Supernova Legacy Survey 5-Years Sample Analysis : a New Differential Photometry Method

Total Page:16

File Type:pdf, Size:1020Kb

Supernova Legacy Survey 5-Years Sample Analysis : a New Differential Photometry Method SuperNova Legacy Survey 5-years sample analysis : a new differential photometry method N. Fourmanoit Laboratoire de Physique Nucléaire et des Hautes Énergies (UPMC Paris 6) Determining accurate flux measurements of Type Ia supernovae with well understood uncertainty budget is a crucial point for 2nd generation Type Ia supernovae search projects like the SuperNova Legacy Survey. The differential photometry consists in fitting simultaneously a large set of images of the supernova with a model of the supernova flux and position plus a galaxy background and a sky level (see SNLS 1st year paper 1, hereafter A06). We present here an improvement of that technique that intends to offer better constraints of fluxes uncertainties. Geometrical transformations and kernel convolution that match the image position and PSF are applied to the model rather to the pixels, as previously done in A06. Without any resampling nor convolution of the image pixel grid, the pixels entering the fit remain uncorrelated and then prevent the fit uncertainties to be underestimated. This on-going analysis is applied on the SNLS survey 5-years data set, with a large statistics of 419 supernovae Ia with redshifts from 0.01 to 1.1 Data sample This study takes advantages of the large sample supplied by the 5 years SNLS survey car- ried out from summer 2003 to summer 2008. It consists in more than 400 000 science images (2048×4612 CCDs from MegaCam/CFHT) dispatched among 4 fields (D1:25%, D2:22%, D3:29%, D4:24%) and 4 filters (g’:18%, r’:24%, i’:35%, z’:23%). 419 Type Ia SNe have been spectroscopically identified and photometrically monitored within this sample. A06 photometry The differential photometry presented in A06 (hereafter A06 photometry) and still used for SNLS 3rd year analysis 2 consisted in simultaneously fitting all images in a given filter with a model that includes (1) a spatially variable galaxy (constant with time), and (2) a time variable point source (the supernova). Previously to the fit, all images are resampled to the pixel grid defined by the image of best quality (IQ) chosen as a reference. The intensity Di;p in a pixel p of image i is modeled as : Di;p = fluxi × P SFref (x − xsn; y − ysn) + galref (x; y) ⊗ Kernref!i + skyi (1) h ( ) ip where the fit parameters are : fluxi is the supernova flux in image i, galref the non parametric galaxy model made of independent pixels which represents the galaxy in the reference image. P SFref is the normalized Point Spread Function of the reference image centered on the supernova position, Kernref!i the convolution kernel that matches the PSF of the reference image to the PSF of image i and skyi the local background level. In A06, the kernel is a semi analytical model fit based on several hundred objects selected for their high, but unsaturated, peak flux (see Alard, 2000 3). These convolution kernels not only match the PSFs, but also contain the photometric ratios of each image to the reference through their integral values. Eventually a least squares minimization is done including all images that contains the supernova position, and all pixels in the fitted stamp of this image. We typically fit 50×50 galaxy pixels and several hundred images, thus each supernova fit as several thousands parameters. Flux uncertainties in A06 photometry However a current problem is the minimization does not take into account the correlations between neighboring pixels introduced by image resampling. In order to derive accurate uncertainties, we used the fact that for each epoch, several images in the same night are available which measure the same object flux. We fit a common flux per night to the fluxes measured 2 on each individual image by minimizing a χnight. The covariance of the per-night fluxes is then extracted, 2 and normalized so that the minimum χnight=ndf is 1. New differential photometry Keeping the previous point in mind, we developped a new differential photometry we actually called WNR photomery for “Without aNy Resampling” since the images are not resampled anymore. The intensity Di;p in a pixel p of coordinates (x; y) of image i is now modeled as : Di;p = fluxi × P SFi T F x x − xsn; y − ysn ; T F y x − xsn; y − ysn) h ( ) ( )i (2) + galref T F x x − xsn; y − ysn ; T F y x − xsn; y − ysn) ⊗ Kernref!i + skyi ; h ( ) ( )i where the model is resampled using the pixel coordinates transformations TFx(x; y) and TFy(x; y). P SFi is the PSF of the image i centered on the supernova position. Note that PSFs are not normalized here. Kernref!i is now computed using the P SFref and the P SFi. The photometric ratio, applied on image i, is now computed using the stars PSF flux measured on the image i and the reference image. We mention that SDSS-II SNe Survey uses a similar technique, based on the same principle that A06 photometry, with non-resampled images but with a different implementations of the PSFs, the geometrical transformations and the galaxy model (see Holtzman, 2008 4). Flux uncertainties in WNR photometry The pixels entering the least-squares photometric fit min- imizing (2) are now uncorrelated. As a consequence, uncertainties on fluxes estimations are up to 20% larger, which is what we expected for more réalistic uncertainties. 2 Figure 1: A shown by the distribution of χnight with A06 (left) and WNR photometry (right), the correction obtained by measuring the additional scatter between measurements on a same night is reduced by 20-25% depending on filter. Conclusion and acknowledgments The differential photometry without any resampling nor convolution we presently exposed is a part of a more global effort for a better control of systematics budget in the the SuperNova Legacy Surve. It shows very promising features and has been check extensively with field star photometry. A posteriori scatter correction is minimised with the same photometric precision guarantéed. Next step of the analysis will be to undertake an investigation for an impact on cosmological results. I would like to express my gratitude to D. Hardin, P. Astier and J. Guy, and all other members of the SNLS team without whom this work would not have been brought to a successful conclusion. References 1. P. Astier, J. Guy, N. Regnault, et al. (2006). The Supernova Legacy Survey: measurement of ΩM , ΩΛ and w from the first year data set. Astronomy & Astrophysics, 447:31–48. 2. J. Guy, A. Conley, M. Sullivan, N. Regnault (2010) The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints. (in prep) 3. C. Alard (2000). Image subtraction using a space-varying kernel. Astronomy & Astrophysics Supplement, 144:363–370. 4. J. A. Holtzman, J. Marriner, R. Kessler, et al. (2008). The Sloan Digital Sky Survey-II: Photometry and Supernova IA Light Curves from the 2005 Data. Astronomical Journal, 136:2306–2320..
Recommended publications
  • Correction: Corrigendum: the Superluminous Transient ASASSN
    LETTERS PUBLISHED: 12 DECEMBER 2016 | VOLUME: 1 | ARTICLE NUMBER: 0002 The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole G. Leloudas1,​2*, M. Fraser3, N. C. Stone4, S. van Velzen5, P. G. Jonker6,​7, I. Arcavi8,​9, C. Fremling10, J. R. Maund11, S. J. Smartt12, T. Krühler13, J. C. A. Miller-Jones14, P. M. Vreeswijk1, A. Gal-Yam1, P. A. Mazzali15,​16, A. De Cia17, D. A. Howell8,​18, C. Inserra12, F. Patat17, A. de Ugarte Postigo2,​19, O. Yaron1, C. Ashall15, I. Bar1, H. Campbell3,​20, T.-W. Chen13, M. Childress21, N. Elias-Rosa22, J. Harmanen23, G. Hosseinzadeh8,​18, J. Johansson1, T. Kangas23, E. Kankare12, S. Kim24, H. Kuncarayakti25,​26, J. Lyman27, M. R. Magee12, K. Maguire12, D. Malesani2, S. Mattila3,​23,​28, C. V. McCully8,​18, M. Nicholl29, S. Prentice15, C. Romero-Cañizales24,​25, S. Schulze24,​25, K. W. Smith12, J. Sollerman10, M. Sullivan21, B. E. Tucker30,​31, S. Valenti32, J. C. Wheeler33 and D. R. Young12 8 12,13 When a star passes within the tidal radius of a supermassive has a mass >10 M⊙ , a star with the same mass as the Sun black hole, it will be torn apart1. For a star with the mass of the could be disrupted outside the event horizon if the black hole 8 14 Sun (M⊙) and a non-spinning black hole with a mass <10 M⊙, were spinning rapidly . The rapid spin and high black hole the tidal radius lies outside the black hole event horizon2 and mass can explain the high luminosity of this event.
    [Show full text]
  • Report from the Dark Energy Task Force (DETF)
    Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude.
    [Show full text]
  • Perrett RTA.Pdf
    The Astronomical Journal, 140:518–532, 2010 August doi:10.1088/0004-6256/140/2/518 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY∗ K. Perrett1,2, D. Balam3, M. Sullivan4, C. Pritchet5, A. Conley1,6, R. Carlberg1,P.Astier7, C. Balland7,S.Basa8, D. Fouchez9,J.Guy7, D. Hardin7,I.M.Hook3,10, D. A. Howell11,12,R.Pain7, and N. Regnault7 1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada; [email protected] 2 Network Information Operations, DRDC Ottawa, 3701 Carling Avenue, Ottawa, ON K1A 0Z4, Canada 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 4 Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK; [email protected] 5 Department of Physics & Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC V8W 3P6, Canada 6 Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593, USA 7 LPNHE, CNRS-IN2P3 and University of Paris VI & VII, 75005 Paris, France 8 Laboratoire d’Astrophysique de Marseille, Poledel’ˆ Etoile´ Site de Chateau-Gombert,ˆ 38, rue Fred´ eric´ Joliot-Curie, 13388 Marseille cedex 13, France 9 CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9, France 10 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (RM), Italy 11 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117, USA 12 Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530, USA Received 2010 February 17; accepted 2010 June 4; published 2010 July 1 ABSTRACT The Supernova Legacy Survey (SNLS) has produced a high-quality, homogeneous sample of Type Ia supernovae (SNe Ia) out to redshifts greater than z = 1.
    [Show full text]
  • Publications RENOIR – 24 Sep 2021 Article
    Publications RENOIR { 24 Sep 2021 article 2021 1. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: one thousand multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release, C. Zhao et al., Mon. Not. Roy. Astron. Soc 503 (2021) 1149-1173 2. Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography, O. Ilbert et al., Euclid Collaboration, Astron. Astrophys. 647 (2021) A117 2020 1. Improving baryon acoustic oscillation measurement with the combination of cosmic voids and galaxies, C. Zhao et al., SDSS Collaboration, Mon. Not. Roy. Astron. Soc 491 (2020) 4554-4572 2. Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate, M. Rigault et al., Nearby Supernova Factory Collaboration, Astron. Astrophys. 644 (2020) A176 3. High-precision Monte-Carlo modelling of galaxy distribution, P. Baratta et al., Astron. Astrophys. 633 (2020) A26 4. Constraints on the growth of structure around cosmic voids in eBOSS DR14, A. J. Hawken et al., J. Cosmol. Astropart. P 2006 (2020) 012 5. SUGAR: An improved empirical model of Type Ia Supernovae based on spectral features, P.-F. L´eget et al., Nearby Supernova Factory Collaboration, Astron. Astrophys. 636 (2020) A46 6. Euclid: Reconstruction of Weak Lensing mass maps for non- Gaussianity studies, S. Pires et al., Euclid Collaboration, Astron. Astrophys. 638 (2020) A141 7. Euclid preparation: VII. Forecast validation for Euclid cosmological probes, A. Blanchard et al., Euclid Collaboration, Astron. Astrophys. 642 (2020) A191 8. Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments, P.
    [Show full text]
  • Euclid: Superluminous Supernovae in the Deep Survey? C
    A&A 609, A83 (2018) Astronomy DOI: 10.1051/0004-6361/201731758 & c ESO 2018 Astrophysics Euclid: Superluminous supernovae in the Deep Survey? C. Inserra1; 2, R. C. Nichol3, D. Scovacricchi3, J. Amiaux4, M. Brescia5, C. Burigana6; 7; 8, E. Cappellaro9, C. S. Carvalho30, S. Cavuoti5; 11; 12, V. Conforti13, J.-C. Cuillandre4; 14; 15, A. da Silva10; 16, A. De Rosa13, M. Della Valle5; 17, J. Dinis10; 16, E. Franceschi13, I. Hook18, P. Hudelot19, K. Jahnke20, T. Kitching21, H. Kurki-Suonio22, I. Lloro23, G. Longo11; 12, E. Maiorano13, M. Maris24, J. D. Rhodes25, R. Scaramella26, S. J. Smartt2, M. Sullivan1, C. Tao27; 28, R. Toledo-Moreo29, I. Tereno16; 30, M. Trifoglio13, and L. Valenziano13 (Affiliations can be found after the references) Received 11 August 2017 / Accepted 3 October 2017 ABSTRACT Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ∼ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS.
    [Show full text]
  • Arxiv:0804.4142V1 [Astro-Ph]
    Draft version April 25, 2008 Preprint typeset using LATEX style emulateapj v. 10/09/06 IMPROVED COSMOLOGICAL CONSTRAINTS FROM NEW, OLD AND COMBINED SUPERNOVA DATASETS M. Kowalski1, D. Rubin2,3, G. Aldering2, R. J. Agostinho4, A. Amadon5, R. Amanullah6, C. Balland7, K. Barbary2,3, G. Blanc8, P. J. Challis9, A. Conley10, N. V. Connolly11, R. Covarrubias12, K. S. Dawson2, S. E. Deustua13, R. Ellis14, S. Fabbro15, V. Fadeyev16, X. Fan17, B. Farris18, G. Folatelli12, B. L. Frye19, G. Garavini20, E. L. Gates21, L. Germany22, G. Goldhaber2,3, B. Goldman23, A. Goobar20, D. E. Groom2, J. Haissinski24, D. Hardin7, I. Hook25, S. Kent26, A. G. Kim2, R. A. Knop27, C. Lidman28, E. V. Linder6, J. Mendez29,30, J. Meyers2,3, G. J. Miller31, M. Moniez24, A. M. Mourao˜ 15, H. Newberg32, S. Nobili20, P. E. Nugent2, R. Pain7, O. Perdereau24, S. Perlmutter2,3, M. M. Phillips33, V. Prasad2, R. Quimby14, N. Regnault7, J. Rich5, E. P. Rubenstein34, P. Ruiz-Lapuente30, F. D. Santos35, B. E. Schaefer36, R. A. Schommer37, R. C. Smith38, A. M. Soderberg14, A. L. Spadafora2, L.-G. Strolger39, M. Strovink2,3, N. B. Suntzeff40, N. Suzuki2, R. C. Thomas2, N. A. Walton41, L. Wang40, W. M. Wood-Vasey9, J. L. Yun4 (Supernova Cosmology Project) Draft version April 25, 2008 ABSTRACT We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby- Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This “Union” compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST.
    [Show full text]
  • Annual Report Astronomy Australia Limited
    2011 / 12 Annual Report Astronomy Australia Limited Vision Astronomers in Australia will have access to the best astronomical research infrastructure. Mission AAL will achieve its vision by: 1. Engaging with Australian astronomers to advance the national research infrastructure priorities of the Australian astronomy decadal plan. 2. Advising the Australian Government on future investments in national astronomical research infrastructure. 3. Managing investments in national astronomical research infrastructure as required. Principles 1. Access to major astronomical research infrastructure should be available to any Australian-based astronomer purely on scientific merit. 2. The concept of national astronomical research infrastructure includes Australian participation in international facilities. 3. The AAO and CSIRO are empowered by the Australian Government to provide a component of the national astronomical research infrastructure and there is no need for AAL to directly manage investments to upgrade or operate the AAT and ATNF. Front cover image Gemini Legacy image of the complex planetary nebula Sh2-71 as imaged by the Gemini Multi-Object Spectrograph on Gemini North on Mauna Kea in Hawai‘i. A research team, led by Australian astronomers David Frew and Quentin Parker (Macquarie University, Sydney) are studying the dimmer, bluer star to understand its nature. The long-assumed central star is the brightest star near the centre, but the much dimmer and bluer star (just to the right and down a little) might be the parent of this beautiful object. The image is composed of three narrow- band images, and each is assigned a colour as follows: H-alpha (orange), HeII (blue) and [OIII] (cyan). Image credit: Gemini Observatory/AURA Background image Dipoles on one “tile” of the Murchison Widefield Array; one of the first telescopes with no moving parts.
    [Show full text]
  • Type Ia Supernovae As Stellar Endpoints and Cosmological Tools
    REVIEW Published 14 Jun 2011 | DOI: 10.1038/ncomms1344 Type Ia supernovae as stellar endpoints and cosmological tools D. Andrew Howell1,2 Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the Type Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now, new large surveys are bringing about a paradigm shift—we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modelling, breakthroughs in understanding all aspects of these supernovae are finally starting to happen. uest stars (who could have imagined they were distant stellar explosions?) have been surprising humans for at least 950 years, but probably far longer. They amazed and confounded the likes of Tycho, Kepler and Galileo, to name a few. But it was not until the separation of these events G 1 into novae and supernovae by Baade and Zwicky that progress understanding them began in earnest . This process of splitting a diverse group into related subsamples to yield insights into their origin would be repeated again and again over the years, first by Minkowski when he separated supernovae of Type I (no hydrogen in their spectra) from Type II (have hydrogen)2, and then by Elias et al. when they deter- mined that Type Ia supernovae (SNe Ia) were distinct3. We now define Type Ia supernovae as those without hydrogen or helium in their spectra, but with strong ionized silicon (SiII), which has observed absorption lines at 6,150, 5,800 and 4,000 Å (ref.
    [Show full text]
  • The VLT 5 Year Data Set from the Supernova Legacy Survey : Redshifts and Types of Snia Candidates
    The VLT 5 year data set from the SuperNova Legacy Survey : redshifts and types of SNia candidates F. CELLIER-HOLZEM LPNHE Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Paris 6 4 place Jussieu, 75252 Paris Cedex 05, France I present the spectral analysis of 81 Type la supernova candidates from the SuperNova Legacy Survey 5 year data set measured at the Very Large Telescope between august 2006 and septem­ ber 2007. 54 objects are identified as Type Ia supernovae and their redshifts are estimated. 1 Cosmological context and aim Using Type Ia supernovae (SNela) as standardisable candles permits to constrain the cosmo­ logical parameters governing the accelerated expansion of the universe (e.g., Perlmutter et al 1). Based on a Hubble diagram built with high, intermediate and low redshift SNela and combining with other cosmological probes (BAO+ WMAP7), Sullivan et al 2 obtain (assuming a flat uni­ verse) -1.061:!:8:8�� where is the equation of state parameter of the dark energy. The : w w SNcla used= in this analysis come from large spectro-photometric programs such as the Super­ Nova Legacy Survey (SNLS). In these programs, spectroscopy is essential to estimate redshifts and confirmthe SNia nature of the candidates. I present here a preliminary analysis of the SNLS 5 year spectroscopic data set, restricted to the spectra measured at the Very Large Telescope (VLT). 2 The SuperNova Legacy Survey experiment and the VLT 5 year spectral data The SNLS is a 5 year experiment aiming at measuring the luminosity distance of a large number SNela at intermediate to high redshift (0.15 < < 1.1) in order to constrain cosmological of z parameters.
    [Show full text]
  • Sukhbold and Woosley, 2014; Woosley and Heger
    UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title The Evolution and Explosion of Massive Stars Permalink https://escholarship.org/uc/item/6gr8s8cp Author Sukhbold, Tuguldur Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ THE EVOLUTION AND EXPLOSION OF MASSIVE STARS A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in ASTRONOMY & ASTROPHYSICS by Tuguldur Sukhbold September 2016 The Dissertation of Tuguldur Sukhbold is approved: Professor Stan Woosley, Chair Professor Greg Laughlin Professor Jonathan Fortney Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Tuguldur Sukhbold 2016 Table of Contents List of Figuresv List of Tables vii Abstract viii Dedication ix Acknowledgmentsx 1 Introduction1 1.1 Overview.....................................1 1.2 Brief Basic Background..............................3 1.3 KEPLER code................................... 14 1.4 Structure of this thesis.............................. 15 1.5 Related works not contained in this thesis.................... 17 2 The Compactness of Presupernova Stellar Cores 20 2.1 Introduction.................................... 20 2.2 Surveys of presupernova evolution........................ 24 2.2.1 Solar Metallicity Stars.......................... 25 2.2.2 Low Metallicity Stars........................... 26 2.2.3 Choice of Fiducial Mass and Time for Evaluating the Compactness.. 29 2.3 Physical Basis of the Behaviour of the Compactness Parameter......... 31 2.3.1 Evolution Through Central Carbon Depletion.............. 32 2.3.2 Carbon Shell Burning.......................... 33 2.3.3 From Oxygen Depletion to Silicon Depletion.............. 37 2.3.4 From Silicon Depletion to Presupernova................. 38 2.3.5 Fine Scale Variations and Convergence................
    [Show full text]
  • Noao Annual Report Fy07
    AURA/NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 Emission nebula NGC6334 (Cat’s Paw Nebula): star-forming region in the constellation Scorpius. This 2007 image was taken using the Mosaic-2 imager on the Blanco 4-meter telescope at Cerro Tololo Inter- American Observatory. Intervening dust in the plane of the Milky Way galaxy reddens the colors of the nebula. Image credit: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 NOAO Gemini Science Center .............................................................................. 2 GNIRS Infrared Spectroscopy and the Origins of the Peculiar Hydrogen-Deficient Stars...................... 2 Supermassive Black Hole Growth and Chemical Enrichment in the Early Universe.............................. 4 1.2 Cerro Tololo Inter-American Observatory (CTIO)................................................ 5 The Nearest Stars.......................................................................................................................................
    [Show full text]
  • Euclid: Superluminous Supernovae in the Deep Survey C
    Euclid: Superluminous supernovae in the Deep Survey C. Inserra, R.C. Nichol, D. Scovacricchi, J. Amiaux, M. Brescia, C. Burigana, E. Cappellaro, C.S. Carvalho, S. Cavuoti, V. Conforti, et al. To cite this version: C. Inserra, R.C. Nichol, D. Scovacricchi, J. Amiaux, M. Brescia, et al.. Euclid: Superluminous su- pernovae in the Deep Survey. Astron.Astrophys., 2018, 609, pp.A83. 10.1051/0004-6361/201731758. hal-01703641 HAL Id: hal-01703641 https://hal.archives-ouvertes.fr/hal-01703641 Submitted on 16 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 609, A83 (2018) Astronomy DOI: 10.1051/0004-6361/201731758 & c ESO 2018 Astrophysics Euclid: Superluminous supernovae in the Deep Survey? C. Inserra1; 2, R. C. Nichol3, D. Scovacricchi3, J. Amiaux4, M. Brescia5, C. Burigana6; 7; 8, E. Cappellaro9, C. S. Carvalho30, S. Cavuoti5; 11; 12, V. Conforti13, J.-C. Cuillandre4; 14; 15, A. da Silva10; 16, A. De Rosa13, M. Della Valle5; 17, J. Dinis10; 16, E. Franceschi13, I. Hook18, P. Hudelot19, K. Jahnke20, T. Kitching21, H. Kurki-Suonio22, I. Lloro23, G. Longo11; 12, E. Maiorano13, M. Maris24, J.
    [Show full text]