Binding Between ROCK1 and DCTN2 Triggers Diabetes‑Associated Centrosome Amplification in Colon Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Binding Between ROCK1 and DCTN2 Triggers Diabetes‑Associated Centrosome Amplification in Colon Cancer Cells ONCOLOGY REPORTS 46: 151, 2021 Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells YUAN FEI LI1, LIN JIE SHI1,2, PU WANG3, JIA WEN WANG4, GUANG YI SHI4 and SHAO CHIN LEE4 1Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001; 2Intensive Care Unit, Shaanxi Provincial Cancer Hospital, Xian, Shaanxi 710000; 3Changzhi Medical University, Changzhi, Shanxi 030001; 4Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China Received January 17, 2021; Accepted May 5, 2021 DOI: 10.3892/or.2021.8102 Abstract. Type 2 diabetes increases the risk various types of Dynactin subunit 2 (DCTN2) was confirmed to be localized cancer and is associated with a poor prognosis therein. There to the centrosomes. Treating the cells with high glucose, is also evidence that the disease is associated with cancer insulin and palmitic acid increased the protein levels of metastasis. Centrosome amplification can initiate tumori‑ ROCK1 and DCTN2, promoted their binding with each genesis with metastasis in vivo and increase the invasiveness other, and triggered centrosome amplification. Disruption of of cancer cells in vitro. Our previous study reported that the protein complex by knocking down ROCK1 or DCTN2 type 2 diabetes promotes centrosome amplification via the expression partially attenuated centrosome amplification, upregulation and centrosomal translocation of Rho‑associated while simultaneous knockdown of both proteins completely protein kinase 1 (ROCK1), which suggests that centrosome inhibited centrosome amplification. These results suggested amplification is a candidate biological link between type 2 ROCK1‑DCTN2 binding as a signal for the regulation of diabetes and cancer development. In the present study, func‑ centrosome homeostasis, which is key for diabetes‑associated tional proteomics analysis was used to further investigate the centrosome amplification, and enriches our knowledge of molecular pathways underlying centrosome amplification by centrosome biology. Therefore, the ROCK1‑DCTN2 complex targeting ROCK1 binding partners. High glucose, insulin and may serve as a target for inhibiting centrosome amplification palmitic acid were used to induce centrosome amplification, both in research or future therapeutic development. and immunofluorescent staining was employed to visualize centrosomal alterations. Combined with immunoprecipita‑ Introduction tion, mass spectrometry‑based proteomics analysis was used to identify ROCK1 binding proteins, and protein complex Diabetes is a chronic disease with increasing prevalence disruption was achieved by siRNA‑knockdown. In total, worldwide (1), and exerts significant socioeconomic burden on 1,148 ROCK1 binding proteins were identified, among which society (2). Diabetes is classified into type 1 and 2, and type 2 106 proteins were exclusively associated with the treated diabetes accounts for the majority of clinical cases (1). According samples, 193 were only associated with the control samples, to the latest dataset from the World Health Organization, the and 849 were found in both the control and treated samples. number of diabetes cases increased from 108 million in 1980 Of the proteins with evidence of centrosomal localization, to 422 million in 2014 (3). In 2016, ~1.6 million mortalities were reportedly directly caused by diabetes (4). In the United States alone, the economic burden of diabetes, undiagnosed diabetes and prediabetic complications, was estimated to be 404 billion dollars in 2017 (5). Patients with type 2 diabetes Correspondence to: Dr Yuan Fei Li, Department of Oncology, The have increased levels of blood glucose and free fatty acids First Hospital, Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi 030001, P.R. China such as palmitic acid. Moreover, hyperinsulinemia occurs, at E‑mail: [email protected] least at certain stages in disease development, due to insulin resistance (6). In addition to classical vascular complications Dr Shao Chin Lee, Institute of Biomedical Sciences of The School such as nephropathy and retinopathy, accumulating evidence of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu 221116, P.R. China suggests that cancer is a complication of type 2 diabetes, E‑mail: [email protected] which led to a joint meeting of oncologists and diabetologists in 2010. These experts reviewed the evidence and released a Key words: centrosome amplification, type 2 diabetes, Rho‑associated consensus report stating that type 2 diabetes increases the risk protein kinase 1, dynactin subunit 2, colon cancer cells, functional of cancer at various sites, including the colon (7). Moreover, proteomics type 2 diabetes has been associated with a poor cancer prog‑ nosis (8), as well as metastasis (9). At present, cancer accounts for a large proportion of the mortality of patients with type 2 2 LI et al: BINDING BETWEEN ROCK1 AND DCTN2 TRIGGERS CENTROSOME AMPLIFICATION. diabetes (10). However, why and how type 2 diabetes promotes proliferation (22), regulates apoptosis (23) and enhances cancer development remains unknown. migration and invasiveness (24). In humans, the ROCK1 geno‑ The centrosome is the smallest organelle in the eukaryotic type was found to be associated with colon cancer in men (25), cell, which serves as a microtubule‑organization center, and and is a candidate prognostic marker for vulvar cancer (26). is a key regulator of cell division. Centrosome amplification Our previous studies revealed that ROCK1 signaling promotes is defined as >2 centrosomes in a single cell. It has been diabetes‑associated centrosome amplification (6,20). However, reported to occur in various cancer types, and is recognized as inhibiting ROCK1 only partially suppresses centrosome ampli‑ a typical feature of cancer cells (11). Experimental data have fication, indicating that other factors are involved. Therefore, indicated that centrosome amplification is associated with the aim of the present study was to investigate ROCK1 binding tumorigenesis and tumor metastasis. For example, genetically proteins in order to identify key signaling molecules involved modified cells with centrosome amplification can form tumors in centrosome amplification. in recipient animals, with the potential for metastasis (12,13), while genetically modified mice with centrosome amplifica‑ Materials and methods tion can spontaneously develop tumors (14,15). Furthermore, in Barrett's esophagus tumorigenesis, a multistep progression Reagents and cell lines. All chemical reagents were purchased model of human cancer, centrosome amplification occurs in a from Sigma‑Aldrich (Merck KGaA). Cell culture media and stepwise manner before neoplasia (16). It has also been shown supplements were obtained from Gibco (Thermo Fisher that genetically modified cells with centrosome amplification Scientific, Inc.). HCT116 human colon cancer cells were kindly exhibit increased invasive potential (17). However, the obvious gifted by Dr B. Vogelstein of the Johns Hopkins University limitation is that genetically modified models do not accu‑ School of Medicine (Baltimore, USA). IEC‑6, which is a rately reflect reality, as human cancers are not considered to non‑cancerous immortalized rat colon epithelial cell line, was commonly be caused by transgenesis. purchased from the Chinese Academy of Sciences Beijing Cell Since type 2 diabetes is associated with DNA damage (18), Bank. The cells were maintained in the lab in low‑glucose which can cause centrosome amplification (19), it was hypoth‑ medium. esized that type 2 diabetes may favor centrosome amplification. Indeed, when compared between non‑diabetic subjects and Cell culture and treatments. Cells were cultured in DMEM diabetic patients, a 2.6‑fold increase in centrosome ampli‑ (low glucose, 5 mM) supplemented with 50 U/ml penicillin, fication was observed in the peripheral blood mononuclear 50 µg/ml streptomycin and 10% (v/v) fetal calf serum, and cells of diabetic patients (6). In vitro experiments have iden‑ maintained at 37˚C (5% CO2) in a humidified incubator. Cells tified that the pathophysiological factors in type 2 diabetes, in the experimental group were treated with high glucose including high glucose, insulin and free fatty acids (such as (15 mM), insulin (5 nM) and palmitic acid (150 µM). Cells palmitic acid), are potent inducers, and that the centrosomal treated for 48 h were used for the assessment of the centro‑ translocation of Rho‑associated protein kinase 1 (ROCK1) some amplification level; cells treated for 30 h were used is a signal for diabetes‑associated centrosome amplifica‑ for immunoprecipitation and western blot analyses. Palmitic tion (6). Moreover, inhibition of ROCK1 partially attenuated acid, the most common saturated free fatty acid, is frequently centrosome amplification (6,20). These results suggest that used to investigate the biological activities of free fatty acids, centrosome amplification may be a candidate mechanism for particularly their adverse effects (27). Palmitic acid was conju‑ the association between type 2 diabetes and cancer develop‑ gated to BSA; both reagents were mixed (molar ratio, 3:1) and ment, and that type 2 diabetes may present a natural model incubated for 1 h before use. to investigate the roles of centrosome amplification in cancer. However, to confirm this conclusion with substantial Immunofluorescent staining and confocal
Recommended publications
  • Identifying Novel Disease-Associated Variants and Understanding The
    Identifying Novel Disease-variants and Understanding the Role of the STAT1-STAT4 Locus in SLE A dissertation submitted to the Graduate School of University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Immunology Graduate Program of the College of Medicine by Zubin H. Patel B.S., Worcester Polytechnic Institute, 2009 John B. Harley, M.D., Ph.D. Committee Chair Gurjit Khurana Hershey, M.D., Ph.D Leah C. Kottyan, Ph.D. Harinder Singh, Ph.D. Matthew T. Weirauch, Ph.D. Abstract Systemic Lupus Erythematosus (SLE) or lupus is an autoimmune disorder caused by an overactive immune system with dysregulation of both innate and adaptive immune pathways. It can affect all major organ systems and may lead to inflammation of the serosal and mucosal surfaces. The pathogenesis of lupus is driven by genetic factors, environmental factors, and gene-environment interactions. Heredity accounts for a substantial proportion of SLE risk, and the role of specific genetic risk loci has been well established. Identifying the specific causal genetic variants and the underlying molecular mechanisms has been a major area of investigation. This thesis describes efforts to develop an analytical approach to identify candidate rare variants from trio analyses and a fine-mapping analysis at the STAT1-STAT4 locus, a well-replicated SLE-risk locus. For the STAT1-STAT4 locus, subsequent functional biological studies demonstrated genotype dependent gene expression, transcription factor binding, and DNA regulatory activity. Rare variants are classified as variants across the genome with an allele-frequency less than 1% in ancestral populations.
    [Show full text]
  • Supplementary Information
    Supplementary Information PathwayMatcher: multi-omics pathway mapping and proteoform network generation Luis Francisco Hernández Sánchez1,2,3, Bram Burger4,5, Carlos Horro4,5, Antonio Fabregat3, Stefan Johansson1,2, Pål Rasmus Njølstad1,6, Harald Barsnes4,5, Henning Hermjakob3,7, and Marc Vaudel1,2,* 1 K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway 2 Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway 3 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom 4 Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway 5 Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway 6 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway 7 Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing, China * To whom correspondence should be addressed Abstract Mapping biomedical data to functional knowledge is an essential task in biomedicine and can be achieved by querying gene or protein identifiers in pathway knowledgebases. Here, we demonstrate that including fine-granularity information such as post-translational modifications greatly increases the specificity of the analysis. We present PathwayMatcher (github.com/PathwayAnalysisPlatform/PathwayMatcher), a bioinformatic application for mapping multi-omics data to pathways and show how this enables the
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Biological and Prognostic Significance of Chromosome 5Q Deletions in Myeloid Malignancies Aristoteles A.N
    Review Biological and Prognostic Significance of Chromosome 5q Deletions in Myeloid Malignancies Aristoteles A.N. Giagounidis,1Ulrich Germing,2 and Carlo Aul1 Abstract The presence of del(5q), either as the sole karyotypic abnormality or as part of a more complex karyotype, has distinct clinical implications for myelodysplastic syndromes (MDS) and acute myeloid leukemia. The 5qÀ syndrome, a subtype of low-riskMDS, is characterized by an isolated 5q deletion and <5% blasts in the bone marrow and can serve as a useful model for studying the role of 5q deletions in the pathogenesis and prognosis of myeloid malignancies. Recent clinical results with lenalidomide, an oral immunomodulatory drug, have shown durable erythroid responses, including transfusion independence and complete cytogenetic remissions in patients with del(5q) MDS with or without additional chromosomal abnormalities. These results indicate that lenalidomide can overcome the pathogenic effect of 5q deletion in MDS and restore bone marrow balance. The data provide important new insights into the pathobiology of 5q chromo- somal deletions in myeloid malignancies. Cytogenetic abnormalities are detected in the bone marrow of preponderance, refractory macrocytic anemia, normal or high over 50% of patients diagnosed with primary myelodysplastic platelet counts, hypolobulated megakaryocytes, and modest syndromes (MDS) or myeloid leukemias, and up to 80% of leukopenia (11, 14, 17). The prognosis is favorable in 5qÀ patients with secondary or therapy-related MDS (1, 2). These syndrome with relatively low risk of transformation to AML abnormalities can be characterized as being balanced or (11, 18). Although the limits of 5q deletions vary among unbalanced (3, 4). Balanced cytogenetic abnormalities include patients with 5qÀ syndrome, the most frequent deletion is reciprocal translocations, inversions, and insertions (3, 5, 6).
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Mutation Analysis of Genes Within the Dynactin Complex in a Cohort of Hereditary Peripheral Neuropathies
    Clin Genet 2016: 90: 127–133 © 2015 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12712 Original Article Mutation analysis of genes within the dynactin complex in a cohort of hereditary peripheral neuropathies a a Tey S., Ahmad-Annuar A., Drew A.P., Shahrizaila N., Nicholson G.A., S. Tey , A. Ahmad-Annuar , Kennerson M.L. Mutation analysis of genes within the dynactin complex in A.P. Drewb, N. Shahrizailac, , a cohort of hereditary peripheral neuropathies. G.A. Nicholsonb d and Clin Genet 2016: 90: 127–133. © John Wiley & Sons A/S. Published by M.L. Kennersonb,d John Wiley & Sons Ltd, 2015 aDepartment of Biomedical Science, The cytoplasmic dynein–dynactin genes are attractive candidates for Faculty of Medicine, University of Malaya, b neurodegenerative disorders given their functional role in retrograde Kuala Lumpur, Malaysia, Northcott transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) Neuroscience Laboratory, ANZAC Research Institute, and Sydney Medical gene has been implicated in various neurodegenerative disorders, and School, University of Sydney, Sydney, dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of Australia, cDepartment of Medicine, disorders including motor neuron disease, Parkinson’s disease, spinobulbar Faculty of Medicine, University of Malaya, muscular atrophy and hereditary spastic paraplegia. However, the Kuala Lumpur, Malaysia, and dMolecular involvement of other dynactin genes with inherited peripheral neuropathies Medicine Laboratory, Concord Hospital, (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy Sydney, Australia and Charcot–Marie–Tooth disease is under reported. We screened eight genes; DCTN1-6 and ACTR1A and ACTR1B in 136 IPN patients using Key words: Charcot–Marie–Tooth – whole-exome sequencing and high-resolution melt (HRM) analysis.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • FARE2021WINNERS Sorted by Institute
    FARE2021WINNERS Sorted By Institute Swati Shah Postdoctoral Fellow CC Radiology/Imaging/PET and Neuroimaging Characterization of CNS involvement in Ebola-Infected Macaques using Magnetic Resonance Imaging, 18F-FDG PET and Immunohistology The Ebola (EBOV) virus outbreak in Western Africa resulted in residual neurologic abnormalities in survivors. Many case studies detected EBOV in the CSF, suggesting that the neurologic sequelae in survivors is related to viral presence. In the periphery, EBOV infects endothelial cells and triggers a “cytokine stormâ€. However, it is unclear whether a similar process occurs in the brain, with secondary neuroinflammation, neuronal loss and blood-brain barrier (BBB) compromise, eventually leading to lasting neurological damage. We have used in vivo imaging and post-necropsy immunostaining to elucidate the CNS pathophysiology in Rhesus macaques infected with EBOV (Makona). Whole brain MRI with T1 relaxometry (pre- and post-contrast) and FDG-PET were performed to monitor the progression of disease in two cohorts of EBOV infected macaques from baseline to terminal endpoint (day 5-6). Post-necropsy, multiplex fluorescence immunohistochemical (MF-IHC) staining for various cellular markers in the thalamus and brainstem was performed. Serial blood and CSF samples were collected to assess disease progression. The linear mixed effect model was used for statistical analysis. Post-infection, we first detected EBOV in the serum (day 3) and CSF (day 4) with dramatic increases until euthanasia. The standard uptake values of FDG-PET relative to whole brain uptake (SUVr) in the midbrain, pons, and thalamus increased significantly over time (p&lt;0.01) and positively correlated with blood viremia (p≤0.01).
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Genome-Wide Characterization of Genetic Variants and Putative
    Boschiero et al. BMC Genomics (2018) 19:83 DOI 10.1186/s12864-018-4444-0 RESEARCH ARTICLE Open Access Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines Clarissa Boschiero1,4* , Gabriel Costa Monteiro Moreira1,AlmasAraGheyas2, Thaís Fernanda Godoy1, Gustavo Gasparin1, Pilar Drummond Sampaio Corrêa Mariani1,MarcelaPaduan1, Aline Silva Mello Cesar1, Mônica Corrêa Ledur3 and Luiz Lehmann Coutinho1 Abstract Background: Meat and egg-type chickens have been selected for several generations for different traits. Artificial and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify putative regions under selection using Fst method, and find putative pathways under selection. Results: A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over 300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL data.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • A Different View on DNA Amplifications Indicates Frequent, Highly Complex, and Stable Amplicons on 12Q13-21 in Glioma
    A Different View on DNA Amplifications Indicates Frequent, Highly Complex, and Stable Amplicons on 12q13-21 in Glioma Ulrike Fischer,1 Andreas Keller,3 Petra Leidinger,1 Stephanie Deutscher,1 Sabrina Heisel,1 Steffi Urbschat,2 Hans-Peter Lenhof,3 and Eckart Meese1 Departments of 1Human Genetics and 2Neurosurgery, Saarland University, Homburg/Saar, Germany and 3Center for Bioinformatics, Saarland University, Saarbru¨cken, Germany Abstract Introduction To further understand the biological significance of DNA amplification does not occur in normal human cells amplifications for glioma development and recurrencies, but in multidrug-resistant cells and in tumor cells. Numerous we characterized amplicon frequency and size in studies described gene amplification in various human tumors low-grade glioma and amplicon stability in vivo in by cytogenetic and molecular genetic means. The breakage- recurring glioblastoma. We developed a 12q13-21 fusion-bridge cycle (1) is the most popular model to explain amplicon–specific genomic microarray and a intrachromosomal amplifications and many amplified structures bioinformatics amplification prediction tool to analyze like mixed ladders that were found in homogeneously staining amplicon frequency, size, and maintenance in 40 glioma regions (2). The ‘‘episome model’’ proposes that episomes samples including 16 glioblastoma, 10 anaplastic result from excision of small circular DNA that enlarges by astrocytoma, 7 astrocytoma WHO grade 2, and 7 overreplication or recombination until it becomes cytogeneti- pilocytic astrocytoma. Whereas previous studies cally visible as double minute chromosomes (3). Recent results reported two amplified subregions, we found a more of Tanaka et al. (4) showthat large palindromic sequences were complex situation with many amplified subregions. present in human cancers and the location of palindromes in the Analyzing 40 glioma, we found that all analyzed cancer genome serves as a structural platform to support glioblastoma and the majority of pilocytic astrocytoma, subsequent gene amplification.
    [Show full text]