GENETIC ANALYSIS of the GROUP IV Rht LOCI in WHEAT

Total Page:16

File Type:pdf, Size:1020Kb

GENETIC ANALYSIS of the GROUP IV Rht LOCI in WHEAT GENETIC ANALYSIS OF THE GROUP IV Rht LOCI IN WHEAT Edward Paul Wilhelm A thesis submitted for the degree of Doctor of Philosophy University of East Anglia John Innes Centre June 2011 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived there from, may be published without the author‟s prior, written consent ABSTRACT The introduction of the group IV semi-dwarf Rht alleles, Rht-B1b (formerly Rht1) and Rht-D1b (formerly Rht2) into bread wheat varieties from the donor line „Norin 10‟ that began in the 1960s was a major contributor to the „green revolution‟. Rht-B1b and Rht-D1b were characterised and cloned over a decade ago (Gale and Youssefian 1985; Peng et al. 1999), however the Rht- A1 locus has not been isolated and little is known regarding the genetic diversity of the group IV Rht loci or the genetic composition of the contiguous sequence surrounding Rht that was presumably introgressed into wheat varieties along with the dwarfing alleles. To investigate the contiguous region around Rht, a hexaploid wheat („Chinese Spring‟ (CS)) BAC library was screened using a PCR-based technique (Febrer et al. 2009). This identified several Rht-containing BAC clones, three of which (representing the A, B, and D genomes) were sequenced and found to contain one to two genes upstream of Rht in conserved order. Gene synteny was also highly conserved in rice, Brachypodium distachyon, sorghum, and maize. The previously unidentified Rht-A1 homoeologue was physically mapped to the long arm of chromosome 4A using aneuploid lines and mapped relative to genetic markers. To estimate genetic diversity, the entire coding regions of Rht-A1, Rht-B1, and Rht-D1 and the flanking regions (approximately 1800 bp 5‟ and 450 bp 3‟) were sequenced in 40 diverse wheat accessions. Little polymorphism and few haplotypes were identified on the A and D genomes, but on the B genome a relative abundance of haplotypes and polymorphism were present, including insertions (relative to CS) of 160 bp and 197 bp within 600 nucleotides of the ORF. The Rht-B1 insertions did not have a pronounced effect on RNA transcript level when assessed in seedlings. In an analysis of 368 lines from the INRA bread wheat core collection (BWCC) (Balfourier et al., 2007), lines with the Rht-B1 insertions were associated with reduced heights and reduced GA sensitivity relative to lines without an insertion, but only the height reductions associated with the 197 bp insertion were significant (p < 0.05). GA sensitivity tests of the INRA BWCC did not reveal any novel GA insensitive mutants. An investigation of the origin of the „Norin 10‟ alleles revealed potential discrepancies between the published pedigree and of „Norin 10‟ and the genotypes of seed stocks. Sequence, annotation, and comparative genomics of the Rht-containing BAC clones, the mapping of Rht-A1, and the discovery and investigation of novel genetic diversity provides greater insight into the Rht region and also provides tools for further analysis of this region and for the potential improvement of bread wheat. ii ACKNOWLEDGEMENTS I am indebted to my supervisor Margaret Boulton for her generous help and fantastic support throughout the thesis. Special thanks also to my co- supervisor Wayne Powell who made this thesis possible. I gratefully acknowledge support from the NIAB trust and the BBSRC for a studentship for research funding. Thank you to Andy Greenland and all my colleagues at NIAB for their technical help (especially Rhian Howells, bioinformatics) and for providing a wonderful working environment. Thanks also to the rest of my PhD committee: Nadia Al-Kaff, JIC, for her encouragement and help; Ian Mackay, NIAB, for statistical advice; Simon Griffiths, JIC, and his lab (notably Michelle Leverington-Waite and Catherine Baker) for help with genetic mapping. I‟d also like to thank the members of Margaret Boulton‟s lab (in particular Andrey Korolev) for their help in performing experiments and Robert Saville for his help and fruitful discussions on Rht. Thanks also to collaborators Francois Balfourier (Clermont-Ferrand, INRA) and Jizeng Jia (Chinese Academy of Agricultural Sciences, P.R. China) Finally, I‟m indebted to my wife for not divorcing me during this process, and to my wife and son for reminding me that life existed outside of the PhD. iii TABLE OF CONTENTS 1. GENERAL INTRODUCTION 1 1.1. INTRODUCTION 1 1.2. DELLA PROTEINS IN PLANTS 1 1.2.1. DELLA loci in dicots and monocots 1 1.2.2. Conserved DELLA domains 3 1.2.3. DELLA protein characterisation 4 1.2.4. Regulation of DELLA protein levels 5 1.2.5. DELLA protein function 7 1.2.6. Role of DELLAs in response to plant stress 8 1.3. GROUP IV RHT-1 LOCI AND DWARFING ALLELES IN WHEAT 10 1.3.1. Rht-1 loci 10 1.3.2. Rht-B1b and Rht-D1b 11 1.3.3. Alternative Rht-B1 dwarfing alleles 13 1.3.4. Alternative Rht-D1 dwarfing alleles 14 1.4. ADDITIONAL RHT LOCI AFFECTING PLANT HEIGHT IN WHEAT 15 1.5. Physiological effects of Rht-B1b and Rht-D1b 17 1.5.1. Rht-B1b and Rht-D1b effects on wheat morphology and yield 17 1.5.2. Rht-B1b and Rht-D1b effects on wheat abiotic stress performance 18 1.5.3. Rht-B1b and Rht-D1b associations with Fusarium Head Blight 19 1.6. EVOLUTIONARY HISTORY AND GENETIC DIVERSITY OF WHEAT AND POACEAE SPECIES 21 1.7. Origin and distribution of Rht-B1b and Rht-D1b 25 1.7.1. Origin and spread of ‘Norin 10’ 25 1.7.2. Alternative sources of Rht-B1b and Rht-D1b 26 1.7.3. Rht-B1b and Rht-D1b prevalence in the world 27 1.8. LINKAGE DISEQUILIBRIUM AND SELECTIVE SWEEPS IN PLANTS 29 1.9. PHD OBJECTIVES 30 2. IDENTIFICATION AND CHARACTERISATION OF BAC CLONES CONTAINING RHT-1 32 2.1. INTRODUCTION 32 2.2. MATERIALS AND METHODS 33 2.2.1. The Triticum aestivum (cv Chinese Spring) BAC library 33 2.2.2. Screening of the French component of the CS BAC library by radioactive hybridization 34 2.2.2.1. Screening strategy and probe construction 34 2.2.2.2. Screening of BAC library filters using radioactive probes 36 2.2.2.3. Extraction of plasmid DNA 37 2.2.2.4. Gel analysis of BAC clones 37 2.2.2.5. PCR amplification and sequencing of Rht-1 38 2.2.3. Screening of the UK component of the CS BAC library by PCR 39 2.3. RESULTS 41 2.3.1. Identification and characterisation of Rht-1-containing BAC clones from the French component of the CS library 41 2.3.2. Identification and characterisation of Rht-1-containing BAC clones from the UK component of the CS library 47 iv 2.3.3. Summary of Rht-1-containing BAC clones identified in the French and UK components of the CS library 53 2.4. DISCUSSION 54 3. GENETIC COMPOSITION AND COMPARATIVE ANALYSIS OF THE RHT-1 LOCI AND ADJOINING SEQUENCE 56 3.1. INTRODUCTION 56 3.2. MATERIALS AND METHODS 58 3.2.1. Sequencing of Rht-1-containing BAC clones 58 3.2.2. Annotation of the five Rht-1 containing wheat BAC sequences 58 3.2.3. Comparative analysis of BAC sequences 59 3.3. RESULTS 61 3.3.1. Genetic composition and comparative analysis of the Rht-1 containing wheat BACs 61 3.3.2. Comparative analyses of Rht-1 and the surrounding region in wheat and Poaceae 67 3.3.2.1. Comparative analysis of the Rht-1 ORF in wheat and Poaceae 69 3.3.2.2. Comparative analysis of the Rht-1 flanking region (10 kb 5’ and 10kb 3’) in wheat and Poaceae 74 3.3.2.3. Comparative analysis of ZnF in wheat and Poaceae 79 3.3.2.4. Comparative analysis of DUF6 among wheat BACs and Poaceae 84 3.3.3. Predicted genes on the CS wheat BAC sequences 90 3.4. DISCUSSION 90 4. PHYSICAL AND GENETIC MAPPING OF RHT-A1 97 4.1. INTRODUCTION 97 4.2. MATERIALS AND METHODS 100 4.2.1. Plant Materials 100 4.2.2. DNA extraction 102 4.2.3. PCR amplification 103 4.2.4. SSR linkage mapping 104 4.3. RESULTS 104 4.3.1 Physical mapping of Rht-1 loci using aneuploid lines 104 4.3.2 Rht-A1 mapping in the ‘SS7010073 × Paragon’ F5 population 108 4.4. DISCUSSION 113 5. GENETIC DIVERSITY AT THE RHT-1 LOCI IN WHEAT 117 5.1. INTRODUCTION 117 5.2. MATERIALS AND METHODS 119 5.2.1. Sources of accessions used for sequencing the Rht-1 region 119 5.2.2. Diversity sets 122 5.2.2.1. Bread Wheat 1 (BW1) set: Accessions and experimental design 122 5.2.2.2. Bread Wheat 2 (BW2) set: Accessions and experimental design 122 5.2.2.3. Tetraploid/Diploid Wheat (TDW) set: Accessions and experimental design 123 5.2.3. Rht-B1a/Rht-B1b and Rht-D1a/Rht-D1b PCR assays 124 5.2.4. PCR amplification and sequencing of Rht-1 and the flanking region 125 5.2.5. Assembly of Rht-1 contigs and bioinformatic analyses 127 5.2.6. Rht-1 Transcript analysis 128 v 5.3. RESULTS 130 5.3.1. PCR amplification and sequencing 130 5.3.2. Genetic diversity of the Rht-1+flank region of the BW1 set 132 5.3.2.1.
Recommended publications
  • POLAND: COUNTRY REPORT to the FAO INTERNATIONAL TECHNICAL CONFERENCE on PLANT GENETIC RESOURCES (Leipzig 1996)
    POLAND: COUNTRY REPORT TO THE FAO INTERNATIONAL TECHNICAL CONFERENCE ON PLANT GENETIC RESOURCES (Leipzig 1996) Prepared by: Wieslaw Podyma Barbara Janik-Janiec Radzikow, June 1995 POLAND country report 2 Note by FAO This Country Report has been prepared by the national authorities in the context of the preparatory process for the FAO International Technical Conference on Plant Genetic Resources, Leipzig, Germany, 17-23 June 1996. The Report is being made available by FAO as requested by the International Technical Conference. However, the report is solely the responsibility of the national authorities. The information in this report has not been verified by FAO, and the opinions expressed do not necessarily represent the views or policy of FAO. The designations employed and the presentation of the material and maps in this document do not imply the expression of any option whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. POLAND country report 3 Table of Contents CHAPTER 1 THE COUNTRY AND ITS AGRICULTURAL SECTOR 6 1.1 THE COUNTRY 6 1.2 AGRICULTURAL SECTOR IN POLAND 8 CHAPTER 2 INDIGENOUS PLANT GENETIC RESOURCES 12 2.1 FLORA OF POLAND 12 2.2 FOREST GENETIC RESOURCES 37 2.3 WILD AND CROPS-RELATED SPECIES 38 2.4 LANDRACES AND OLD CULTIVARS 40 CHAPTER 3 CONSERVATION ACTIVITIES 42 3.1 IN SITU PRESERVATION OF GENETIC RESOURCES 42 3.2 EX SITU COLLECTIONS 45 3.2.1 Sample
    [Show full text]
  • Norman Borlaug
    Norman Borlaug Melinda Smale, Michigan State University I’d like to offer some illustrative examples of how scientific partnerships and exchange of plant genetic resources in international agricultural research have generated benefits for US farmers and consumers. 1. It is widely accepted that the greatest transformation in world agriculture of the last century was the Green Revolution, which averted famine particularly in the wheat and rice-growing areas of numerous countries in Asia by boosting levels of farm productivity several times over, lowering prices for consumers, raising income and demand for goods and services. Most of us here are familiar with the history of this transformation. • You will remember that the key technological impetus was short- statured varieties that were fertilizer responsive and didn’t fall over in the field when more of the plant’s energy was poured into grain rather than the stalk and leaves. • Less well known is that the origin of the genes that conferred short- stature in wheat was a landrace from Korea--transferred to Japan, named Daruma, and bred into Norin 10. Norin 10 was named for a Japanese research station, tenth selection from a cross. Later, Norin 10 was brought as a seed sample by an agronomist advisor who served in the MacArthur campaign after WWII. At Washington State University it was crossed to produce important US wheat varieties. The most extensive use of Norin 10 genes outside Japan and the US was by Norman Borlaug, who won the 1970 Nobel Peace Prize. He was the founder of the World Food Prize (won, for example, by Gebisa Ejeta).
    [Show full text]
  • Advances in Wheat Genetics: from Genome to Field Proceedings of the 12Th International Wheat Genetics Symposium Advances in Wheat Genetics: from Genome to Field
    Yasunari Ogihara · Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Advances in Wheat Genetics: From Genome to Field Yasunari Ogihara • Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Editors Yasunari Ogihara Shigeo Takumi Kihara Institute for Biological Research Graduate School of Agricultural Sciences Yokohama City University Kobe University Yokohama , Kanagawa , Japan Kobe , Hyogo , Japan Hirokazu Handa Plant Genome Research Unit National Institute of Agrobiological Sciences Tsukuba , Ibaraki , Japan ISBN 978-4-431-55674-9 ISBN 978-4-431-55675-6 (eBook) DOI 10.1007/978-4-431-55675-6 Library of Congress Control Number: 2015949398 Springer Tokyo Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and the Author(s) 2015 . The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • I and Rht I, Genes for Gibberellin Insensitivity and Semi- Dwarfism, in a Derivative of Norin 10 Wheat
    Heredity (1976), 37 (2), 283-289 THECHROMOSOMAL LOCATION OF GA! I AND RHT I, GENES FOR GIBBERELLIN INSENSITIVITY AND SEMI- DWARFISM, IN A DERIVATIVE OF NORIN 10 WHEAT M. D. GALE and GERALDINE A. MARSHALL Plant Breeding Institute, Cambridge Received5.ii.76 SUMMARY The gene conferring gibberellin insensitivity, Gai 1, was located on chromo- some 4A. This gene is associated with the semi-dwarf habit and consequently it was concluded that Rht1is carried by 4A. No recombination was found between Gai 1 and Gal 3, the gibberellin insensitivity gene in "TomThumb "- typedwarf wheats, indicating that these genes are either alternative alleles at the same locus or are closely linked. 1. INTRODUCTION N0RIN 1 0-BREVOR 14 (NB 14) was derived from a cross between the Japanese dwarf and an American variety. This line is the major source of the semi- dwarfing character common to many present-day commercial wheat varieties. NB 14 carries two alleles that confer "insensitivity" of aerial plant parts to application of the phytohormone, gibberellic acid (GA). One of these alleles, Gai 2, has been shown to be located on chromosome 4D by Gale et al. (1 975b). They also showed that the segregation of Gai 2/gai 2 was closely associated with variation in height in a GA-insensitive (GAl) semi-dwarf x GA-responsive tall wheat cross. The positive association between GAl and height reduction has been shown for both Gai 1 with Rht 1 and Gai 2 with Rht 2 in crosses involving Norm 10 derivative semi-dwarfs (Gale and Marshall, 1973; Hu, 1974) and for Gai 3 with Rht 3, the genes controlling GAl and dwarfism in "Tom Thumb "-type dwarf wheats (Gale et al., 1975a; Fick and Qualset, 1975).
    [Show full text]
  • 1 RICE (Oryza Sativa) TRADITIONAL VARIETIES & THEIR YIELD
    Lecuture No: 1 R I C E (Oryza sativa) TRADITIONAL VARIETIES & THEIR YIELD POTENTIAL-CONCEPT OF NEW PLANT TYPES (NPT’s) Reasons for low yield of crops- 1. Poor genetic yield potential of varieties of different crops. 2. Under identical conditions genetic makeup of a variety is most significant factor in determining yield. In recent years due to all round efforts of agricultural scientists it has been possible to cultivate HYVs of cereal crops which are often been termed as “NEW PLANT TYPES”. 1. IDEOTYPE : refers to plant type in which morphological and physiological characteristics are ideally suited to achieve high production potential and yield reliability. 2. NPT’s are also called as fertilizer responsive varieties since these NPTs possess the trait of high responsiveness towards heavy fertilizer applications. 3. NPT’s are also termed as adaptable varieties means the physiological attributes of variety responsible for a) Controlling the assimilation of absorbed N in plant body. b) Translocation and storage of photosynthetic products. c) Possessing more activity of roots under heavy application of fertilizers. d) Availability of resistance to lodging and diseases. But, the term NPT seems to be more appropriate and reasonable as it can very easily express the extent of improvement incorporated over the old type varieties. The so called improved tall varieties cultivated by farmers generally grow very tall and possess low yielding potentiality due to 1. Weak and tall straw, susceptible to lodging under heavy fertilizer application. 2. Inefficient leaf arrangement responsible for poor photosynthetic activity and less utilization of Solar energy. 3. Many associated attributes like unsynchronized susceptibility towards the attack of pests and diseases.
    [Show full text]
  • Cultivated Emmer Wheat (Triticum Dicoccon Schrank), an Old Crop with Promising Future: a Review
    Genet Resour Crop Evol DOI 10.1007/s10722-010-9572-6 NOTES ON NEGLECTED AND UNDERUTILIZED CROPS Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review Maria Zaharieva • Negash Geleta Ayana • Amin Al Hakimi • Satish C. Misra • Philippe Monneveux Received: 17 November 2009 / Accepted: 10 May 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Cultivated emmer wheat, Triticum dicoc- specific taste and flavor of emmer wheat products have con Schrank, a tetraploid species with hulled grain, has led to a recent development of the cultivation in some been largely cultivated during seven millennia in the European countries. Emmer wheat also possesses Middle-East, Central and West Asia, and Europe. It valuable traits of resistance to pests and diseases and has been largely replaced by hulless species and is now tolerance to abiotic stresses and is increasingly used as a minor crop, with the exception of some countries like a reservoir of useful genes in wheat breeding. In the India, Ethiopia and Yemen, where its grain is used for present article, a review concerning taxonomy, diver- preparing traditional foods. Nutritional qualities and sity and history of cultivation of emmer wheat is reported. Grain characteristics and valuable agro- M. Zaharieva (&) nomic traits are described. Some successful examples CIMMYT Global Wheat Program, A.P. 6-641, 06600 of emmer wheat utilization for the development of Mexico, DF, Mexico durum or bread wheat cultivars are examined, and the e-mail: [email protected]; [email protected] perspectives in using emmer wheat as health food and N.
    [Show full text]
  • Using Linguistics to Reconstruct African Subsistence Systems: Comparing Crop Names to Trees and Livestock
    598 CHAPTER 19 USING LINGUISTICS TO RECONSTRUCT AFRICAN SUBSISTENCE SYSTEMS: COMPARING CROP NAMES TO TREES AND LIVESTOCK ROGER BLENCH To appear in: In: Rethinking Agriculture: Archaeological And Ethnoarchaeological Perspectives. T.P. Denham, J. Iriarte & L. Vrydaghs (eds.) California: Left Coast Press. Info at: http://www.bergpublishers.com/uk/book_page.asp?BKTitle=Rethinking%20Agriculture INTRODUCTION Reconstructing the history of agriculture in Africa, or indeed any area of the world where written documentation is sparse or non-existent, is inevitably a multi-disciplinary exercise. Although the volume of archaeobotanical data available for Africa is gradually increasing, coverage remains extremely patchy and concentrates on a few species, notably sorghum, millet and finger-millet (see review in Neumann 2003). It is safe to say that most plants cultivated in Africa today are nowhere represented in the repertoire of plant remains recovered from the archaeological record. In the case of domestic animals, particularly cattle, sheep, goats and chickens, the situation is marginally better, with some materials for most species in much of the continent (see individual reviews in Blench & Macdonald 2000). African arboriculture or the intentional planting of trees, an ancient characteristic of many agricultural systems in the Old World, is a poorly understood and little-documented area; linking the sparse archaeobotanical material from trees with present-day management systems has hardly begun. Indirect indicators of agriculture in the past and the present, such as agricultural tools, settlement patterns, field systems and animal pens, remain understudied. Two tools other than archaeology are available for the reconstruction of agrarian history; historical and comparative linguistics and DNA (deoxyribonucleic acid) studies.
    [Show full text]
  • Egyptian Wheat
    Egyptian Wheat Salah Gowayed Department of Agrobiodiversity Institute of Crop Sciences University of Kassel Germany Egyptian Wheat Doctoral Dissertation Submitted for the degree of Doctor of Agricultural Sciences of the Institute of Crop Sciences of the University Kassel Presented by Salah Gowayed BSc, MSc, Egypt Witzenhausen, 3 December 2009 ii Die vorliegende Arbeit wurde vom Fachbereich Agrarwissenschaften der Universität Kassel als Dissertation zur Erlangung des akademischen Grades eines Doktors der Agrarwissenschaften (Dr. agr.) angenommen. Erster Gutachter: Prof. Dr. Karl Hammer Zweiter Gutachter: Prof. Dr. Christian Richter Tag der mündlichen Prüfung 3 December 2009 This work was approved by the Faculty of Agricultural Sciences, University of Kassel as a thesis to obtain the academic degree of Doctor of Agricultural Sciences (Dr. agr.). Referee: Prof. Dr. Karl Hammer Co-referee: Prof. Dr. Christian Richter Date of Examination: 3 December 2009 iii Table of Contents Content Pages List of Tables ««««««««««««««««««««««««««««««. vi List of Figures««««««««««««««««««««««««««««««. vii Dedication «««««««««««««««««««««««««««««««.. viii Acknowledgements «««««««««««««««««««««««««««« ix Summary x Zusammenfassung xi Chapter 1 Introduction …………………………………………………………………... 1 Problem Statement ««««««««««««««««««««««««......... 4 Aim and Scope ««««««««««««««««««««««««............... 5 Chapter 2 Egyptian Wheat: A Review………………………………………………….. 7 2.1 A Brief History of Wheat Classification «««««««««««««««««. 8 2.2.1 Domestication of Emmer Wheat «««««««««««««««««««..... 18 2.2.2 The Diversity Center of Domesticated Emmer Wheat ««««««««« 20 2.2.3 Origin and the Diversity Center of Ethiopian Wheat T. aethiopicum«««« 22 2.3 A Historical View of Agriculture and Egyptian Wheat «««««««««««... 24 2.3.1 Palaeoclimatic Conditions ««««««««..««««««««««««... 24 2.3.2 Egyptian History Phases««««««««««««««««««................. 25 2.3.2.1 Paleolithic or Old Stone Age««««««««««««««««««... 25 2.3.2.2 Neolithic Age 6000 BC (Neolithic Revolution)«««««««...............
    [Show full text]
  • Unit 11 Cereals and Millets
    -- UNIT 11 CEREALS AND MILLETS 11.1 Introduction Objectives 112 Wheat 11.3 Maize 11.4 Rice 1 1.5 ' 'Rye 11.6 Oats 11.7 Sorghum 1 1.8 Barley 11.9 Triticale 11.10 Summary 11.1 1 Terminal Questions 11.12 Answers 11 .I INTRODUCTION Good food is essential for health as well as survival of human beings. Human beings depend on plants (and on animals that eat pla~~ts)for their food. The food we eat provides sub- stances needed for good health.'These nutrients provide materials for building, repairing or maintaining body tissues. They also regulate body processes and serve as fuel to provide energy. Nutrients are classified into five main groups: carbohydrates, fats, proteins, minerals and vitamins. All of these are important in the daily diet; and are obtained from different plants. , The cereal or grain crops are the most important sources of food for man and provide the basic or staple diet. They contain carbohydrates, proteins, fats, minerals and vitamins, and thus have good nutritive value. These were amongst the first plants to be cultivated or domesticated. They have been grown and used by man since ancient times. It is believed that barley and wheat were first grown in Western Asia atleast 9000 years ago. This provided the basis for civilisations of Mesopotamia, Sumeria, Babylon, Egypt, Rome, Italy and others. Similarly, rice served as the important cereal for the civilisations in Soah East Asia and rnaizd ~~~~~'$r~~~i~~~ t'lerc for civilisations in the New World. urelatcd dicotyledonous plants The ceredls not only serve as food for man, but are also important for many industrial used as cereals.
    [Show full text]
  • HIGH-YIELDING VARIETIES of WHEAT and RICE in the Less Developed Nations
    Development and Spread of HIGH-YIELDING VARIETIES OF WHEAT AND RICE in the Less Developed Nations DANA G. DALRYMPLE U.S. DEPARTMENT OF AGRICULTURE OFFICE OF INTERNATIONAL COOPERATION AND DEVELOPMENT IN COOPERATION WITH U.S. AGENCY FOR INTERNATIONAL DEVELOPMENT Foreign Agricultural Ecr~nomic Report No. 95 The use of high-yielding varieties (HYV's) of wheat and rice has expanded sharply in the less developed countries (LDC's) in recent years:This report reviews the development of these varieties and statistically documents their yearly spread. Major emphasis is placed on semi-dwarf varieties (I) developed at the International Maize and Wheat Improvement Center (CIMMYT) in Mexico and the International Rice Research Institute (IRRI) in the Philippines, and/or (2) offspring of these or similar varieties developed in national breeding programs. Data cover the 12-year period from the 1965166 crop year, when these varieties first came into use, through 1976i77. They are subject to a number of qualifications. As of 19761'77, the total HYV wheat and rice area in the non- Commuist LDC's totaled about 54.7 million hectares (135.1 million acres). Of this, about 29.4 million ha. (72.6 million acres) were wheat and 25.3 million ha. (62.5 million acres) were rice. HYV's represented about 34.5 percent of the total wheat and rice area; HYV wheat accounted for 44.3 percent of total wheat area and HYV rice accounted for 27.5 percent of total rice area. Additional areas of HYV's were planted in Israel, South Africa, and Taiwan, and in the Communist nations.
    [Show full text]
  • See Document
    = â~ëëÉä= = = ìåáîÉêëáíó= = éêÉëë= = = = = = = = = = = = = = = = = = = bñéäçê~íáçå=~åÇ=Éëíáã~íáçå=çÑ=ãçêéÜçäçÖáÅ~ä=~åÇ=ÖÉåÉíáÅ= ÇáîÉêëáíó=çÑ=ïÜÉ~í=EqêáíáÅìã=ëééKF=ä~åÇê~ÅÉë=áå=lã~å= Sulaiman S. Al Khanjari This work has been accepted by the faculty of Organic Agricultural Sciences of the University of Kassel as thesis for acquiring the academic degree of Doctor der Agrarwissenschaften (Dr. agr.). 1. Supervisor: Prof. Dr. Karl Hammer 2. Supervisor: Prof. Dr. Andreas Bürkert Disputation 28. September 2005 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationabibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de Zugl.: Kassel, Univ., Diss. 2005 ISBN 3-89958-169-5 URN urn:nbn:de:0002-1698 © 2005, kassel university press GmbH, Kassel www.upress.uni-kassel.de Cover: 5 Büro für Gestaltung, Kassel Printed in Germany by Unidruckerei der Universität Kassel Dedicated to S. Al Shukaily, Z. Al Harthy and S. Al Khanjari Table of contents Page Acknowledgements VI 1 General introduction 1 2 Genetic resources 10 2.1 A survey of wheat landraces in Oman 10 2.2 Emmer (Triticum dicoccon Schrank) in Oman 22 2.3 Exploration of wheat landraces (Triticum spp.) in Oman 27 3 Morphological diversity 41 3.1 Morphological spike diversity of Omani wheat: I. Tetraploid landraces 41 3.2 Morphological spike diversity of Omani wheat: II. Hexaploid landraces 59 4 Molecular diversity 78 4.1 Molecular diversity of Omani wheat revealed by microsatellites: I. Tetraploid landraces 78 4.2 Molecular diversity of Omani wheat revealed by microsatellites: II.
    [Show full text]
  • D™Arvisenetgabriel SN MAST 1 11
    REPOBLIKAN’I MADAGASIKARA Fitiavana – Tanindrazana - Fandrosoana MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE UNIVERSITE DE MAHAJANGA La culture de l’excellence MAHAJANGA Faculté des Sciences FACULTE DES SCIENCES DEPARTEMENT : BIOCHIMIE - MICROBIOLOGIE OPTION : BIOTECHNOLOGIE APPLIQUEE GRAIN MEMOIRE DE MASTER I DE BLE PROMOTION : IDEAL FARINE PAIN N° : 09 LES GRAINS DE BLE : LEUR VALEUR ALIMENTAIRELES GRAINS DE ET BLE LEURS : PROCEDES DE TRANSFORMATION TECHNOLOGIQUE EN PAIN LEUR VALEUR ALIMENTAIRE ET LEURS PROCEDES DE TRANSFORMATION TECHNOLOGIQUE EN PAIN Présenté et soutenu par : Monsieur D’ARVISENET Gabriel Le 31 Mai 2011 Devant les membres de jury composés de : Président de jury : Docteur MILADERA Jonhson Christian Juge : Docteur PAMPHILE Mananjara Directeur de mémoire : Docteur RAZAFIMAHEFA Année Universitaire : 2009 – 2010 1 REPOBLIKAN’I MADAGASIKARA Fitiavana – Tanindrazana - Fandrosoana MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE MAHAJANGA UNIVERSITE DE La culture de l’excellence MAHAJANGA FACULTE DES SCIENCES Faculté des Sciences DEPARTEMENT : BIOCHIMIE - MICROBIOLOGIE OPTION : BIOTECHNOLOGIE APPLIQUEE GRAIN MEMOIRE DE MASTER I DE BLE PROMOTION : IDEAL FARINE N° : 09 PAIN LES GRAINS DE BLE : LEUR VALEUR ALIMENTAIRE ET LEURS PROCEDES DE TRANSFORMATION TECHNOLOGIQUE EN PAIN Présenté et soutenu par : Monsieur D’ARVISENET Gabriel Le 31 Mai 2011 Devant les membres de jury composés de : Président de jury : Docteur MILADERA Jonhson Christian Juge : Docteur PAMPHILE Mananjara Directeur de mémoire : Docteur RAZAFIMAHEFA Année Universitaire : 2009 – 2010 2 DEDICACE « Je dédie spécialement ce travail à mes parents qui m’ont donné le bonheur et la chance d’effectuer ce travail et aussi à tout ce qui m’a soutenu jusqu’à maintenant ».
    [Show full text]