correspondence and Acknowledgements For questions and enquiries, please contact: Professors Dilip Soman or Nina Mažar Rotman School of Management University of Toronto 105 St. George Street Toronto, ON M5S 3E6 Email: [email protected] or [email protected] Phone Number: (416) 946-0195 We thank the Regional Municipality of York Region for support, Philip Afèche, Eric Miller, Birsen Donmez, Tim Chen, and Liz Kang for insights, comments, and discussions. All errors are our own. 3 Table of Contents Executive Summary ...................................................................................................... 6 1. Introduction ............................................................................................................. 7 2. The Impact of Path Characteristics on Travel Choices ....................................... 9 2.1 Hassle factors – Mental effort and Commuter Orientation ................................... 11 2.2 Perceived Progress towards a Destination ............................................................... 14 2.3 Physical Environment Surrounding the Travel path and The Effect on The Commuter ...............................................................................................................................
    [Show full text]
  • Dutch Reality Putting ITS Promises Into Practice
    Smart Mobility – Dutch reality Putting ITS promises into practice The ITS promise is to make transport smarter, safer, more efficient and more sustainable. The demonstrations during the ITS European Congress 2019, at the Automotive Campus in Helmond as well as at the Evoluon in Eindhoven, show the current status of bringing ITS promises into practice. It ranges from commercial available automated vehicles, to on-going new research and development, to nation-wide rollout of dedicated infrastructure in the Netherlands and Europe. It is a complex transition, in which not only technology has to work together but above all people who have to make it a success. We are proud to show you how joined effort has resulted in this ITS dedicated demo-site with 19 demonstrations. Come and experience the ITS reality. Autonomous vehicles for public transport When thinking of autonomous vehicles, it is not only about cars and trucks in development, but also about public transport. At the Automotive Campus demo location, two companies offer you the ability to experience their automated mini-buses. - The company 2getthere will show their 3rd generation vehicle. It is able to transport up to 26 people operates bi-directional, has doors on both side, has accurate docking, but above all operates at high speed with a maximum speed up to 60 km/h. This vehicle is an upgrade of their ParkShuttle in Rotterdam, which becomes the unique link between the Rotterdam metro network and the Waterbus. - The company Navya will show their 100% autonomous and electric vehicle in urban environment in the Dutch province of Groningen.
    [Show full text]
  • Autonomous Cars: Past, Present and Future
    Autonomous Cars: Past, Present and Future A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology Keshav Bimbraw Mechanical Engineering Department, Thapar University, P.O. Box 32, Patiala, Punjab, India Keywords: Autonomous Cars, Autonomous Vehicles, Cars, Mechatronics Systems, Intelligent Transportation Technologies and Systems, Automation. Abstract: The field of autonomous automation is of interest to researchers, and much has been accomplished in this area, of which this paper presents a detailed chronology. This paper can help one understand the trends in autonomous vehicle technology for the past, present, and future. We see a drastic change in autonomous vehicle technology since 1920s, when the first radio controlled vehicles were designed. In the subsequent decades, we see fairly autonomous electric cars powered by embedded circuits in the roads. By 1960s, autonomous cars having similar electronic guide systems came into picture. 1980s saw vision guided autonomous vehicles, which was a major milestone in technology and till date we use similar or modified forms of vision and radio guided technologies. Various semi-autonomous features introduced in modern cars such as lane keeping, automatic braking and adaptive cruise control are based on such systems. Extensive network guided systems in conjunction with vision guided features is the future of autonomous vehicles. It is predicted that most companies will launch fully autonomous vehicles by the advent of next decade. The future of autonomous vehicles is an ambitious era of safe and comfortable transportation. 1 INTRODUCTION ‘Linriccan Wonder’. Significant advances in autonomous car technology has been made after the Consumers all around the whole world are enthusiastic advent of the vision guided Mercedes-Benz robotic about the advent of autonomous cars for public.
    [Show full text]
  • Opportunities and Challenges for Automated Vehicles in the Zuidvleugel
    Opportunities and challenges for automated vehicles in the Zuidvleugel Clients: Dhr. Lodewijk Lacroix Dhr. Jan Ploeger Authors: Prof.dr.ir. Bart van Arem [email protected] Dr.ir. Niels van Oort [email protected] Ir. Menno Yap Dr. Bart Wiegmans Dr.ir. Goncalo Homem de Almeida Correia January 2015 Opportunities and challenges for automated vehicles in the Zuidvleugel Abstract Motivation Since several years many developments regarding self-driving, automated vehicles (AVs) take place. Within the coming years it is expected that automated vehicles are becoming part of our transportation system. Therefore it’s becoming more and more important for policy makers to get insights into the state-of-the-art developments around AVs, in order to foster applications of AVs which are promising from a societal point of view and to take these developments into consideration during the decision- making process. Definition and function of automation Automation in this study refers to the transport system including all of its components, such as vehicles, drivers, users, infrastructure, information systems and applications. The level in which the driver is still ‘in the loop’ is used in order to discriminate between the different levels of vehicle automation: driver assistance (level 1), partial automation (level 2), conditional automation (level 3) and high/full automation (level 4). In this study, our aim is to analyze strengths, weaknesses, opportunities and threats related to different applications of automation for autonomous private vehicles, freight transport and handling, and public transport. The potential of different applications of AVs in the Zuidvleugel in this study is strictly considered from a societal perspective (demand driven), in which AVs have a societal contribution to answer challenges the Zuidvleugel will face the upcoming years.
    [Show full text]
  • First Mile – Last Mile Options with High Trip Generator Employers
    F IRST M ILE - L AST M ILE OPTIONS WITH HIGH TRIP GENERATOR EMPLOYERS DECEMBER 15, 2017 FIRST MILE – LAST MILE OPTIONS WITH HIGH TRIP GENERATOR EMPLOYERS F IRST M ILE - L AST M ILE OPTIONS WITH HIGH TRIP GENERATOR EMPLOYERS JANUARY 31, 2018 For complaints, questions or concerns about civil rights or nondiscrimination, or for special requests under the Americans with Disabilities Act, please contact: Elizabeth Rockwell at (305) 375-1881 or [email protected] The Miami-Dade TPO complies with the provisions of Title VI of the Civil Rights Act of 1964, which states: No person in the United States shall, on the grounds of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving federal financial assistance. It is also the policy of the Miami-Dade TPO to comply with all of the requirements of the Americans with Disabilities Act. For materials in accessible format, please call (305) 375-1888. The preparation of this report has been financed in part from the U.S. Department of Transportation (USDOT) through the Federal Highway Administration (FHWA) and/or the Federal Transit Administration (FTA), the State Planning and Research Program (Section 505 of Title 23, US Code) and Miami-Dade County, Florida. The contents of this report do not necessarily the official views or policy of the U.S. Department of Transportation. i FIRST MILE – LAST MILE OPTIONS WITH HIGH TRIP GENERATOR EMPLOYERS Blank page ii FIRST MILE – LAST MILE OPTIONS
    [Show full text]
  • Low-Speed Automated Shuttles: State of the Practice Final Report
    Low-Speed Automated Shuttles: State of the Practice Final Report www.its.dot.gov/index.htm Final Report – September 2018 FHWA-JPO-18-692 DOT-VNTSC-OSTR-18-03 Produced by Volpe National Transportation Systems Center U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology Intelligent Transportation Systems Joint Program Office Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The U.S. Government is not endorsing any manufacturers, products, or services cited herein and any trade name that may appear in the work has been included only because it is essential to the contents of the work. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-JPO-18-692 4. Title and Subtitle 5. Report Date Low-Speed Automated Shuttles: State of the Practice September 2018 Final Report 6. Performing Organization Code V336 8. Performing Organization Report No. 7. Author(s) DOT-VNTSC-OSTR-18-03 Joshua Cregger, Margo Dawes, Stephanie Fischer, Caroline Lowenthal, Elizabeth Machek, and David Perlman 10. Work Unit No. (TRAIS) 9. Performing Organization Name And Address John A. Volpe National Transportation Systems Center U.S. Department of Transportation 55 Broadway 11. Contract or Grant No. Cambridge, MA 02142 Inter-Agency Agreement DTFH61-15-V-00016 HW35A1 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Intelligent Transportation Systems Joint Program Office Final Report U.S.
    [Show full text]
  • A Head-Mounted Display to Support Remote Operators of Shared Automated Vehicles
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 A Head-Mounted Display to Support Remote Operators of Shared Automated Vehicles MARTIJN BOUT KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY ii Abstract Automated driving systems will be severely challenged under the unpre- dictable conditions of mixed traffic. Consequently, some form of human support remains essential in the foreseeable future. This challenge is particularly true for Shared Automated Vehicles, as these vehicles will likely not include any hu- man driver onboard. When a Shared Automated Vehicle encounters a situation it cannot handle, a remote human operator will be needed to intervene. The remote operator can help the passengers to continue their journey by resuming vehicle operations. This thesis has investigated whether using a Head-Mounted Display in comparison to a computer display improves Situation Knowledge for remote operators of Shared Automated Vehicles. This research adopted a user- centred design approach to develop a Head-Mounted Display and computer display prototype. In one of the first studies on a Shared Automated Vehi- cle remote control interface, this thesis considered implicit measurements of Situation Knowledge and did not focus on performance indicators. In a user study, twelve participants were given the task to determine the reason why the Shared Automated Vehicle had stopped based on pre-recorded driving scenar- ios. Strong qualitative evidence indicates that a Head-Mounted Display can provide remote operators with improved Situation Knowledge in comparison to computer displays. To deepen the understanding of the performance and Situation Knowledge for remote operators of Shared Automated Vehicles un- der various conditions further research is necessary.
    [Show full text]
  • Autonomous Shuttle Bus for Public Transportation: a Review
    energies Review Autonomous Shuttle Bus for Public Transportation: A Review Calin Iclodean * , Nicolae Cordos and Bogdan Ovidiu Varga Department of Automotive Engineering and Transports, Technical University of Cluj-Napoca, 400001 Cluj-Napoca, Romania; [email protected] (N.C.); [email protected] (B.O.V.) * Correspondence: [email protected]; Tel.: +40-743-600-321 Received: 23 April 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: The rapid evolution of autonomous technology in the field of automotive and information technology (IT) has made it possible to implement autonomous vehicles (AVs) for public passenger transport. Although the shuttle bus transport capacities currently in use are low (maximum 15 people), the use of these transport units in large urban agglomerations is beneficial for society. The current paper is written to review the current AV implementation with respect to shuttle buses with its direct implications in their scientific evolution, with direct links to the legal and social aspects of public transportation all over the world. A critical aspect that is presented in the paper is the legal framework of autonomous driving, which is extremely uneven around the globe, with the direct impact of autonomous shuttle bus exploitation. As the legislation on AVs presents some shortcomings in the approval, registration, and public road implementation of these vehicles, many of the world’s major cities have found ways to integrate them into testing programs, establishing the basis for future comprehensive legislative measures in this highly dynamic scientific domain. The current technological solutions adopted by several autonomous shuttle bus producers will be presented with an exhaustive overview of each major component.
    [Show full text]