<<

1 Particle

Dr M.A. Thomson

´­  ѵ  ¼

µ- µ-

e- e+ e- e+ µ+ µ+ µ- µ-

e- e+ e- e+ µ+ µ+

Part II, Lent Term 2004 HANDOUT V

Dr M.A. Thomson Lent 2004 2

Spin, Helicity and the

Dirac Equation

★ Upto this point we have taken a hands-off approach to “spin”.

★ Scattering cross sections calculated for spin-less particles

★ To understand the need to understand SPIN

★ Need a relativistic theory of that includes spin

★ µ The

Dr M.A. Thomson Lent 2004 3 ★ SPIN complicates things.... e- µ- The process γ + e+ µ represents the sum over all possible spin states µ- µ- µ- µ-

e- e+ e- e+ e- e+ e- e+ µ+ µ+ µ+ µ+ µ- µ- µ- µ-

e- e+ e- e+ e- e+ e- e+ µ+ µ+ µ+ µ+ µ- µ- µ- µ-

e- e+ e- e+ e- e+ e- e+ µ+ µ+ µ+ µ+ µ- µ- µ- µ-

e- e+ e- e+ e- e+ e- e+

µ+ µ+ µ+ µ+

Å Å 

¾ ¾ ¾

Å    Å  Å 

since ORTHOGONAL SPIN states.

 

½

¾

 ¾ Å  ´ µ



 Cross-section : sum over all spin assignments, averaged over initial spin states.

Dr M.A. Thomson Lent 2004 4 The Klein-Gordon Equation Revisited

Schrodinger¨ Equation for a free particle can be

written as

 ½

¾

 Ö 

Ø ¾Ñ

Derivatives : 1st order in time and 2nd order in

space coordinates µ not Lorentz invariant

From :

¾ ¾ ¾

 Ô · Ñ

from Quantum Mechanics:





 Ô Ö

 Ø

Combine to give the Klein-Gordon Equation:

¾

 

¾ ¾

´Ö Ñ µ

¾ Ø Second order in both space and time derivatives - by construction Lorentz invariant. ★ Negative energy solutions

µ anti-particles ★ BUT negative energy solutions also give

negative particle densities !?

£

  ¼

Try another approach.....

Dr M.A. Thomson Lent 2004 5 Weyl Equations

(The massless version of the Dirac Equation)

Klein-Gordon Eqn. for massless particles:

¾

 

¾

´ Ö µ ¼

¾

 Ø

¾

¾



  ´ Ô µ ¼

Try to factorize 2nd Order KG equation ➔ 

equation linear in Ö AND :

 Ø

 

 Öµ´ ·  Öµ ¼ ´

 Ø  Ø  with as yet undetermined constants

Gives the two decoupled WEYL Equations



  

´ ·  ·  µ ·

Ü Ý Þ

 Ü  Ý  Þ  Ø



  

·  ·  µ ´

Ý Þ Ü

 Ü  Ý  Þ  Ø both linear in space and time derivatives. BUT must satisfy the Klein-Gordon Equation

i.e. in operator form

 

´  Ôµ´ ·  Ôµ  ¼

must satisfy

¾

¾



´ Ô µ ¼

Dr M.A. Thomson Lent 2004 6

Weyl equations give:

¾



´ Ô Ô Ô Ô Ô Ô

Ü Ü Ý Ý Þ Þ

Ü Ü Ý Ý Þ Þ

Ô Ô Ô Ô

Ü Ý Ý Ü

Ü Ý Ý Ü

Ô Ô Ô Ô

Ý Þ Þ Ý

Ý Þ Þ Ý

Ô Ô Ô  Ô µ  ¼

Þ Ü Ü Þ

Þ Ü Ü Þ

Therefore in order to recover the KG equation:

¾



´ Ô Ô Ô Ô Ô Ô µ  ¼

Ü Ü Ý Ý Þ Þ

require:

¾ ¾ ¾

   ½

Ü Ý Þ

´ · µ  ¼ Ø

Ü Ý Ý Ü

µ

Ü Þ , Ý , ANTI-COMMUTE

The simplest choice for are the Pauli spin matrices

  

½ ¼ ¼ ½ 

¼ -

    

Þ Ý Ü

¼ ½ ¼ ½ ¼  -

Hence solutions to the Klein-Gordon equation

 

´  Ôµ´  ·  Ôµ   ¼

are given by the Weyl Equations:



  Ôµ   ¼ ´



´ ·  Ôµ  ¼

¾ ¢ ¾

Since  are matrices, need 2 component

wave-functions - WEYL .

 



½

´Ø Ô  Öµ

  Æ

 ¾ The wave-function is forced to have a new degree of freedom - the spin of the .

Dr M.A. Thomson Lent 2004 7

Consider the FIRST Weyl Equation



´  Ôµ   ¼

   

´ · · · µ  ¼

Ü Ý Þ

 Ø  Ü  Ý  Þ

For a plane wave solution:

 



½

´Ø Ô  Öµ

  Æ

 ¾

the first Weyl Equation gives

´ Ô Ô Ô µ  ¼

Ü Ü Ý Ý Þ Þ

´ Ô µ  ¼

where

Ô  Ô · Ô · Ô

Ü Ü Ý Ý Þ Þ

 

Ô Ô Ô

Þ Ü Ý



Ô · Ô Ô

Ü Ý Þ

Hence for the first WEYL equation, the solutions of

 Ô µ  ¼

´ are given the coupled equations:

µ

Ô  · ´Ô Ô µ  

Þ ½ Ü Ý ¾ ½

µ

´Ô · Ô µ Ô   

Ü Ý ½ Þ ¾ ¾

Dr M.A. Thomson Lent 2004

8

★ Ô Þ Ô  Ô

Choose along axis, i.e. Þ :

´ Ôµ  ¼

½

´ · Ôµ  ¼

¾

 

½ ¼

   

There are two solutions · and .

¼ ½



½

★    ·Ô

The first solution, · , requires , i.e. ¼

a positive energy (particle) solution. Similarly, the second



¼

   Ô

, requires , i.e. a negative energy ½ (anti-particle) solution.

★ Back to the FIRST WEYL equation

´  Ôµ   ¼

 Ô   

´

·½  ¼

Ô

   

Ô

Ô ½  ¼

★ The solutions of the WEYL equations are Eigenstates of

the HELICITY operator.

Ô



À 

Ô

½ with Eigenvalues ·½ and respectively. σ p

HELICITY is the projection of a particle’s SPIN onto its flight direction. (Recall WEYL equations applicable for massless particles) Dr M.A. Thomson Lent 2004 9

★ Interpret the two solutions of the FIRST WEYL equation

 ·½

as a RIGHT-HANDED À particle and a

 ½ LEFT-HANDED anti-particle À . E > 0, H = +1 E < 0, H = -1

RH particle LH anti-particle

★ The SECOND WEYL equation:



´ ·  Ôµ  ¼

has LEFT-HANDED particle and RIGHT-HANDED anti-particle solutions. E < 0, H = +1 E > 0, H = -1

RH anti-particle LH particle

SUMMARY:

★ By factorizing the Klein-Gordon equation into a form

linear in the derivatives µ force particles to have a non-commuting degree of freedom, SPIN !

★ Still obtain anti-particle solutions

★ Probability densities always positive

★ ‘Natural’ states are the Helicity Eigenstates

★ Weyl Equations are the ultra-relativistic (massless) limit of the Dirac Equation

Dr M.A. Thomson Lent 2004 10 Spin in the Fundamental Interactions

★ The ELECTROMAGNETIC, STRONG, and WEAK interactions are all mediated by VECTOR (spin-1) fields. In the massless limit, the fundamental fermion states are eigenstates of the helicity operator. HANDEDNESS ★ () plays a central roleˆ in the interactions between the field bosons and the ; the only allowed couplings are: LH particle to LH particle RH particle to RH particle LH anti-particle to LH anti-particle RH anti-particle to RH anti-particle LH particle to RH anti-particle

RH particle to LH anti-particle

· ·

   EXAMPLE Of the 16 possibilities ONLY the following SPIN combinations contribute to the cross-section µ- µ-

e- e+ e- e+ µ+ µ+ µ- µ-

e- e+ e- e+

µ+ µ+

¾

Å 

All other SPIN combinations give zero 

Dr M.A. Thomson Lent 2004 11 Solutions of the Weyl Equations

Consider the general case of a particle with travelling at an Þ

angle  with respect to the -axis

Ô  Ô Ó× 

Þ

Ô  Ô ×Ò 

Ü



  Ôµ   ¼

WEYL 1 ´



´ Ôµ   

µ

Ô  · Ô   

Þ ½ Ü ¾ ½

µ

Ô  Ô   

Ü ½ Þ ¾ ¾

 ·Ô

For the positive energy solution :

µ

 Ó×  ·  ×Ò   

½ ¾ ½

µ

 ×Ò   Ó×   

½ ¾ ¾

×Ò 

µ   

½ ¾

´½ Ó×  µ

Therefore

 

¾×Ò Ó×



½

¾ ¾



¾

 

¾



´½ Ó× · ×Ò µ

¾

¾ ¾



Ó×



½

¾







×Ò

¾

¾

¾ ¾

 ·   ½ ½

Normalizing such that ¾ gives:



  Ó×

½

¾



  ×Ò

¾ ¾

Dr M.A. Thomson Lent 2004 12 ★ So the positive energy solution to the first Weyl equation

(RH particle) gives

  

+ Ó×

´Ø Ô  Öµ

¾

  Æ ÊÀ  ÖÑÓÒ

ÊÀ 

+ ×Ò ¾

This is still a Eigenvalue of the helicity operator with

À  ·½µ ´ i.e. a RH particle but now referred to an external axis. The positive energy solution to the SECOND Weyl equation

(LH particle) gives

  

- ×Ò

´Ø Ô  Öµ

¾

 Æ ÄÀ  ÖÑÓÒ

ÄÀ 

+ Ó× ¾

Not much more than the Quantum Mechanical rotation

properties of spin- ½ . ¾ ★ The spin part of a RH particle/anti-particle wave-function

can be written

  

+ Ó×

 

¾

 ´ µ   · ×Ò   Ó×

Ê



¾ ¾

+ ×Ò ¾

★ Similarly for a LH particle/anti-particle

  

- ×Ò

 

¾

 · Ó×   ´ µ   ×Ò

Ä



¾ ¾

+ Ó×

¾

Ô´  µ

For particles/anti-particles with , i.e. an

· 

angle  to the z-axis:

 

 · Ó×   ´ ·  µ  ×Ò

Ê

¾ ¾

 

 ×Ò   ´ ·  µ  Ó×

Ä

¾ ¾

Dr M.A. Thomson Lent 2004

13

· ·

   Application to

µ- µ-

e- e+ e- e+ ★ Four helicity combinations µ+ µ+ - - contribute to the cross-section. µ µ e- e+ e- e+ µ+ µ+

★ Consider the first diagram µ-

· ·

   

 - +

Ä Ê Ä

Ê e e

With the  direction defin- µ+

ing the Þ axis:

★ The spin parts of the wave-functions :

  ´¼µ ´ µ 

· Ä

= Ê =

Ê Ä

  ´ µ ´ ·  µ

·

Ä

= Ê

Ä Ê

¾

   

¾

Ó× Ó× µ ×Ò ×Ò ´ 

=- - + -

¾ ¾ ¾ ¾

★ Giving the contribution the matrix element:

¾



¾ ¾

Å      

· ·

½

¾

Ê Ä Ê Ä

Õ







¾

¾

 Ó×  

¾



Õ

 

¾



 ½

¾

 ´½ · Ó×  µ



Õ ¾

Dr M.A. Thomson Lent 2004 14 ★ Perform same calculation for the four allowed helicity combinations µ- - + α 2 θ e e M1 cos ( /2) µ+ → 1 θ 2 (1+cos ) µ- - + α 2 θ e e M2 sin ( /2) µ+ → 1 θ 2 (1-cos ) µ- - + α 2 θ e e M3 sin ( /2) µ+ → 1 θ 2 (1-cos ) µ- - + α 2 θ e e M4 cos ( /2) µ+ → 1 θ 2 (1+cos ) ★ For unpolarized electron/positron beams : each of the above process contributes equally. Therefore SUM over all matrix elements and AVERAGE over initial spin states. Giving the total Matrix Element (remember spin-states are

orthogonal so sum squared matrix elements) :

¨ ©

½

¾ ¾ ¾ ¾ ¾

Å   Å  · Å  · Å  · Å 

½ ¾ ¿ 





 ½

½ ½

¾ ¾ ¾

´½ · Ó×  µ · ´½ Ó×  µ · Å  

 



 Õ

½ ½

¾ ¾

´½ Ó×  µ · ´½ · Ó×  µ

 





¾

¾

´½ · Ó×  µ Å  



Õ ★ Nothing more than the QM properties of a SPIN-1 particle

decaying to two SPIN- ½ particles ¾

Dr M.A. Thomson Lent 2004 15 + f e µ f p2 γ θ √α √α - + Qf e e µ 1 p - 1 q2

e f f

¾ ¾

´Õ    ×µ Electron/Positron beams along Þ -axis

Using the spin-averaged matrix element





¾

¾

´½ · Ó×  µ Å  



¾

´«µ

¾

¾

Å   ´½ · Ó×  µ

¾

¾



¾

 ¾ Å 

¿

ª ´¾ µ

¾

´«µ × ½

¾

 ¾ ´½ · Ó×  µ

¾ ¿

×  ´¾ µ

¾ ¾

« É

¾

´½ · Ó×  µ 

·



ÕÕ

for .

Ó× 

The angle is determined from

the measured directions of the

Ó×  jets.  is plotted since it is not possible to uniquely identify which jet corresponds to the quark and which corresponds to the anti-

quark. The curve shows the ex-

¾

· Ó× µ pected ´½ distribution.

QUARKS are SPIN- ½ ¾

Dr M.A. Thomson Lent 2004 16

(yet again)

·

  

Total cross section for



 ª

¾ ¾

¾

« É

¾

 ´½ · Ó×  µ×Ò 

¼ ¼

¾ ¾

·½

« É

¾

´½ · Ý µÝ ´Ý  Ó×  µ 

¾×

½

¾ ¾

« É



¿×

¾

«

· ·

 ´    µ

¿×

· ·

 ´   µ

· for collider data at centre-of- ener- gies 8-36 GeV

★ This is the complete lowest order calculation of the

· ·

   cross-section (in the limit of massless fermions). Dr M.A. Thomson Lent 2004 17 The Dirac Equation

NON-EXAMINABLE

WEYL Equations describe massless SPIN- ½ particles. But ¾ all known fermions are MASSIVE. Again start from the KG

equation.

¾

 

¾ ¾

 ´Ö Ñ µ

¾

¾

¾

¾



À   ´Ô · Ñ µ

Write down equation LINEAR in space and time derivatives



À  ´« Ô · ¬ ѵ

and require it to be a solution of the KG equation:



À  ´« Ô · « Ô · « Ô · ¬ ѵ

Ü Ý Þ

Ü Ý Þ

¾

¾

¾



À   « Ô · 



Ü

·´« « · « « µÔ Ô · 

Ü Ý Ý Ü

Ü Ý

·´« ¬ · ¬« µÔ Ñ · 

Ü Ü

Ü

¾ ¾

·¬ Ñ

For this to satisfy Klein-Gordon equation:

¾

¾ ¾ ¾

¾



À   ´Ô · Ô · Ô · Ñ µ

Ü Ý Þ

require

¾ ¾

«  ¬  ½ ´  Ü Ý Þ µ



« « · « «  ¼ ´  µ

 

« ¬ · ¬«  ¼

  Now require 4 anti-commuting matrices.

Dr M.A. Thomson Lent 2004 18

The Dirac Equation:



À  ´« Ô · ¬ ѵ

Can be written in a slightly different form



 ´ « Ö · ¬ ѵ 

 Ø



¬  ´ ¬«Ö · ѵ

 Ø



¾

¬ ¬«Ö ¬ ѵ ¼

´ + - =

 Ø

   

¾

½ ¾ ¿ ¼

­ ­ ­ ¬ ѵ ¼ ­

´ + + + - =

 Ø  Ü  Ý  Þ

 ´¬  ¬«µ with ­

Giving

´­  ѵ  ¼

with

¾

¼

´­ µ  ½

¾ ¾ ¾

½ ¾ ¿

´­ µ  ´­ µ  ´­ µ  ½

 

­ ­ ­ µ  ¼ ´  µ ´­

Identify the ­ as matrices which must satisfy the anti-commutation relations above. The Pauli spin matrices provide only 3 anti-commuting matrices and the lowest

dimension matrices satisfying these requirements are

¢  ­ ¾ ¢ ¾  . The -matrices are closely related to the Pauli spin matrices.

Dr M.A. Thomson Lent 2004

19

¼ ½

½ ¼ ¼ ¼

 

¼ ½ ¼ ¼ ½ ¼

¼

 

­

¼ ¼ ½ ¼ ½

- ¼ -

¼ ¼ ½

¼ -

½ ¼

¼ ¼ ¼ ½

 

¼  ¼ ¼ ½ ¼

½

Ü

 

­

¼ ½ ¼ ¼  ¼

- - Ü

¼ ¼ ¼

- ½

¼ ½

¼ ¼ 

¼ -

 

¼ 

¼ ¼  ¼

Ý

¾

 

­

 ¼

¼  ¼ ¼

- Ý

¼ ¼ ¼

- 

¼ ½

¼ ¼ ½ ¼

 

¼ ¼ ¼ ½ ¼  ¿

- Þ

 

­

½ ¼ ¼ ¼  ¼

- - Þ

¼ ½ ¼ ¼ ½

also define ¼

¼ ¼ ½ ¼

 

¼ ½ ¼ ¼ ¼ ½

¼ ½ ¾ ¿

 

­ ­ ­ ­ ­

½ ¼ ½ ¼ ¼ ¼

¼ ½ ¼ ¼

Solutions to the Dirac Equation are written as

four-component Dirac SPINORs

½ ¼



½



¾

 





¿

 

NOTE: this is not the only possible representation

of the ­ matrices - just the most commonly used Dr M.A. Thomson Lent 2004 20

Rest Frame Solutions of the Dirac Equation

´­  ѵ  ¼

Dirac Equation:

   

¼ ½ ¾ ¿

´­ ­ ­ ­ ѵ  ¼

+  + + -

 Ø  Ü  Ý  Þ



Ô     ¼

Consider a particle at REST: Ü , etc.

 Ü

Dirac Equation becomes:



¼

´­ ѵ  ¼

 Ø

½ ¼

¼ ½ ½ ¼

 " Ø



½ ¼ ¼ ¼

½

½

 

  " Ø ¼ ½ ¼ ¼

¾ ¾

 

 Ñ 



½ ¼ ¼ ¼

 " Ø

- 

¿

¿

¼ ¼ ¼ ½

- 

 " Ø





 

½ ¾

  Ñ    Ñ

½ ¾

Ø Ø

 ·Ñ

Giving two orthogonal solutions:

¼ ½ ¼ ½

½ ¼

¼ ½

ÑØ ÑØ

 

Ù ´Øµ    Ù ´Øµ  

½ ¾

¼ ¼

¼ ¼

i.e. positive energy spin-up and spin-down PARTICLES

The two other equations

 

 ¿

 Ñ    Ñ 

¿ 

Ø Ø

 Ñ

give two orthogonal solutions:

¼ ½ ¼ ½

¼ ¼

¼ ¼

·ÑØ ·ÑØ

 

  Ù ´Øµ   Ù ´Øµ 

 ¿

¼ ½

½ ¼

i.e. ve energy spin-up and spin-down ANTI-PARTICLES

Dr M.A. Thomson Lent 2004 21 The DIRAC equation ★ gives PARTICLE/ANTI-PARTICLE solutions ★ requires the particles/anti-particles to have an additional degree of freedom (SPIN) ! ★ in the massless limit, the DIRAC equation reduces to the two uncoupled WEYL equations ★ In general the Dirac Equation gives FOUR simultaneous equations for the components of the SPINOR.

e.g. more general solutions

¼ ½ ½ ¼

¼

½

½

¼

   

Ô

´Ô Ô µ

Þ

Ü Ý

   

Ù  Æ  Ù  Æ

½ ¾

´ ·Ñµ

 

´ ·Ñµ

´Ô ·Ô µ

Ô

Ü Ý

Þ

´ ·Ñµ

´ ·Ñµ

Ô

¾ ¾

´Ù  Ù µ  Ô · Ñ ¾

For ½

¼ ½ ½ ¼

Ô

´Ô Ô µ

Þ

Ü Ý

´ ѵ

´ ѵ

   

´Ô ·Ô µ

Ô

Ü Ý

Þ

   

Ù  Æ  Ù  Æ

¿ 

´ ѵ ´ ѵ

 

½ ¼

¼ ½

Ô

¾ ¾

´Ù  Ù µ  Ô · Ñ  For ¿ The DIRAC equation lives in the realm of PART III Particle Physics.

Dr M.A. Thomson Lent 2004 22 Lorentz Structure of Interactions

NON-EXAMINABLE e- e- e Electron Current

γ 1 q2

ppe Proton Current

Matrix element Å factorises into 3 terms :

Å  Ù ­ Ù 

Electron Current



$

¢ Photon Propagator

¾

Õ



¢ Ù ­ Ù  Ô Ô Proton Current

★ Fermions are 4-component SPINORS.

 ¢  ★ µ interaction enters as matrices. ★ Lorentz invariance allows only five possible forms for

the interaction: SCALAR ÙÙ, PSEUDO-SCALAR

 

Ù Ù­ Ù Ù­ ­ Ù

Ù­ , VECTOR , AXIAL-VECTOR ,

 Ù TENSOR Ù ★ Electro-magnetic and Strong forces are VECTOR interactions - which determines the HELICITY structure.

Treats helicity states symmetrically µ CONSERVATION

★ The WEAK interaction has a different form: (V-A) i.e.



´½ ­ µ ­ . Projects out a single helicity

combination : µ PARITY VIOLATION The WEAK interaction is the subject of next lecture

Dr M.A. Thomson Lent 2004