Electrocardiographic T Wave Abnormalities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Practical Approach to EKG 2
Approach to EKG Reading Reid B. Blackwelder, M.D. ([email protected]) Professor and Interim Chair, Family Medicine, ETSU EKG INTERPRETATION 1) Validity Clinical context for test, right patient Look for voltage standardization curve of two big boxes tall In general: Lead I should be opposite of AVR (in a normal EKG) R-wave should progress in chest leads (V leads) such that by V4 the R-wave is most prominent (represents left ventricle) Compare with an old EKG A question of validity does not necessarily mean the tracing is invalid All abnormalities generate “Differential Diagnoses” Nomenclature of QRS First downward deflection is a Q wave First upward deflection is an R wave A downward deflection that follows an R is an S wave if it goes below the baseline Large deflections are denoted by capital letters; smaller ones (< 3mm) by lower-case letters A second positive deflection is given a prime designation, a third a double prime, etc If only a negative deflection is present it is termed a QS complex II) Rate Know: Big box = 200 msec (0.2 sec) Little box = 40 msec (0.04 sec) [also 1 mm] Memorize: 300, 150, 100, 75, 60, 50, 43, 37 (or know that Rate=300/# of large boxes between R-waves) (or count beats in 6 second strip and multiply by 10) Normal rate 60-100; <60 bradycardia, >100 tachycardia Basic pacing rates: Atria 80/min, junction 60/min, vent 40/min III) Rhythm Basic rhythm of strip (use rhythm strip if available): Is it Regular? Regular Fairly regular Regularly irregular (group or pattern beating) Irregularly irregular (chaotic, unpredictable) Is it Sinus? If yes, the P wave in II should always be positive if leads placed correctly and no dextrocardia P waves present and associated with QRS (P before QRS, QRS after P) Sinus rhythms: narrow QRS Supraventricular rhythms: narrow QRS Atrial Fibrillation: no P-waves, irregularly irregular Atrial Flutter: Atria depolarize at 300/min with ventricular response in usually 2:1 (150/min), or 4:1 (75/min) pattern; odd ratios uncommon. -
Young Adults. Look for ST Elevation, Tall QRS Voltage, "Fishhook" Deformity at the J Point, and Prominent T Waves
EKG Abnormalities I. Early repolarization abnormality: A. A normal variant. Early repolarization is most often seen in healthy young adults. Look for ST elevation, tall QRS voltage, "fishhook" deformity at the J point, and prominent T waves. ST segment elevation is maximal in leads with tallest R waves. Note high take off of the ST segment in leads V4-6; the ST elevation in V2-3 is generally seen in most normal ECG's; the ST elevation in V2- 6 is concave upwards, another characteristic of this normal variant. Characteristics’ of early repolarization • notching or slurring of the terminal portion of the QRS wave • symmetric concordant T waves of large amplitude • relative temporal stability • most commonly presents in the precordial leads but often associated with it is less pronounced ST segment elevation in the limb leads To differentiate from anterior MI • the initial part of the ST segment is usually flat or convex upward in AMI • reciprocal ST depression may be present in AMI but not in early repolarization • ST segments in early repolarization are usually <2 mm (but have been reported up to 4 mm) To differentiate from pericarditis • the ST changes are more widespread in pericarditis • the T wave is normal in pericarditis • the ratio of the degree of ST elevation (measured using the PR segment as the baseline) to the height of the T wave is greater than 0.25 in V6 in pericarditis. 1 II. Acute Pericarditis: Stage 1 Pericarditis Changes A. Timing 1. Onset: Day 2-3 2. Duration: Up to 2 weeks B. Findings 1. -
Interpreting CVP Waveforms Summary EK
INTERPRETING CENTRAL VENOUS PRESSURE WAVEFORMS IN TERPRETING CEN TRAL VEN OUS PRESSURE W AVEFORMS INTRODUCTION A central venous pressure waveform provides important information about the hemodynamic state of the patient and compliance of the syste m. - CENTRAL VEN OUS PRESSURE (CVP) W AVEFORMS • Measures pressure in the central venous circulation • Obtained by using a central venous catheter ideally placed at the junction of the superior vena cava (SVC) and the right atrium • Depends on: 1. Compliance of the cardiovascular system 2. Overall volume status Figure 1: Central venou s catheter placement at the SV C-RA junction INTERPRETING CVP W AVEFORMS Remember that the waveform represents atrial pressure which is the relationship between atrial compliance and volume. One CVP Waveform represents one complete beat of the heart. • a-wave: atrial contraction • Corresponds with timing of P wave on ECG • Noncompliant right atrium: = large a-wave • c-wave: movement of the tric uspid valve into the right atrium • Corresponds with timing of R wave on ECG • Transient decrease in atrial compliance/increase in atrial pressure • c-wave and a-wave can be difficult to differentiate when patient is ta tachycardic • x-descent: atrial relaxation • Corresponds with timing of QRS complex on ECG Figure 2: The different parts of a central venous • Tricuspid valve descends towards the apex of the right ventricle pressure waveform causing a decrease in right atrial pressure • v-wave: atrial filling • Corresponds with timing of T wave on ECG • A large v-wave may indicate tricuspid regurgitation QRS • If right atrium is very compliant, tricuspid regurgitation is possible complex without generation of large v-wave • y-descent: atrial emptying • Corresponds with timing just prior to P wave on ECG P wave T wave Figure 3: ECG showing timing of CVP waveform components This document is meant to be used as an educational resource for physicians and other healthcare professionals. -
ECG Learning Center
ECG Learning Center Authored by: Frank G. Yanowitz, M.D Dr. Alan Professor of Medicine Lindsay: University of Utah School of Medicine Medical Director, ECG Department "A teacher LDS Hospital Salt Lake City, Utah of substance and style" I n t r o d u c t i o n E C G O u t l i n e I m a g e I n d e x T e s t Y o u r K n o w l e d g e A C C / A H A C l i n i c a l Whats New: Advanced ECG Quiz C o m p e t e n c e i n E C G This work is licensed under a D i a g n o s e s Creative Commons License. K N O W L E D G E W E A V E R S | S P E N C E R S. E C C L E S H E A L T H S C I E N C E S L I B R A R Y http://library.med.utah.edu/kw/ecg/ [5/11/2006 9:39:27 AM] ECG Introduction THE ALAN E. LINDSAY ECG LEARNING CENTER Frank G. Yanowitz, M.D Professor of Medicine University of Utah School of Medicine Medical Director, ECG Department LDS Hospital Salt Lake City, Utah This tutorial is dedicated to the memory of Dr. Alan E. Lindsay, master teacher of electrocardiography, friend, mentor, and colleague. Many of the excellent ECG tracings illustrated in this learning program are from Dr. -
Ventricular Repolarization Components on the Electrocardiogram Cellular Basis and Clinical Significance Gan-Xin Yan, MD, PHD, Ramarao S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by Elsevier 42, No. - 3,Publisher 2003 Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Inc. doi:10.1016/S0735-1097(03)00713-7 STATE-OF-THE-ART PAPER Ventricular Repolarization Components on the Electrocardiogram Cellular Basis and Clinical Significance Gan-Xin Yan, MD, PHD, Ramarao S. Lankipalli, MD, James F. Burke, MD, FACC, Simone Musco, MD, Peter R. Kowey, MD, FACC Wynnewood, Pennsylvania Ventricular repolarization components on the surface electrocardiogram (ECG) include J (Osborn) waves, ST-segments, and T- and U-waves, which dynamically change in morphol- ogy under various pathophysiologic conditions and play an important role in the development of ventricular arrhythmias. Our primary objective in this review is to identify the ionic and cellular basis for ventricular repolarization components on the body surface ECG under normal and pathologic conditions, including a discussion of their clinical significance. A specific attempt to combine typical clinical ECG tracings with transmembrane electrical recordings is made to illustrate their logical linkage. A transmural voltage gradient during initial ventricular repolarization, which results from the presence of a prominent transient ϩ outward K current (Ito)-mediated action potential (AP) notch in the epicardium, but not endocardium, manifests as a J-wave on the ECG. The J-wave is associated with the early repolarization syndrome and Brugada syndrome. ST-segment elevation, as seen in Brugada syndrome and acute myocardial ischemia, cannot be fully explained by using the classic concept of an “injury current” that flows from injured to uninjured myocardium. -
The Heart the Pulse and the ECG Booklet.Indd
AF A ® www.afa.org.uk The heart, the pulse and the electrocardiograph Providing information, support and access to established, new or innovative treatments for atrial fi brillation www.afa.org.uk Registered Charity No. 1122442 Glossary Arrhythmia Heart rhythm disorder Contents Arrhythmia Nurse Specialist A nurse who is Glossary trained in heart rhythm disorders The heart Atrial Fibrillation (AF) An irregular heart rhythm due to a rapid, disorganised electrical disturbance of The pulse the heart’s upper chambers (the atria) How to take a pulse Atrial Flutter (Afl ) A rhythm disorder of a more organised electrical disturbance in the heart’s upper The electrocardiograph chambers. The heart rhythm may be either regular (ECG) or irregular Bradycardia A rhythm disorder characterised by a slow heart rate of less than 60 beats per minute Cardiologist A doctor who specialises in the diagnosis and treatment of patients with heart conditions Echocardiogram An image of the heart using echocardiography or soundwave-based technology. An echocardiogram (echo) shows a three dimensional shot of the heart Electrocardiograph (ECG) A 2D graphic of the heart’s electrical activity. An ECG is taken from electrodes on the skin surface Heart Failure The inability (failure) of the heart to pump suffi cient oxygenated blood around the body to meet physiological requirements Sinus Rhythm Normal behaviour of the heart Syncope Fainting/passing out from a temporary lack of oxygen going to certain areas of the brain Tachycardia A rhythm disorder characterised by a rapid heart rate of more than 100 beats per minute 2 The heart The heart Structurally, the heart consists of two sides, a right and normal and a left. -
Basic Cardiac Rhythms – Identification and Response Module 1 ANATOMY, PHYSIOLOGY, & ELECTRICAL CONDUCTION Objectives
Basic Cardiac Rhythms – Identification and Response Module 1 ANATOMY, PHYSIOLOGY, & ELECTRICAL CONDUCTION Objectives ▪ Describe the normal cardiac anatomy and physiology and normal electrical conduction through the heart. ▪ Identify and relate waveforms to the cardiac cycle. Cardiac Anatomy ▪ 2 upper chambers ▪ Right and left atria ▪ 2 lower chambers ▪ Right and left ventricle ▪ 2 Atrioventricular valves (Mitral & Tricuspid) ▪ Open with ventricular diastole ▪ Close with ventricular systole ▪ 2 Semilunar Valves (Aortic & Pulmonic) ▪ Open with ventricular systole ▪ Open with ventricular diastole The Cardiovascular System ▪ Pulmonary Circulation ▪ Unoxygenated – right side of the heart ▪ Systemic Circulation ▪ Oxygenated – left side of the heart Anatomy Coronary Arteries How The Heart Works Anatomy Coronary Arteries ▪ 2 major vessels of the coronary circulation ▪ Left main coronary artery ▪ Left anterior descending and circumflex branches ▪ Right main coronary artery ▪ The left and right coronary arteries originate at the base of the aorta from openings called the coronary ostia behind the aortic valve leaflets. Physiology Blood Flow Unoxygenated blood flows from inferior and superior vena cava Right Atrium Tricuspid Valve Right Ventricle Pulmonic Valve Lungs Through Pulmonary system Physiology Blood Flow Oxygenated blood flows from the pulmonary veins Left Atrium Mitral Valve Left Ventricle Aortic Valve Systemic Circulation ▪ Blood Flow Through The Heart ▪ Cardiology Rap Physiology ▪ Cardiac cycle ▪ Represents the actual time sequence between -
PEDMEANS Physicians Manual
CardioPerfect Workstation PEDMEANS ECG Interpretation Module - Physicians Manual Regulatory Affairs Representative Welch Allyn, Inc. Welch Allyn Limited 4341 State Street Road Navan Business Park Dublin Road Skaneateles Falls, NY Navan, County Meath, 13153-0220 USA Republic of Ireland www.welchallyn.com DIR 80015051 Rev. C CardioPerfect Workstation PEDMEANS ECG Interpretation Module Physicians Manual Caution US Federal law restricts this device to sale by or on the order of a physician. Instructions for use The information contained in this manual is subject to change without notice. All changes will be in compliance with regulations governing manufacture of medical equipment. © Copyright Welch Allyn 2014. All rights are reserved. To support the intended use of the product described in this publication, the purchaser of the product is permitted to copy this publication, for internal distribution only, from the media provided by Welch Allyn. No other use, reproduction, or distribution of this publication, or any part of it, is permitted without written permission from Welch Allyn. Unauthorized copying of this publication may not only infringe copyright but also reduce the ability of Welch Allyn to provide accurate and up-to-date information to users and operators alike. DIR 80015051 Rev. C 2 / 55 CardioPerfect Workstation PEDMEANS ECG Interpretation Module Physicians Manual About this manual This manual documents the logic behind the diagnostic criteria provided by the Welch Allyn CardioPerfect PC-based interpretive resting ECG system, provided as a supplement to the general user's manual for those interested in or requiring knowledge of specific details of the system's algorithms. Please refer to the general User's manual for information about program use, installation and configuration, as well as applicable precautions and warnings. -
Explaining the T-Wave Shape in The
brief communications Inuyama, Aichi 484-8506, Japan on any individual cell is timed to the initia- (beginning-to-peak compared with peak- e-mail: [email protected] tion of its action potential, repolarization to-end). 1. Matsuzawa, T. Nature 315, 57–59 (1985). occurs smoothly and systematically across Our results show that low dispersion is 5,6 2. Matsuzawa, T., Itakura, S. & Tomonaga, M. in Primatology the epicardial surface . Repolarization of represented by asymmetrical T waves, and Today (eds Ehara, A., Kumura, T., Takenaka, O. & Iwamoto, M.) the surface of the left ventricle occurs first high dispersion by increasingly tall and 317–320 (Elsevier, Amsterdam, 1991). epicardially in the postero-basal region, symmetrical, clinically hyperacute T waves 3. Murofushi, K. Jpn. Psychol. Res. 39, 140–153 (1997). 6 4. Tomonaga, M., Matsuzawa, T. & Itakura, S. Primate Res. 9, then at the septal wall and apex , and finally that tend to a symmetry ratio of unity (Fig. 67–77 (1993). at the endocardial surface7. 1). This agrees with the accepted symmetry 5. Biro, D. & Matsuzawa, T. J. Comp. Psychol. 113, 178–185 (1999). We used this spatial sequence on a sim- ratio for normal T waves of 1.5 (ref. 10) and 6. Tomonaga, M. & Matsuzawa, T. Anim. Cogn. (in the press). 7. Miller, G. A. Psychol. Rev. 63, 81–97 (1956). ple model of the left ventricle which with the expected relation between tall, 8. Rumbaugh, D., Savage-Rumbaugh, E. S. & Hegel, M. J. Exp. allowed the body-surface 12-lead T waves symmetrical T waves and abnormal repo- Psychol. -
Effect of Intravenous Adrenaline on Electrocardiogram, Blood Pressure, and Serum Potassium
Br Heart J: first published as 10.1136/hrt.49.1.90 on 1 January 1983. Downloaded from Br Heart J 1983; 49: 90-3 Effect of intravenous adrenaline on electrocardiogram, blood pressure, and serum potassium A D STRUTHERS, J L REID, R WHITESMITH, J C RODGER From the University Department ofMateria Medica, and Department ofBiochemistry, StobhiU General Hospital, Glasgow, and Medical Unit, Monklands and District General Hospital, Airdrie, Lanarkshire SUMMARY Increased catecholamines after myocardial infarction may contribute to the development ofarrhythmias. We have infused adrenaline intravenously in nine normal volunteers to levels similar to those seen after myocardial infarction. Adrenaline caused an increase in systolic blood pressure, a decrease in diastolic blood pressure, and an increase in heart rate. Adrenaline also produced a decrease in T wave amplitude and an increase in the QTc interval. The serum potassium fell dramatically during the adrenaline infusion from a control value of 4*06 mmot/l to 3-22 mmol/l. Hypokalaemia after myocardial infarction is associated with an increased incidence of ventricular arrhythmias. Thus, circulating adrenaline may increase the frequency of arrhythmias both directly via changes in ventricular repolarisation and indirectly via adrenaline induced hypokalaemia. Hypokalaemia is not uncommonly observed in the All subjects gave their informed consent to the acute phase of myocardial infarctionl 2 when it is investigation which had the approval of the hospital's associated with serious ventricular arrhythmias.3 We research and ethical committee. have found that in this circumstance hypokalaemia is Subjects were investigated in the morning after a http://heart.bmj.com/ transient, it resolves without potassium supplements, standard light breakfast. -
Non Ischemic Cardiomyopathies and Cardiac MRI
Non ischemic Cardiomyopathies and Cardiac MRI Mahi L. Ashwath MD, MBA, FACC, FASE, FSCMR President, Iowa ACC Associate Professor of Medicine and Radiology Division of Cardiology University of Iowa Hospitals and Clinics 1 Normal Cardiac MRI Normal Cardiac MRI LAD infarct – ischemic cardiomyopathy Cardiomyopathies Genetic Mixed Acquired Hypertrophic Dilated Cardiomyopathy Myocarditis Cardiomyopathy Arrhythmogenic right Restrictive Stress / Takotsubo ventricular Cardiomyopathy Cardiomyopathy cardiomyopathy Non compaction Peripartum cardiomyopathy Cardiomyopathy Storage Tachycardia Mediated Cardiomyopathy Cardiomyopathy 5 Dilated Cardiomyopathy Dilated Cardiomyopathy • Dilation and impaired contraction of one or both ventricles • Usually associated with increase in total cardiac mass • Incidence 5-8 cases per 100,000 population • Upto 14% of middle aged and elderly population have asymptomatic LV systolic dysfunction • Causes: ▪ Viruses ▪ Gene mutations • Distinguish from ▪ Ischemic Cardiomyopathy ▪ Valvular Cardiomyopathy Hypertrophic Cardiomyopathy Hypertrophic Cardiomyopathy • Variety of mutations associated with hypertrophy of the LV and occasionally the RV • Prevalence 0.2 – 0.5% • Histology • Hypertrophied myocytes with • Myocardial disarray • Microvasculature with decreased luminal cross sectional area • Impaired vasodilatory capacity • Abnormalities • LV outflow obstruction • Diastolic dysfunction • Myocardial ischemia • Mitral regurgitation 9 Hypertrophic Cardiomyopathy – Presentation - Symptoms • Heart failure • Fatigue • Dyspnea -
82197992.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 38, No. 2, 2001 © 2001 by the American College of Cardiology ISSN 0735-1097/01/$20.00 Published by Elsevier Science Inc. PII S0735-1097(01)01378-X Relationship of the Electrocardiographic Strain Pattern to Left Ventricular Structure and Function in Hypertensive Patients: The LIFE Study Peter M. Okin, MD, FACC,* Richard B. Devereux, MD, FACC,* Markku S. Nieminen, MD, PHD, FACC,† Sverker Jern, MD,‡ Lasse Oikarinen, MD, PHD,† Matti Viitasalo, MD, PHD,† Lauri Toivonen, MD, PHD,† Sverre E. Kjeldsen, MD, PHD,§ Stevo Julius, MD, SCD, FACC, Bjo¨rn Dahlo¨f, MD, PHD,‡ for the LIFE Study Investigators New York, New York; Helsinki, Finland; Go¨teborg, Sweden; Oslo, Norway; and Ann Arbor, Michigan OBJECTIVES This study was designed to assess the relation of electrocardiographic (ECG) strain to increased left ventricular (LV) mass, independent of its relation to coronary heart disease (CHD). BACKGROUND The classic ECG strain pattern, ST depression and T-wave inversion, is a marker for left ventricular hypertrophy (LVH) and adverse prognosis. However, the independence of the relation of strain to increased LV mass from its relation to CHD has not been extensively examined. METHODS Electrocardiograms and echocardiograms were examined at study baseline in 886 hyperten- sive patients with ECG LVH by Cornell voltage-duration product and/or Sokolow-Lyon voltage enrolled in the Losartan Intervention For End point (LIFE) echocardiographic substudy. Strain was defined as a downsloping convex ST segment with inverted asymmetrical T-wave opposite to the QRS axis in leads V5 and/or V6.