APC/C Is an Essential Regulator of Centrosome Clustering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Htpx2 Is Required for Normal Spindle Morphology and Centrosome Integrity During Vertebrate Cell Division
Current Biology, Vol. 12, 2055–2059, December 10, 2002, 2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)01277-0 hTPX2 Is Required for Normal Spindle Morphology and Centrosome Integrity during Vertebrate Cell Division Sarah Garrett,2 Kristi Auer,1 Duane A. Compton,1 hTPX2 Knockdown by siRNA Results and Tarun M. Kapoor2,3 in Multipolar Spindles 1Department of Biochemistry To examine hTPX2 function in vertebrate cells, we Dartmouth Medical School sought to disrupt the expression of human TPX2 by Hanover, New Hampshire 03755 using siRNA [4]. An RNA duplex corresponding to bases 2 Laboratory of Chemistry and Cell Biology 74–94 of the human TPX2 open reading frame was trans- Rockefeller University fected into HeLa cells. Thirty hours after transfection, we New York, New York 10021 consistently found hTPX2 protein levels to be reduced below 1% of those in untreated cells (Figure 2D). Knockdown of hTPX2 resulted in two effects. First, loss of hTPX2 arrested cells in mitosis. In three indepen- Summary dent experiments, cells treated with hTPX2 siRNA showed a mitotic index of 30%, whereas control cells Bipolar spindle formation is essential for the accurate showed a mitotic index of 3% (n ϭ at least 300 cells; segregation of genetic material during cell division. Figure 2E). Second, more than 40% of the mitotic cells Although centrosomes influence the number of spin- after siRNA treatment had spindles with more than two dle poles during mitosis, motor and non-motor micro- poles (Figures 2A–2C and 2E). Each pole in these tubule-associated proteins (MAPs) also play key roles multipolar spindles had several microtubule bundles in determining spindle morphology [1]. -
Emerging Molecular Mechanisms That Power and Regulate the Anastral Mitotic Spindle of Flowering Plants
Cell Motility and the Cytoskeleton 65: 1–11 (2008) Review Article Emerging Molecular Mechanisms that Power and Regulate the Anastral Mitotic Spindle of Flowering Plants Alex Bannigan, Michelle Lizotte-Waniewski, Margaret Riley, and Tobias I. Baskin* Biology Department, University of Massachusetts, Amherst, Massachusetts Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of ani- mals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broad- ening of the spindle pole; whereas, loss of function of a KIN-5 causes the forma- tion of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information con- cerning the roles of selected structural proteins at mitosis as well as recent find- ings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diver- sity of cells. Cell Motil. Cytoskeleton 65: 1–11, 2008. ' 2007 Wiley-Liss, Inc. Key words: kinesin-5; kinesin-14; mitosis; monopolar spindle; phylogeny INTRODUCTION The mitotic spindle has fascinated biologists for centuries. -
Apc11 (ANAPC11) (NM 001002245) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC223841L4 Apc11 (ANAPC11) (NM_001002245) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Apc11 (ANAPC11) (NM_001002245) Human Tagged ORF Clone Tag: mGFP Symbol: ANAPC11 Synonyms: APC11; Apc11p; HSPC214 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC223841). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001002245 ORF Size: 252 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Apc11 (ANAPC11) (NM_001002245) Human Tagged ORF Clone – RC223841L4 OTI Disclaimer: Due to the inherent nature of this plasmid, standard methods to replicate additional amounts of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at [email protected] or by calling 301.340.3188 option 3 for pricing and delivery. The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Mutation Analysis of Genes Within the Dynactin Complex in a Cohort of Hereditary Peripheral Neuropathies
Clin Genet 2016: 90: 127–133 © 2015 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12712 Original Article Mutation analysis of genes within the dynactin complex in a cohort of hereditary peripheral neuropathies a a Tey S., Ahmad-Annuar A., Drew A.P., Shahrizaila N., Nicholson G.A., S. Tey , A. Ahmad-Annuar , Kennerson M.L. Mutation analysis of genes within the dynactin complex in A.P. Drewb, N. Shahrizailac, , a cohort of hereditary peripheral neuropathies. G.A. Nicholsonb d and Clin Genet 2016: 90: 127–133. © John Wiley & Sons A/S. Published by M.L. Kennersonb,d John Wiley & Sons Ltd, 2015 aDepartment of Biomedical Science, The cytoplasmic dynein–dynactin genes are attractive candidates for Faculty of Medicine, University of Malaya, b neurodegenerative disorders given their functional role in retrograde Kuala Lumpur, Malaysia, Northcott transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) Neuroscience Laboratory, ANZAC Research Institute, and Sydney Medical gene has been implicated in various neurodegenerative disorders, and School, University of Sydney, Sydney, dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of Australia, cDepartment of Medicine, disorders including motor neuron disease, Parkinson’s disease, spinobulbar Faculty of Medicine, University of Malaya, muscular atrophy and hereditary spastic paraplegia. However, the Kuala Lumpur, Malaysia, and dMolecular involvement of other dynactin genes with inherited peripheral neuropathies Medicine Laboratory, Concord Hospital, (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy Sydney, Australia and Charcot–Marie–Tooth disease is under reported. We screened eight genes; DCTN1-6 and ACTR1A and ACTR1B in 136 IPN patients using Key words: Charcot–Marie–Tooth – whole-exome sequencing and high-resolution melt (HRM) analysis. -
Hsp72 and Nek6 Cooperate to Cluster Amplified Centrosomes in Cancer Cells
Published OnlineFirst July 18, 2017; DOI: 10.1158/0008-5472.CAN-16-3233 Cancer Molecular and Cellular Pathobiology Research Hsp72 and Nek6 Cooperate to Cluster Amplified Centrosomes in Cancer Cells Josephina Sampson1, Laura O'Regan1, Martin J.S. Dyer2, Richard Bayliss3, and Andrew M. Fry1 Abstract Cancer cells frequently possess extra amplified centrosomes Unlike some centrosome declustering agents, blocking Hsp72 clustered into two poles whose pseudo-bipolar spindles exhib- or Nek6 function did not induce formation of acentrosomal it reduced fidelity of chromosome segregation and promote poles, meaning that multipolar spindles were observable only genetic instability. Inhibition of centrosome clustering triggers in cells with amplified centrosomes. Inhibition of Hsp72 in multipolar spindle formation and mitotic catastrophe, offer- acute lymphoblastic leukemia cells resulted in increased mul- ing an attractive therapeutic approach to selectively kill cells tipolar spindle frequency that correlated with centrosome with amplified centrosomes. However, mechanisms of centro- amplification, while loss of Hsp72 or Nek6 function in non- some clustering remain poorly understood. Here, we identify a cancer-derived cells disturbs neither spindle formation nor new pathway that acts through NIMA-related kinase 6 (Nek6) mitotic progression. Hence, the Nek6–Hsp72 module repre- and Hsp72 to promote centrosome clustering. Nek6, as well as sents a novel actionable pathway for selective targeting of its upstream activators polo-like kinase 1 and Aurora-A, tar- cancer cells with amplified centrosomes. Cancer Res; 77(18); geted Hsp72 to the poles of cells with amplified centrosomes. 4785–96. Ó2017 AACR. Introduction are nucleated (11, 12). The g-TuRC is concentrated at centrosomes through binding to components of the pericentriolar material The mitotic spindle is bipolar in nature as it is organized around (PCM), a highly ordered matrix of coiled-coil proteins that two poles, each possessing a single centrosome (1, 2). -
Germline Mutation Contribution to Chromosomal Instability
249 S H Chan and J Ngeow Germline mutations and 24:9 T33–T46 Thematic Review chromosomal instability Germline mutation contribution to chromosomal instability Correspondence Sock Hoai Chan1 and Joanne Ngeow1,2 should be addressed to J Ngeow 1 Division of Medical Oncology, Cancer Genetics Service, National Cancer Centre Singapore, Singapore Email 2 Oncology Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore Joanne.Ngeow.Y.Y@ singhealth.com.sg Abstract Genomic instability is a feature of cancer that fuels oncogenesis through increased Key Words frequency of genetic disruption, leading to loss of genomic integrity and promoting f molecular genetics clonal evolution as well as tumor transformation. A form of genomic instability prevalent f chromosome instability across cancer types is chromosomal instability, which involves karyotypic changes including f cancer chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a Endocrine-Related Cancer Endocrine-Related Cancer Endocrine-Related therapeutic strategy. (2017) 24, T33–T46 Introduction Genomic instability is a hallmark of human cancers Pino & Chung 2010, Bakhoum & Compton 2012, (Negrini et al. 2010). It refers to the increased frequency Pikor et al. -
FARE2021WINNERS Sorted by Institute
FARE2021WINNERS Sorted By Institute Swati Shah Postdoctoral Fellow CC Radiology/Imaging/PET and Neuroimaging Characterization of CNS involvement in Ebola-Infected Macaques using Magnetic Resonance Imaging, 18F-FDG PET and Immunohistology The Ebola (EBOV) virus outbreak in Western Africa resulted in residual neurologic abnormalities in survivors. Many case studies detected EBOV in the CSF, suggesting that the neurologic sequelae in survivors is related to viral presence. In the periphery, EBOV infects endothelial cells and triggers a “cytokine stormâ€. However, it is unclear whether a similar process occurs in the brain, with secondary neuroinflammation, neuronal loss and blood-brain barrier (BBB) compromise, eventually leading to lasting neurological damage. We have used in vivo imaging and post-necropsy immunostaining to elucidate the CNS pathophysiology in Rhesus macaques infected with EBOV (Makona). Whole brain MRI with T1 relaxometry (pre- and post-contrast) and FDG-PET were performed to monitor the progression of disease in two cohorts of EBOV infected macaques from baseline to terminal endpoint (day 5-6). Post-necropsy, multiplex fluorescence immunohistochemical (MF-IHC) staining for various cellular markers in the thalamus and brainstem was performed. Serial blood and CSF samples were collected to assess disease progression. The linear mixed effect model was used for statistical analysis. Post-infection, we first detected EBOV in the serum (day 3) and CSF (day 4) with dramatic increases until euthanasia. The standard uptake values of FDG-PET relative to whole brain uptake (SUVr) in the midbrain, pons, and thalamus increased significantly over time (p<0.01) and positively correlated with blood viremia (p≤0.01). -
Spindle Microtubule Dysfunction and Cancer Predisposition
PERSPECTIVE 1881 JournalJournal ofof Cellular Spindle Microtubule Dysfunction Physiology and Cancer Predisposition JASON STUMPFF,1* PRACHI N. GHULE,2** AKIKO SHIMAMURA,3,4 JANET L. STEIN,2 5 AND MARC GREENBLATT 1Vermont Cancer Center and Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 2Vermont Cancer Center and Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 3Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 4Seattle Children’s Hospital and University of Washington, Seattle, Washington 5Vermont Cancer Center and Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont Chromosome segregation and spindle microtubule dynamics are strictly coordinated during cell division in order to preserve genomic integrity. Alterations in the genome that affect microtubule stability and spindle assembly during mitosis may contribute to genomic instability and cancer predisposition, but directly testing this potential link poses a significant challenge. Germ-line mutations in tumor suppressor genes that predispose patients to cancer and alter spindle microtubule dynamics offer unique opportunities to investigate the relationship between spindle dysfunction and carcinogenesis. Mutations in two such tumor suppressors, adenomatous polyposis coli (APC) and Shwachman–Bodian–Diamond syndrome (SBDS), affect multifunctional proteins that have been well characterized for their roles in Wnt signaling and interphase ribosome assembly, respectively. Less understood, however, is how their shared involvement in stabilizing the microtubules that comprise the mitotic spindle contributes to cancer predisposition. Here, we briefly discuss the potential for mutations in APC and SBDS as informative tools for studying the impact of mitotic spindle dysfunction on cellular transformation. J. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase. -
Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.