Lecture 16 Supernova Light Curves and Spectra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uncovering the Putative B-Star Binary Companion of the Sn 1993J Progenitor
The Astrophysical Journal, 790:17 (13pp), 2014 July 20 doi:10.1088/0004-637X/790/1/17 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. UNCOVERING THE PUTATIVE B-STAR BINARY COMPANION OF THE SN 1993J PROGENITOR Ori D. Fox1, K. Azalee Bostroem2, Schuyler D. Van Dyk3, Alexei V. Filippenko1, Claes Fransson4, Thomas Matheson5, S. Bradley Cenko1,6, Poonam Chandra7, Vikram Dwarkadas8, Weidong Li1,10, Alex H. Parker1, and Nathan Smith9 1 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; [email protected]. 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 3 Caltech, Mailcode 314-6, Pasadena, CA 91125, USA 4 Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 5 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719-4933, USA 6 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA 7 National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune-411007, India 8 Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 9 Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA Received 2014 February 9; accepted 2014 May 23; published 2014 June 27 ABSTRACT The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope SNe with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22 M and became a source of ultraviolet (UV) excess. -
A Holistic View of the GRB-SN Connection Alicia M Soderberg
A Holistic View of the GRB-SN Connection Alicia M Soderberg Harvard University (Credit: M. Bietenholz) Monday, April 19, 2010 12 Years since GRB 980425 d=38 Mpc Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 12 Years since GRB 980425 d=38 Mpc Happy Birthday Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 GRB-SN Connection L ~ 1053 erg/s L ~ 1042 erg/s Emission Process =? Ni-56 decay Δt ~ seconds Δt ~ 1 month Hard X-ray Optical (Credit: P. Challis) Monday, April 19, 2010 Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 SN 1998bw at z=0.009 Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 SN 1998bw at z=0.009 SN 2003dh at z=0.169 Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 SN 1998bw at z=0.009 SN 2003lw at z=0.10 SN 2003dh at z=0.169 Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 SN 1998bw at z=0.009 SN 2003lw at z=0.10 SN 2003dh at z=0.169 SN 2006aj at z=0.03 Alicia M. Soderberg Apr 20, 2010 Kyoto Talk Monday, April 19, 2010 SN 1998bw at z=0.009 SN 2003lw at z=0.10 SN 2003dh at z=0.169 Most GRBs accompanied by Broad-lined SNe Ic SN 2006aj at z=0.03 Alicia M. -
Correction: Corrigendum: the Superluminous Transient ASASSN
LETTERS PUBLISHED: 12 DECEMBER 2016 | VOLUME: 1 | ARTICLE NUMBER: 0002 The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole G. Leloudas1,2*, M. Fraser3, N. C. Stone4, S. van Velzen5, P. G. Jonker6,7, I. Arcavi8,9, C. Fremling10, J. R. Maund11, S. J. Smartt12, T. Krühler13, J. C. A. Miller-Jones14, P. M. Vreeswijk1, A. Gal-Yam1, P. A. Mazzali15,16, A. De Cia17, D. A. Howell8,18, C. Inserra12, F. Patat17, A. de Ugarte Postigo2,19, O. Yaron1, C. Ashall15, I. Bar1, H. Campbell3,20, T.-W. Chen13, M. Childress21, N. Elias-Rosa22, J. Harmanen23, G. Hosseinzadeh8,18, J. Johansson1, T. Kangas23, E. Kankare12, S. Kim24, H. Kuncarayakti25,26, J. Lyman27, M. R. Magee12, K. Maguire12, D. Malesani2, S. Mattila3,23,28, C. V. McCully8,18, M. Nicholl29, S. Prentice15, C. Romero-Cañizales24,25, S. Schulze24,25, K. W. Smith12, J. Sollerman10, M. Sullivan21, B. E. Tucker30,31, S. Valenti32, J. C. Wheeler33 and D. R. Young12 8 12,13 When a star passes within the tidal radius of a supermassive has a mass >10 M⊙ , a star with the same mass as the Sun black hole, it will be torn apart1. For a star with the mass of the could be disrupted outside the event horizon if the black hole 8 14 Sun (M⊙) and a non-spinning black hole with a mass <10 M⊙, were spinning rapidly . The rapid spin and high black hole the tidal radius lies outside the black hole event horizon2 and mass can explain the high luminosity of this event. -
Stellar Magnetic Activity – Star-Planet Interactions
EPJ Web of Conferences 101, 005 02 (2015) DOI: 10.1051/epjconf/2015101005 02 C Owned by the authors, published by EDP Sciences, 2015 Stellar magnetic activity – Star-Planet Interactions Poppenhaeger, K.1,2,a 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambrigde, MA 02138, USA 2 NASA Sagan Fellow Abstract. Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high- energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress. 1 Introduction Stellar magnetic activity is an ubiquitous phenomenon in cool stars. These stars operate a magnetic dynamo that is fueled by stellar rotation and produces highly structured magnetic fields; in the case of stars with a radiative core and a convective outer envelope (spectral type mid-F to early-M), this is an αΩ dynamo, while fully convective stars (mid-M and later) operate a different kind of dynamo, possibly a turbulent or α2 dynamo. These magnetic fields manifest themselves observationally in a variety of phenomena. -
Report from the Dark Energy Task Force (DETF)
Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. -
Perrett RTA.Pdf
The Astronomical Journal, 140:518–532, 2010 August doi:10.1088/0004-6256/140/2/518 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY∗ K. Perrett1,2, D. Balam3, M. Sullivan4, C. Pritchet5, A. Conley1,6, R. Carlberg1,P.Astier7, C. Balland7,S.Basa8, D. Fouchez9,J.Guy7, D. Hardin7,I.M.Hook3,10, D. A. Howell11,12,R.Pain7, and N. Regnault7 1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada; [email protected] 2 Network Information Operations, DRDC Ottawa, 3701 Carling Avenue, Ottawa, ON K1A 0Z4, Canada 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 4 Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK; [email protected] 5 Department of Physics & Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC V8W 3P6, Canada 6 Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593, USA 7 LPNHE, CNRS-IN2P3 and University of Paris VI & VII, 75005 Paris, France 8 Laboratoire d’Astrophysique de Marseille, Poledel’ˆ Etoile´ Site de Chateau-Gombert,ˆ 38, rue Fred´ eric´ Joliot-Curie, 13388 Marseille cedex 13, France 9 CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9, France 10 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (RM), Italy 11 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117, USA 12 Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530, USA Received 2010 February 17; accepted 2010 June 4; published 2010 July 1 ABSTRACT The Supernova Legacy Survey (SNLS) has produced a high-quality, homogeneous sample of Type Ia supernovae (SNe Ia) out to redshifts greater than z = 1. -
Curriculum Vitae Thomas Matheson
Curriculum Vitae Thomas Matheson Address: NSF's National Optical-Infrared Astronomy Research Laboratory Community Science and Data Center 950 North Cherry Avenue Tucson, AZ 85719, USA Telephone: (520) 318{8517 Fax: (520) 318{8360 e-mail: [email protected] WWW: http://www.noao.edu/noao/staff/matheson/ Education: University of California, Berkeley, Berkeley, CA Department of Astronomy Ph.D. received June 2000 M.A. received June 1992 PhD Thesis Topic: The Spectral Characteristics of Stripped-Envelope Supernovae Thesis Advisor: Professor Alexei V. Filippenko Harvard University, Cambridge, MA Department of Astronomy & Astrophysics and Physics A.B. magna cum laude, received June 1989 Senior Thesis Topic: Transients in the Solar Transition Region Thesis Advisor: Professor Robert W. Noyes Employment: NSF's National Optical-Infrared Astronomy Research Laboratory (The Former National Optical Astronomy Observatory) Community Science and Data Center Head of Time-Domain Services 2017 { present Astronomer 2018 { present Associate Astronomer 2009 { 2018 (Tenure, 2011) Assistant Astronomer 2004 { 2009 Harvard-Smithsonian Center for Astrophysics Optical and Infrared Division Post-doctoral fellow 2000 { 2004 University of California, Berkeley Department of Astronomy Research Assistant 1991 { 2000 Harvard-Smithsonian Center for Astrophysics Solar and Stellar Physics Division Research Assistant 1989 { 1990 Thomas Matheson|Curriculum Vitae Teaching: Harvard University, Department of Astronomy, Teaching Assistant 2001, 2003 University of California, Berkeley, -
Part V Stellar Spectroscopy
Part V Stellar spectroscopy 53 Chapter 10 Classification of stellar spectra Goal-of-the-Day To classify a sample of stars using a number of temperature-sensitive spectral lines. 10.1 The concept of spectral classification Early in the 19th century, the German physicist Joseph von Fraunhofer observed the solar spectrum and realised that there was a clear pattern of absorption lines superimposed on the continuum. By the end of that century, astronomers were able to examine the spectra of stars in large numbers and realised that stars could be divided into groups according to the general appearance of their spectra. Classification schemes were developed that grouped together stars depending on the prominence of particular spectral lines: hydrogen lines, helium lines and lines of some metallic ions. Astronomers at Harvard Observatory further developed and refined these early classification schemes and spectral types were defined to reflect a smooth change in the strength of representative spectral lines. The order of the spectral classes became O, B, A, F, G, K, and M; even though these letter designations no longer have specific meaning the names are still in use today. Each spectral class is divided into ten sub-classes, so that for instance a B0 star follows an O9 star. This classification scheme was based simply on the appearance of the spectra and the physical reason underlying these properties was not understood until the 1930s. Even though there are some genuine differences in chemical composition between stars, the main property that determines the observed spectrum of a star is its effective temperature. -
Spectrum Analysis of Type Iib Supernova 1996Cb
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Spectrum Analysis of Type IIb Supernova 1996cb Jinsong Deng 1,2 Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Yulei Qiu and Jinyao Hu Beijing Astronomical Observatory, Chaoyang District, Beijing 100012, P.R.China ABSTRACT We analyze a time series of optical spectra of SN 1993J-like supernova 1996cb, from 14 days before maximum to 86 days after that, with a parame- terized supernova synthetic-spectrum code SYNOW. Detailed line identification are made through fitting the synthetic spectra to observed ones. The derived 1 1 photospheric velocity, decreasing from 11; 000 km s− to 3; 000 km s− ,gives a rough estimate of the ratio of explosion kinetic energy to ejecta mass, i.e. 51 E=Mej 0:2 0:5 10 ergs=Mej(M ). We find that the minimum velocity of ∼ − × 1 hydrogen is 10; 000 km s− , which suggests a small hydrogen envelope mass ∼ 51 of 0:02 0:1 Mej,or0:1 0:2 M if E is assumed 1 10 ergs. A possible ∼ − − × Ni II absorption feature near 4000 A˚ is identified throughout the epochs studied here and is most likely produced by primordial nickel. Unambiguous Co II fea- tures emerge from 16 days after maximum onward, which suggests that freshly synthesized radioactive material has been mixed outward to a velocity of at least 1 7; 000 km s− as a result of hydrodynamical instabilities. Although our synthetic spectra show that the bulk of the blueshift of [O I] λ5577 net emission, as large as 70 A˚ at 9 days after maximum, is attributed to line blending, a still consid- ∼ erable residual 20 A˚ remains till the late phase. -
Issue 36, June 2008
June2008 June2008 In This Issue: 7 Supernova Birth Seen in Real Time Alicia Soderberg & Edo Berger 23 Arp299 With LGS AO Damien Gratadour & Jean-René Roy 46 Aspen Instrument Update Joseph Jensen On the Cover: NGC 2770, home to Supernova 2008D (see story starting on page 7 Engaging Our Host of this issue, and image 52 above showing location Communities of supernova). Image Stephen J. O’Meara, Janice Harvey, was obtained with the Gemini Multi-Object & Maria Antonieta García Spectrograph (GMOS) on Gemini North. 2 Gemini Observatory www.gemini.edu GeminiFocus Director’s Message 4 Doug Simons 11 Intermediate-Mass Black Hole in Gemini South at moonset, April 2008 Omega Centauri Eva Noyola Collisions of 15 Planetary Embryos Earthquake Readiness Joseph Rhee 49 Workshop Michael Sheehan 19 Taking the Measure of a Black Hole 58 Polly Roth Andrea Prestwich Staff Profile Peter Michaud 28 To Coldly Go Where No Brown Dwarf 62 Rodrigo Carrasco Has Gone Before Staff Profile Étienne Artigau & Philippe Delorme David Tytell Recent 31 66 Photo Journal Science Highlights North & South Jean-René Roy & R. Scott Fisher Photographs by Gemini Staff: • Étienne Artigau NICI Update • Kirk Pu‘uohau-Pummill 37 Tom Hayward GNIRS Update 39 Joseph Jensen & Scot Kleinman FLAMINGOS-2 Update Managing Editor, Peter Michaud 42 Stephen Eikenberry Science Editor, R. Scott Fisher MCAO System Status Associate Editor, Carolyn Collins Petersen 44 Maxime Boccas & François Rigaut Designer, Kirk Pu‘uohau-Pummill 3 Gemini Observatory www.gemini.edu June2008 by Doug Simons Director, Gemini Observatory Director’s Message Figure 1. any organizations (Gemini Observatory 100 The year-end task included) have extremely dedicated and hard- completion statistics 90 working staff members striving to achieve a across the entire M 80 0-49% Done observatory are worthwhile goal. -
Chapter 11 SOLAR RADIO EMISSION W
Chapter 11 SOLAR RADIO EMISSION W. R. Barron E. W. Cliver J. P. Cronin D. A. Guidice Since the first detection of solar radio noise in 1942, If the frequency f is in cycles per second, the wavelength radio observations of the sun have contributed significantly X in meters, the temperature T in degrees Kelvin, the ve- to our evolving understanding of solar structure and pro- locity of light c in meters per second, and Boltzmann's cesses. The now classic texts of Zheleznyakov [1964] and constant k in joules per degree Kelvin, then Bf is in W Kundu [1965] summarized the first two decades of solar m 2Hz 1sr1. Values of temperatures Tb calculated from radio observations. Recent monographs have been presented Equation (1 1. 1)are referred to as equivalent blackbody tem- by Kruger [1979] and Kundu and Gergely [1980]. perature or as brightness temperature defined as the tem- In Chapter I the basic phenomenological aspects of the perature of a blackbody that would produce the observed sun, its active regions, and solar flares are presented. This radiance at the specified frequency. chapter will focus on the three components of solar radio The radiant power received per unit area in a given emission: the basic (or minimum) component, the slowly frequency band is called the power flux density (irradiance varying component from active regions, and the transient per bandwidth) and is strictly defined as the integral of Bf,d component from flare bursts. between the limits f and f + Af, where Qs is the solid angle Different regions of the sun are observed at different subtended by the source. -
A Magnetar Model for the Hydrogen-Rich Super-Luminous Supernova Iptf14hls Luc Dessart
A&A 610, L10 (2018) https://doi.org/10.1051/0004-6361/201732402 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls Luc Dessart Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS, UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile e-mail: [email protected] Received 2 December 2017 / Accepted 14 January 2018 ABSTRACT Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler- broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and 13 field strength of 7 × 10 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M , kinetic 51 56 energy of 1:32 × 10 erg, 0.077 M of Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of −18 mag in the R band, the blue optical color, and the broad H I lines for 600 d.