Classical Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Classical Mechanics Notes on Classical Mechanics Thierry Laurens Last updated: August 8, 2021 Contents I Newtonian Mechanics 4 1 Newton's equations 5 1.1 Empirical assumptions . .5 1.2 Energy . .7 1.3 Conservative systems . 11 1.4 Nonconservative systems . 13 1.5 Reversible systems . 17 1.6 Linear momentum . 19 1.7 Angular momentum . 21 1.8 Exercises . 23 2 Examples 30 2.1 One degree of freedom . 30 2.2 Central fields . 33 2.3 Periodic orbits . 37 2.4 Kepler's problem . 39 2.5 Virial theorem . 42 2.6 Exercises . 43 II Lagrangian Mechanics 49 3 Euler{Lagrange equations 50 3.1 Principle of least action . 50 3.2 Conservative systems . 55 3.3 Nonconservative systems . 58 3.4 Equivalence to Newton's equations . 60 3.5 Momentum and conservation . 61 3.6 Noether's theorem . 63 3.7 Exercises . 65 4 Constraints 72 4.1 D'Alembert{Lagrange principle . 72 4.2 Gauss' principle of least constraint . 74 1 CONTENTS 2 4.3 Integrable constraints . 77 4.4 Non-holonomic constraints . 77 4.5 Exercises . 79 5 Hamilton{Jacobi equation 83 5.1 Hamilton{Jacobi equation . 83 5.2 Separation of variables . 86 5.3 Conditionally periodic motion . 87 5.4 Geometric optics analogy . 89 5.5 Exercises . 91 III Hamiltonian Mechanics 95 6 Hamilton's equations 96 6.1 Hamilton's equations . 96 6.2 Legendre transformation . 98 6.3 Liouville's theorem . 101 6.4 Poisson bracket . 103 6.5 Canonical transformations . 106 6.6 Infinitesimal canonical transformations . 109 6.7 Canonical variables . 111 6.8 Exercises . 112 7 Symplectic geometry 115 7.1 Symplectic structure . 115 7.2 Hamiltonian vector fields . 116 7.3 Integral invariants . 118 7.4 Poisson bracket . 120 7.5 Time-dependent systems . 121 7.6 Locally Hamiltonian vector fields . 123 7.7 Exercises . 124 8 Contact geometry 127 8.1 Contact structure . 127 8.2 Hamiltonian vector fields . 129 8.3 Dynamics . 130 8.4 Contact transformations . 131 8.5 Time-dependent systems . 134 8.6 Exercises . 136 Bibliography 139 Preface Although many mathematical tools originated in the study of classical mechan- ics, their connection to the foundational physical example is often neglected. The objective of these expository notes is to present the theory of classical me- chanics, develop the concomitant mathematical concepts, and to see the physical systems as examples of the math. These notes include a self-contained presentation of the central physics the- ory of mechanics designed for mathematicians. However, we exclude many topics that commonly appear in a first-year graduate course on mechanics, e.g. rigid bodies. For a thorough study of the theory, techniques, and examples of classical mechanics, see the standard physics texts [Arn89, Gol51, LL76]. Alongside the physics, we will develop the relevant concepts and tools from the mathematical study of differential equations. Note that this does not in- clude mathematical methods used in mechanics, which can be found in the text [AKN06]. We will assume the reader possesses a beginner graduate or advanced un- dergraduate mathematical understanding|specifically, multivariate calculus in Part I, manifolds and tangent bundles in Part II, and cotangent bundles in Part III. Unless otherwise stated, we will always assume all given functions are smooth (i.e. infinitely differentiable). Although many of the results hold under weaker assumptions, we choose to focus on the proofs in the smooth case. 3 4 Part I Newtonian Mechanics The Newtonian perspective is the most fundamental interpretation of the motion of a mechanical system. Newton's principle of determinacy is an ex- perimental observation, the mathematical phrasing of which yields Newton's equations. Together with Galileo's principle of relativity, these form the axioms of classical mechanics. We will also see how additional empirical assumptions (conservative sys- tem, closed system, and the law of action and reaction) yield both physically observable effects (conservation laws and symmetries) and mathematical con- sequences (special properties for Newton's equations and its solutions). This study will require only multivariable calculus and will reveal some of the basic mathematical tools of ODE theory (conserved quantities, Lyapunov functions, and time-reversibility). Although Newtonian mechanics are naturally phrased on Euclidean space, we will introduce and study the fundamental objects (configuration and phase space) which we will later generalize to include a broader class of systems. Chapter 1 Newton's equations We build the physical theory starting from essential empirical observations. We then define and prove fundamental mathematical properties of conservative, Lyapunov, and gradient systems. The physics material is based on [Arn89, Ch. 1], [AKN06, Ch. 1], and [Gol51, Ch. 1], and the math material is based on [Str15, Ch. 5{7] and [JS07, Ch. 10]. 1.1 Empirical assumptions Classical mechanics is the study of the motion of particles in a Euclidean space Rd.A particle (or point mass) consists of two pieces of information: the body's mass m > 0 and its position x 2 Rd. This model for physical objects neglects the object's spatial dimensions. Given a system of N particles with d positions xi 2 R , the collection of all positions x = (x1;:::; xN ) constitute the configuration space Rd × · · · × Rd = RNd, whose dimension Nd is the system's degrees of freedom. The evolution of a system is described by the particles' trajectories, N d maps xi : I ! R for I ⊂ R an interval, which together constitute the motion of the system. In order to determine the system's evolution we will use the velocity x_ i , acceleration x¨i, and momentum pi = mix_ i (1.1) _ df of the ith particle. (We use the notation f = dt for time derivatives.) The positions and momenta together span the phase space RNd × RNd, whose dimension 2Nd is always twice the degrees of freedom. We will refer to the tra- jectories of the system plotted in phase space as the system's phase portrait. Newton's principle of determinacy is the experimental observation that the initial state of a Newtonian system|all the positions x(t0) and velocities x_ (t0) at some moment t0 2 R in time|uniquely determines the system's mo- tion. We formulate this mathematically as follows. 5 CHAPTER 1. NEWTON'S EQUATIONS 6 Definition 1.1 (Newton's principle of determinacy). A Newtonian system Nd Nd Nd is given by N particles and a function F :(R r ∆) × R × R ! R , called the force, such that p_ = F(x; x_ ; t): (1.2) S Here, ∆ = i<jfxi = xjg is the union of diagonals, so that we do not consider two particles occupying the same position. Equation (1.2) is called Newton's equation (or Newton's second law). Unless otherwise noted, we will always assume the particle masses mi are all constant. Equation (1.2) then takes the form mix¨i = Fi(x; x_ ; t); i = 1; : : : ; N: (1.3) Historically, one would experimentally observe that a particle's acceleration is inversely proportional to its mass in order for momentum to merit it's own defini- tion (1.1). Treating the velocity independently of position is a common practice in math to reduce a system of ODEs to first-order, so that instead of a system of N second-order differential equations on configuration space we consider a system of 2N first-order differential equations on phase space, equations (1.1) and (1.2). Unless otherwise stated, we will always assume that the force F is smooth Nd Nd (infinitely differentiable) on (R r∆)×R ×R. The theorem of existence and uniqueness for ODEs then tells us there always exists a unique solution to the system of differential equations (1.2) for any initial state and that the solution is also smooth. Even with this assumption, it may be that the solution exists for a finite amount of time. However, from experimental observation we expect that for any naturally occurring system that the the interval can be extended to all of R, and so we will often work in a regime where the solutions to our mathematical model eq. (1.3) exist for all time. We will formulate one more mathematical assumption: that the physical laws governing the system's motion is independent of the choice of coordinates d d d and origin we impose on R . A transformation R ×Rt ! R ×Rt is Galilean provided that it is an affine transformation (a linear transformation and a trans- lation) that preserves time intervals and for any fixed t 2 R is an isometry of Rd; that is, if we write g(x; t) = (x0; t0) then for each t 2 R the function x0 is an orthogonal transformation and a translation. It is straightforward to show that the set of Galilean transformations forms a group under function composition. Example 1.2. The following are all Galilean transformations: d (1) Translations: g1(x; t) = (x + x0; t + t0) for some fixed x0 2 R , t0 2 R (2) Rotations and reflections: g2(x:t) = (Ax; t) for some fixed orthogonal transformation A 2 O(d) (3) Uniform motion with constant velocity: g3(x; t) = (x + vt; t) for some fixed velocity v 2 Rd. CHAPTER 1. NEWTON'S EQUATIONS 7 In fact, these examples generate the entire Galilean group (cf. Exercise 1.3). Galileo's principle of relativity is the experimental observation that for an isolated system there exists a reference frame|a choice of origin and coordinate axes for Rd|that is invariant under any Galilean transformation. Such a reference frame is called inertial, and the principle also asserts that all coordinate systems in uniform motion with constant velocity with respect to an inertial frame must also be inertial.
Recommended publications
  • Parametric Surfaces and 16.6 Their Areas Parametric Surfaces
    Parametric Surfaces and 16.6 Their Areas Parametric Surfaces 2 Parametric Surfaces Similarly to describing a space curve by a vector function r(t) of a single parameter t, a surface can be expressed by a vector function r(u, v) of two parameters u and v. Suppose r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k is a vector-valued function defined on a region D in the uv-plane. So x, y, and, z, the component functions of r, are functions of the two variables u and v with domain D. The set of all points (x, y, z) in R3 s.t. x = x(u, v), y = y(u, v), z = z(u, v) and (u, v) varies throughout D, is called a parametric surface S. Typical surfaces: Cylinders, spheres, quadric surfaces, etc. 3 Example 3 – Important From Book The vector equation of a plane through (x0, y0, z0) and containing vectors is rather 4 Example – Point on Surface? Does the point (2, 3, 3) lie on the given surface? How about (1, 2, 1)? 5 Example – Identify the Surface Identify the surface with the given vector equation. 6 Example – Identify the Surface Identify the surface with the given vector equation. 7 Example – Find a Parametric Equation The part of the hyperboloid –x2 – y2 + z = 1 that lies below the rectangle [–1, 1] X [–3, 3]. 8 Example – Find a Parametric Equation The part of the cylinder x2 + z2 = 1 that lies between the planes y = 1 and y = 3. 9 Example – Find a Parametric Equation Part of the plane z = 5 that lies inside the cylinder x2 + y2 = 16.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Chapter 2 Introduction to Electrostatics
    Chapter 2 Introduction to electrostatics 2.1 Coulomb and Gauss’ Laws We will restrict our discussion to the case of static electric and magnetic fields in a homogeneous, isotropic medium. In this case the electric field satisfies the two equations, Eq. 1.59a with a time independent charge density and Eq. 1.77 with a time independent magnetic flux density, D (r)= ρ (r) , (1.59a) ∇ · 0 E (r)=0. (1.77) ∇ × Because we are working with static fields in a homogeneous, isotropic medium the constituent equation is D (r)=εE (r) . (1.78) Note : D is sometimes written : (1.78b) D = ²oE + P .... SI units D = E +4πP in Gaussian units in these cases ε = [1+4πP/E] Gaussian The solution of Eq. 1.59 is 1 ρ0 (r0)(r r0) 3 D (r)= − d r0 + D0 (r) , SI units (1.79) 4π r r 3 ZZZ | − 0| with D0 (r)=0 ∇ · If we are seeking the contribution of the charge density, ρ0 (r) , to the electric displacement vector then D0 (r)=0. The given charge density generates the electric field 1 ρ0 (r0)(r r0) 3 E (r)= − d r0 SI units (1.80) 4πε r r 3 ZZZ | − 0| 18 Section 2.2 The electric or scalar potential 2.2 TheelectricorscalarpotentialFaraday’s law with static fields, Eq. 1.77, is automatically satisfied by any electric field E(r) which is given by E (r)= φ (r) (1.81) −∇ The function φ (r) is the scalar potential for the electric field. It is also possible to obtain the difference in the values of the scalar potential at two points by integrating the tangent component of the electric field along any path connecting the two points E (r) d` = φ (r) d` (1.82) − path · path ∇ · ra rb ra rb Z → Z → ∂φ(r) ∂φ(r) ∂φ(r) = dx + dy + dz path ∂x ∂y ∂z ra rb Z → · ¸ = dφ (r)=φ (rb) φ (ra) path − ra rb Z → The result obtained in Eq.
    [Show full text]
  • Chapter 8 Relationship Between Rotational Speed and Magnetic
    Chapter 8 Relationship Between Rotational Speed and Magnetic Fields 8.1 Introduction It is well-known that sunspots and other solar magnetic features rotate faster than the surface plasma (Howard & Harvey, 1970). The sidereal rotation speeds of weak magnetic features and plages (Howard, Gilman, & Gilman, 1984; Komm, Howard, & Harvey, 1993), individual sunspots (Howard, Gilman, & Gilman, 1984; Sivaraman, Gupta, & Howard, 1993) and sunspot groups (Howard, 1992) have been studied for many years by different research groups by use of different observatory data (see reviews of Howard 1996 and Beck 2000). Such studies are deemed as diagnostics of subsurface conditions based on the assumption that the faster rotation of magnetic features was caused by the faster-rotating plasma in the interior where the magnetic features were anchored (Gilman & Foukal, 1979). By matching the sunspot surface speed with the solar interior rotational speed robustly derived by helioseismology (e.g., Thompson et al., 1996; Kosovichev et al., 1997; Howe et al., 2000a), several studies estimated the depth of sunspot roots for sunspots of different sizes and life spans (e.g., Hiremath, 2002; Sivaraman et al., 2003). Such studies are valuable for understanding the solar dynamo and origin of solar active regions. However, D’Silva & Howard (1994) proposed a different explanation, namely that effects of buoyancy 111 112 CHAPTER 8. ROTATIONAL SPEED AND MAGNETIC FIELDS and drag coupled with the Coriolis force during the emergence of active regions might lead to the faster rotational speed. Although many studies were done to infer the rotational speed of various solar magnetic features, the relationship between the rotational speed of the magnetic fea- tures and their magnetic strength has not yet been studied.
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • Overview of the CALET Mission to the ISS 1 Introduction
    32ND INTERNATIONAL COSMIC RAY CONFERENCE,BEIJING 2011 Overview of the CALET Mission to the ISS SHOJI TORII1,2 FOR THE CALET COLLABORATION 1Research Institute for Scinece and Engineering, Waseda University 2Space Environment Utilization Center, JAXA [email protected] DOI: 10.7529/ICRC2011/V06/0615 Abstract: The CALorimetric Electron Telescope (CALET) mission is being developed as a standard payload for the Exposure Facility of the Japanese Experiment Module (JEM/EF) on the International Space Station (ISS). The instrument consists of a segmented plastic scintillator charge measuring module, an imaging calorimeter consisting of 8 scintillating fiber planes with a total of 3 radiation lengths of tungsten plates interleaved with the fiber planes, and a total absorption calorimeter consisting of crossed PWO logs with a total depth of 27 radiation lengths. The major scientific objectives for CALET are to search for nearby cosmic ray sources and dark matter by carrying out a precise measurement of the electron spectrum (1 GeV - 20 TeV) and observing gamma rays (10 GeV - 10 TeV). CALET has a unique capability to observe electrons and gamma rays in the TeV region since the hadron rejection power is larger than 105 and the energy resolution better than 2 % above 100 GeV. CALET has also the capability to measure cosmic ray H, He and heavy nuclei up to 1000 TeV.∼ The instrument will also monitor solar activity and search for gamma ray transients. The phase B study has started, aimed at a launch in 2013 by H-II Transfer Vehicle (HTV) for a 5 year observation period on JEM/EF.
    [Show full text]
  • Rotating Objects Tend to Keep Rotating While Non- Rotating Objects Tend to Remain Non-Rotating
    12 Rotational Motion Rotating objects tend to keep rotating while non- rotating objects tend to remain non-rotating. 12 Rotational Motion In the absence of an external force, the momentum of an object remains unchanged— conservation of momentum. In this chapter we extend the law of momentum conservation to rotation. 12 Rotational Motion 12.1 Rotational Inertia The greater the rotational inertia, the more difficult it is to change the rotational speed of an object. 1 12 Rotational Motion 12.1 Rotational Inertia Newton’s first law, the law of inertia, applies to rotating objects. • An object rotating about an internal axis tends to keep rotating about that axis. • Rotating objects tend to keep rotating, while non- rotating objects tend to remain non-rotating. • The resistance of an object to changes in its rotational motion is called rotational inertia (sometimes moment of inertia). 12 Rotational Motion 12.1 Rotational Inertia Just as it takes a force to change the linear state of motion of an object, a torque is required to change the rotational state of motion of an object. In the absence of a net torque, a rotating object keeps rotating, while a non-rotating object stays non-rotating. 12 Rotational Motion 12.1 Rotational Inertia Rotational Inertia and Mass Like inertia in the linear sense, rotational inertia depends on mass, but unlike inertia, rotational inertia depends on the distribution of the mass. The greater the distance between an object’s mass concentration and the axis of rotation, the greater the rotational inertia. 2 12 Rotational Motion 12.1 Rotational Inertia Rotational inertia depends on the distance of mass from the axis of rotation.
    [Show full text]
  • HW 6, Question 1: Forces in a Rotating Frame
    HW 6, Question 1: Forces in a Rotating Frame Consider a solid platform, like a \merry-go round", that rotates with respect to an inertial frame of reference. It is oriented in the xy plane such that the axis of rotation is in the z-direction, i.e. ! = !z^, which we can take to point out of the page. Now, let us also consider a person walking on the rotating platform, such that this person is walking radially outward on the platform with respect to their (non-inertial) reference frame with velocity v = vr^. In what follows for Question 1, directions in the non-inertial reference frame (i.e. the frame of the walking person) are defined in the following manner: the x0-direction points directly outward from the center of the merry-go round; the y0 points in the tangential direction of rotation in the plane of the platform; and the z0-direction points out of the page, and in the same direction as the z-direction for the inertial reference frame. (a) Identify all forces. Since the person's reference frame is non-inertial, we need to account for the various fictitious forces given the description above, as well as any other external/reaction forces. The angular rate of rotation is constant, and so the Euler force Feul = m(!_ × r) = ~0. The significant forces acting on the person are: 0 • the force due to gravity, Fg = mg = mg(−z^ ), 2 0 • the (fictitious) centrifugal force, Fcen = m! × (! × r) = m! rx^ , 0 • the (fictitious) Coriolis force, Fcor = 2mv × ! = 2m!v(−y^ ), • the normal force the person experiences from the rotating platform N = Nz^0, and • a friction force acting on the person, f, in the x0y0 plane.
    [Show full text]
  • Chapter 11.Pdf
    Chapter 11. Kinematics of Particles Contents Introduction Rectilinear Motion: Position, Velocity & Acceleration Determining the Motion of a Particle Sample Problem 11.2 Sample Problem 11.3 Uniform Rectilinear-Motion Uniformly Accelerated Rectilinear-Motion Motion of Several Particles: Relative Motion Sample Problem 11.5 Motion of Several Particles: Dependent Motion Sample Problem 11.7 Graphical Solutions Curvilinear Motion: Position, Velocity & Acceleration Derivatives of Vector Functions Rectangular Components of Velocity and Acceleration Sample Problem 11.10 Motion Relative to a Frame in Translation Sample Problem 11.14 Tangential and Normal Components Sample Problem 11.16 Radial and Transverse Components Sample Problem 11.18 Introduction Kinematic relationships are used to help us determine the trajectory of a snowboarder completing a jump, the orbital speed of a satellite, and accelerations during acrobatic flying. Dynamics includes: Kinematics: study of the geometry of motion. Relates displacement, velocity, acceleration, and time without reference to the cause of motion. Fdownforce Fdrive Fdrag Kinetics: study of the relations existing between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by given forces or to determine the forces required to produce a given motion. Particle kinetics includes : • Rectilinear motion: position, velocity, and acceleration of a particle as it moves along a straight line. • Curvilinear motion : position, velocity, and acceleration of a particle as it moves along a curved line in two or three dimensions. Rectilinear Motion: Position, Velocity & Acceleration • Rectilinear motion: particle moving along a straight line • Position coordinate: defined by positive or negative distance from a fixed origin on the line.
    [Show full text]
  • HARMONIC FUNCTIONS for BOUNDED and UNBOUNDED P(X)
    UNIVERSITY OF JYVASKYL¨ A¨ UNIVERSITAT¨ JYVASKYL¨ A¨ DEPARTMENT OF MATHEMATICS INSTITUT FUR¨ MATHEMATIK AND STATISTICS UND STATISTIK REPORT 130 BERICHT 130 EXISTENCE AND UNIQUENESS OF p(x)-HARMONIC FUNCTIONS FOR BOUNDED AND UNBOUNDED p(x) JUKKA KEISALA JYVASKYL¨ A¨ 2011 UNIVERSITY OF JYVASKYL¨ A¨ UNIVERSITAT¨ JYVASKYL¨ A¨ DEPARTMENT OF MATHEMATICS INSTITUT FUR¨ MATHEMATIK AND STATISTICS UND STATISTIK REPORT 130 BERICHT 130 EXISTENCE AND UNIQUENESS OF p(x)-HARMONIC FUNCTIONS FOR BOUNDED AND UNBOUNDED p(x) JUKKA KEISALA JYVASKYL¨ A¨ 2011 Editor: Pekka Koskela Department of Mathematics and Statistics P.O. Box 35 (MaD) FI{40014 University of Jyv¨askyl¨a Finland ISBN 978-951-39-4299-1 ISSN 1457-8905 Copyright c 2011, Jukka Keisala and University of Jyv¨askyl¨a University Printing House Jyv¨askyl¨a2011 Contents 0 Introduction 3 0.1 Notation and prerequisities . 6 1 Constant p, 1 < p < 1 8 1.1 The direct method of calculus of variations . 10 1.2 Dirichlet energy integral . 10 2 Infinity harmonic functions, p ≡ 1 13 2.1 Existence of solutions . 14 2.2 Uniqueness of solutions . 18 2.3 Minimizing property and related topics . 22 3 Variable p(x), with 1 < inf p(x) < sup p(x) < +1 24 4 Variable p(x) with p(·) ≡ +1 in a subdomain 30 4.1 Approximate solutions uk ...................... 32 4.2 Passing to the limit . 39 5 One-dimensional case, where p is continuous and sup p(x) = +1 45 5.1 Discussion . 45 5.2 Preliminary results . 47 5.3 Measure of fp(x) = +1g is positive . 48 6 Appendix 51 References 55 0 Introduction In this licentiate thesis we study the Dirichlet boundary value problem ( −∆ u(x) = 0; if x 2 Ω; p(x) (0.1) u(x) = f(x); if x 2 @Ω: Here Ω ⊂ Rn is a bounded domain, p :Ω ! (1; 1] a measurable function, f : @Ω ! R the boundary data, and −∆p(x)u(x) is the p(x)-Laplace operator, which is written as p(x)−2 −∆p(x)u(x) = − div jru(x)j ru(x) for finite p(x).
    [Show full text]
  • Multivariable and Vector Calculus
    Multivariable and Vector Calculus Lecture Notes for MATH 0200 (Spring 2015) Frederick Tsz-Ho Fong Department of Mathematics Brown University Contents 1 Three-Dimensional Space ....................................5 1.1 Rectangular Coordinates in R3 5 1.2 Dot Product7 1.3 Cross Product9 1.4 Lines and Planes 11 1.5 Parametric Curves 13 2 Partial Differentiations ....................................... 19 2.1 Functions of Several Variables 19 2.2 Partial Derivatives 22 2.3 Chain Rule 26 2.4 Directional Derivatives 30 2.5 Tangent Planes 34 2.6 Local Extrema 36 2.7 Lagrange’s Multiplier 41 2.8 Optimizations 46 3 Multiple Integrations ........................................ 49 3.1 Double Integrals in Rectangular Coordinates 49 3.2 Fubini’s Theorem for General Regions 53 3.3 Double Integrals in Polar Coordinates 57 3.4 Triple Integrals in Rectangular Coordinates 62 3.5 Triple Integrals in Cylindrical Coordinates 67 3.6 Triple Integrals in Spherical Coordinates 70 4 Vector Calculus ............................................ 75 4.1 Vector Fields on R2 and R3 75 4.2 Line Integrals of Vector Fields 83 4.3 Conservative Vector Fields 88 4.4 Green’s Theorem 98 4.5 Parametric Surfaces 105 4.6 Stokes’ Theorem 120 4.7 Divergence Theorem 127 5 Topics in Physics and Engineering .......................... 133 5.1 Coulomb’s Law 133 5.2 Introduction to Maxwell’s Equations 137 5.3 Heat Diffusion 141 5.4 Dirac Delta Functions 144 1 — Three-Dimensional Space 1.1 Rectangular Coordinates in R3 Throughout the course, we will use an ordered triple (x, y, z) to represent a point in the three dimensional space.
    [Show full text]
  • Math 1300 Section 4.8: Parametric Equations A
    MATH 1300 SECTION 4.8: PARAMETRIC EQUATIONS A parametric equation is a collection of equations x = x(t) y = y(t) that gives the variables x and y as functions of a parameter t. Any real number t then corresponds to a point in the xy-plane given by the coordi- nates (x(t); y(t)). If we think about the parameter t as time, then we can interpret t = 0 as the point where we start, and as t increases, the parametric equation traces out a curve in the plane, which we will call a parametric curve. (x(t); y(t)) • The result is that we can \draw" curves just like an Etch-a-sketch! animated parametric circle from wolfram Date: 11/06. 1 4.8 2 Let's consider an example. Suppose we have the following parametric equation: x = cos(t) y = sin(t) We know from the pythagorean theorem that this parametric equation satisfies the relation x2 + y2 = 1 , so we see that as t varies over the real numbers we will trace out the unit circle! Lets look at the curve that is drawn for 0 ≤ t ≤ π. Just picking a few values we can observe that this parametric equation parametrizes the upper semi-circle in a counter clockwise direction. (0; 1) • t x(t) y(t) 0 1 0 p p π 2 2 •(1; 0) 4 2 2 π 2 0 1 π -1 0 Looking at the curve traced out over any interval of time longer that 2π will indeed trace out the entire circle.
    [Show full text]