Quantum Field Theory University of Cambridge Part III Mathematical Tripos
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
An Introduction to Quantum Field Theory
AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ........................... -
1 Introduction 2 Klein Gordon Equation
Thimo Preis 1 1 Introduction Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations from the Hamiltonian formalism of non-relativistic Classical Mechanics by replacing dynamical variables by operators through the correspondence principle. Therefore, the physical properties predicted by the Schrödinger theory are invariant in a Galilean change of referential, but they do not have the invariance under a Lorentz change of referential required by the principle of relativity. In particular, all phenomena concerning the interaction between light and matter, such as emission, absorption or scattering of photons, is outside the framework of non-relativistic Quantum Mechanics. One of the main difficulties in elaborating relativistic Quantum Mechanics comes from the fact that the law of conservation of the number of particles ceases in general to be true. Due to the equivalence of mass and energy there can be creation or absorption of particles whenever the interactions give rise to energy transfers equal or superior to the rest massses of these particles. This theory, which i am about to present to you, is not exempt of difficulties, but it accounts for a very large body of experimental facts. We will base our deductions upon the six axioms of the Copenhagen Interpretation of quantum mechanics.Therefore, with the principles of quantum mechanics and of relativistic invariance at our disposal we will try to construct a Lorentz covariant wave equation. For this we need special relativity. 1.1 Special Relativity Special relativity states that the laws of nature are independent of the observer´s frame if it belongs to the class of frames obtained from each other by transformations of the Poincaré group. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
Exact Solutions to the Interacting Spinor and Scalar Field Equations in the Godel Universe
XJ9700082 E2-96-367 A.Herrera 1, G.N.Shikin2 EXACT SOLUTIONS TO fHE INTERACTING SPINOR AND SCALAR FIELD EQUATIONS IN THE GODEL UNIVERSE 1 E-mail: [email protected] ^Department of Theoretical Physics, Russian Peoples ’ Friendship University, 117198, 6 Mikluho-Maklaya str., Moscow, Russia ^8 as ^; 1996 © (XrbCAHHeHHuft HHCTtrryr McpHMX HCCJicAOB&Htift, fly 6na, 1996 1. INTRODUCTION Recently an increasing interest was expressed to the search of soliton-like solu tions because of the necessity to describe the elementary particles as extended objects [1]. In this work, the interacting spinor and scalar field system is considered in the external gravitational field of the Godel universe in order to study the influence of the global properties of space-time on the interaction of one dimensional fields, in other words, to observe what is the role of gravitation in the interaction of elementary particles. The Godel universe exhibits a number of unusual properties associated with the rotation of the universe [2]. It is ho mogeneous in space and time and is filled with a perfect fluid. The main role of rotation in this universe consists in the avoidance of the cosmological singu larity in the early universe, when the centrifugate forces of rotation dominate over gravitation and the collapse does not occur [3]. The paper is organized as follows: in Sec. 2 the interacting spinor and scalar field system with £jnt = | <ptp<p'PF(Is) in the Godel universe is considered and exact solutions to the corresponding field equations are obtained. In Sec. 3 the properties of the energy density are investigated. -
An Introduction to Supersymmetry
An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems. -
First Determination of the Electric Charge of the Top Quark
First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge. -
Probing the Minimal Length Scale by Precision Tests of the Muon G − 2
Physics Letters B 584 (2004) 109–113 www.elsevier.com/locate/physletb Probing the minimal length scale by precision tests of the muon g − 2 U. Harbach, S. Hossenfelder, M. Bleicher, H. Stöcker Institut für Theoretische Physik, J.W. Goethe-Universität, Robert-Mayer-Str. 8-10, 60054 Frankfurt am Main, Germany Received 25 November 2003; received in revised form 20 January 2004; accepted 21 January 2004 Editor: P.V. Landshoff Abstract Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale Mf are explored. First-order deviations from the theoretical SM value for g − 2 due to these string theory- motivated effects are derived. Constraints for the fundamental scale Mf are given. 2004 Elsevier B.V. All rights reserved. String theory suggests the existence of a minimum • the need for a higher-dimensional space–time and length scale. An exciting quantum mechanical impli- • the existence of a minimal length scale. cation of this feature is a modification of the uncer- tainty principle. In perturbative string theory [1,2], Naturally, this minimum length uncertainty is re- the feature of a fundamental minimal length scale lated to a modification of the standard commutation arises from the fact that strings cannot probe dis- relations between position and momentum [6,7]. Ap- tances smaller than the string scale. If the energy of plication of this is of high interest for quantum fluc- a string reaches the Planck mass mp, excitations of the tuations in the early universe and inflation [8–16]. string can occur and cause a non-zero extension [3]. -
2 Lecture 1: Spinors, Their Properties and Spinor Prodcuts
2 Lecture 1: spinors, their properties and spinor prodcuts Consider a theory of a single massless Dirac fermion . The Lagrangian is = ¯ i@ˆ . (2.1) L ⇣ ⌘ The Dirac equation is i@ˆ =0, (2.2) which, in momentum space becomes pUˆ (p)=0, pVˆ (p)=0, (2.3) depending on whether we take positive-energy(particle) or negative-energy (anti-particle) solutions of the Dirac equation. Therefore, in the massless case no di↵erence appears in equations for paprticles and anti-particles. Finding one solution is therefore sufficient. The algebra is simplified if we take γ matrices in Weyl repreentation where µ µ 0 σ γ = µ . (2.4) " σ¯ 0 # and σµ =(1,~σ) andσ ¯µ =(1, ~ ). The Pauli matrices are − 01 0 i 10 σ = ,σ= − ,σ= . (2.5) 1 10 2 i 0 3 0 1 " # " # " − # The matrix γ5 is taken to be 10 γ5 = − . (2.6) " 01# We can use the matrix γ5 to construct projection operators on to upper and lower parts of the four-component spinors U and V . The projection operators are 1 γ 1+γ Pˆ = − 5 , Pˆ = 5 . (2.7) L 2 R 2 Let us write u (p) U(p)= L , (2.8) uR(p) ! where uL(p) and uR(p) are two-component spinors. Since µ 0 pµσ pˆ = µ , (2.9) " pµσ¯ 0(p) # andpU ˆ (p) = 0, the two-component spinors satisfy the following (Weyl) equations µ µ pµσ uR(p)=0,pµσ¯ uL(p)=0. (2.10) –3– Suppose that we have a left handed spinor uL(p) that satisfies the Weyl equation. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
Noether: the More Things Change, the More Stay the Same
Noether: The More Things Change, the More Stay the Same Grzegorz G luch∗ R¨udigerUrbanke EPFL EPFL Abstract Symmetries have proven to be important ingredients in the analysis of neural networks. So far their use has mostly been implicit or seemingly coincidental. We undertake a systematic study of the role that symmetry plays. In particular, we clarify how symmetry interacts with the learning algorithm. The key ingredient in our study is played by Noether's celebrated theorem which, informally speaking, states that symmetry leads to conserved quantities (e.g., conservation of energy or conservation of momentum). In the realm of neural networks under gradient descent, model symmetries imply restrictions on the gradient path. E.g., we show that symmetry of activation functions leads to boundedness of weight matrices, for the specific case of linear activations it leads to balance equations of consecutive layers, data augmentation leads to gradient paths that have \momentum"-type restrictions, and time symmetry leads to a version of the Neural Tangent Kernel. Symmetry alone does not specify the optimization path, but the more symmetries are contained in the model the more restrictions are imposed on the path. Since symmetry also implies over-parametrization, this in effect implies that some part of this over-parametrization is cancelled out by the existence of the conserved quantities. Symmetry can therefore be thought of as one further important tool in understanding the performance of neural networks under gradient descent. 1 Introduction There is a large body of work dedicated to understanding what makes neural networks (NNs) perform so well under versions of gradient descent (GD). -
Finite Quantum Field Theory and Renormalization Group
Finite Quantum Field Theory and Renormalization Group M. A. Greena and J. W. Moffata;b aPerimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada bDepartment of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada September 15, 2021 Abstract Renormalization group methods are applied to a scalar field within a finite, nonlocal quantum field theory formulated perturbatively in Euclidean momentum space. It is demonstrated that the triviality problem in scalar field theory, the Higgs boson mass hierarchy problem and the stability of the vacuum do not arise as issues in the theory. The scalar Higgs field has no Landau pole. 1 Introduction An alternative version of the Standard Model (SM), constructed using an ultraviolet finite quantum field theory with nonlocal field operators, was investigated in previous work [1]. In place of Dirac delta-functions, δ(x), the theory uses distributions (x) based on finite width Gaussians. The Poincar´eand gauge invariant model adapts perturbative quantumE field theory (QFT), with a finite renormalization, to yield finite quantum loops. For the weak interactions, SU(2) U(1) is treated as an ab initio broken symmetry group with non- zero masses for the W and Z intermediate× vector bosons and for left and right quarks and leptons. The model guarantees the stability of the vacuum. Two energy scales, ΛM and ΛH , were introduced; the rate of asymptotic vanishing of all coupling strengths at vertices not involving the Higgs boson is controlled by ΛM , while ΛH controls the vanishing of couplings to the Higgs. Experimental tests of the model, using future linear or circular colliders, were proposed.