Sukhbold and Woosley, 2014; Woosley and Heger
Total Page:16
File Type:pdf, Size:1020Kb
UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title The Evolution and Explosion of Massive Stars Permalink https://escholarship.org/uc/item/6gr8s8cp Author Sukhbold, Tuguldur Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ THE EVOLUTION AND EXPLOSION OF MASSIVE STARS A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in ASTRONOMY & ASTROPHYSICS by Tuguldur Sukhbold September 2016 The Dissertation of Tuguldur Sukhbold is approved: Professor Stan Woosley, Chair Professor Greg Laughlin Professor Jonathan Fortney Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Tuguldur Sukhbold 2016 Table of Contents List of Figuresv List of Tables vii Abstract viii Dedication ix Acknowledgmentsx 1 Introduction1 1.1 Overview.....................................1 1.2 Brief Basic Background..............................3 1.3 KEPLER code................................... 14 1.4 Structure of this thesis.............................. 15 1.5 Related works not contained in this thesis.................... 17 2 The Compactness of Presupernova Stellar Cores 20 2.1 Introduction.................................... 20 2.2 Surveys of presupernova evolution........................ 24 2.2.1 Solar Metallicity Stars.......................... 25 2.2.2 Low Metallicity Stars........................... 26 2.2.3 Choice of Fiducial Mass and Time for Evaluating the Compactness.. 29 2.3 Physical Basis of the Behaviour of the Compactness Parameter......... 31 2.3.1 Evolution Through Central Carbon Depletion.............. 32 2.3.2 Carbon Shell Burning.......................... 33 2.3.3 From Oxygen Depletion to Silicon Depletion.............. 37 2.3.4 From Silicon Depletion to Presupernova................. 38 2.3.5 Fine Scale Variations and Convergence................. 39 2.3.6 Stars Over 30 M ............................ 41 2.4 Sensitivity to Code Physics............................ 43 2.4.1 Sensitivity to Semiconvection and Overshoot Mixing.......... 43 iii 2.4.2 Survey of Solar Metallicity Stars Using MESA .............. 50 2.4.3 Sensitivity to Uncertain Nuclear Physics - 12C(α;γ)16O......... 55 2.5 Surveys with Bare Carbon-Oxygen Cores.................... 57 2.6 Conclusions.................................... 59 3 Core-Collapse Supernovae from 9 to 120 M based on Neutrino-Powered Explo- sions 99 3.1 Introduction.................................... 99 3.2 Presupernova Models............................... 103 3.2.1 Stellar Physics.............................. 103 3.2.2 Explosion Calibration Models...................... 105 3.2.3 Presupernova Models used for this Study................ 111 3.3 Explosion Modelling............................... 115 3.3.1 Explosion Simulations with PHOTB ................... 116 3.3.2 Simulating Explosions with KEPLER .................. 126 3.4 Explosion Properties............................... 129 3.4.1 Relation to Core Compactness...................... 131 3.4.2 Systematics of Explosion Energy and 56Ni Mass............ 132 3.5 Bound Remnants................................. 136 3.5.1 Neutron Stars............................... 136 3.5.2 Black Holes................................ 139 3.6 Nucleosynthesis.................................. 142 3.6.1 9-12 M ................................. 145 3.6.2 12-30 M ................................. 147 3.6.3 30-120 M ................................ 148 3.6.4 Integrated Yields............................. 149 3.6.5 Type Ia Supernova Contribution..................... 158 3.7 Light Curves................................... 160 3.7.1 Type IIP.................................. 161 3.7.2 Type Ib/c................................. 171 3.7.3 Type IIL................................. 173 3.8 Conclusions.................................... 175 4 The Most Luminous Supernovae 224 4.1 Introduction.................................... 224 4.2 Prompt Explosions and Pair-Instability...................... 225 4.3 Radioactivity................................... 227 4.4 Colliding Shells.................................. 229 4.4.1 Generic Models.............................. 229 4.4.2 Pulsational-pair instability supernovae.................. 231 4.5 Magnetars..................................... 232 4.6 Summary and Conclusions............................ 236 iv List of Figures 2.1 ξ2:5from old survey models............................ 71 2.2 ξ2:5as a function of initial mass for solar metallicity models........... 72 2.3 S, U and SH series models in comparison.................... 73 2.4 He and CO core masses for S, U and SH series................. 74 2.5 Central C mass fractions at the time of C.ign................... 75 2.6 Presupernova radii of S, U and SH series..................... 76 2.7 Presupernova ξ defined at different times and locations............. 77 2.8 Convective history of a 15 M Z model..................... 78 2.9 ξ2:5evolution until C.dep............................. 79 2.10 Evolution of degeneracy of the core....................... 80 2.11 Timing and location of convective shells..................... 81 2.12 ξ2:5 evolution from C.dep to O.dep........................ 82 2.13 Different convective histories of Carbon and Oxygen burning.......... 83 2.14 ξ2:5 from O.dep to Si.dep............................. 84 2.15 ξ2:5 evolution from Si.dep to preSN....................... 85 2.16 Convective history after core Si.dep....................... 86 2.17 Time from Si.dep to preSN............................ 87 2.18 ξ2:5 dependence on zoning and timestep..................... 88 2.19 Convective episodes of SH series......................... 89 2.20 Dependence of ξ2:5 of semiconvection...................... 90 2.21 Dependence of ξ2:5 on overshooting....................... 91 2.22 MCO is a better discriminant that MZAMS ..................... 92 2.23 MESA models in comparison with KEPLER models............... 93 2.24 Evolution of ξ2:5 in Mov series.......................... 94 12 16 2.25 ξ2:5 dependence on variable C(α;γ) O rate.................. 95 2.26 Bare CO cores from KEPLER and MESA at O.dep................ 96 2.27 Bare CO cores in comparison with full stars at preSN.............. 97 2.28 Correlation between preSN ξ2:5 and BE outside the iron-core.......... 98 3.1 Compactness parameter for each progenitor................... 189 3.2 HR diagram for SN 1987A models........................ 190 v 3.3 Core structures for the lightest progenitor models................ 191 3.4 Agreement between two series at low progenitor initial mass.......... 192 3.5 Mass enclosing internal 3000 km for each progenitor.............. 193 3.6 Baryonic shell diagram for two sample explosions................ 194 3.7 Transforming PHOTB trajectories into KEPLER ................. 195 3.8 Total iron production from KEPLER and PHOTB ................ 196 3.9 Explosion outcomes from five main engines................... 197 3.10 Percentage of type II supernovae......................... 198 3.11 Mass derivative of binding energy as a criterion of explosion.......... 199 3.12 Correlation of 56 mass and explosion energy with compactness......... 200 3.13 Correlation between nickel mass and explosion enegry............. 201 3.14 Distribution of neutron star masses........................ 202 3.15 The mass “budget” for each progenitor as exploded by engine W18....... 203 3.16 Distribution of black hole masses......................... 204 3.17 Production from lightest stars........................... 205 3.18 Production from stars between 12 and 30 M .................. 206 3.19 Production from heaviest stars.......................... 207 3.20 Elemental integrated yields............................ 208 3.21 Integrated isotope yields from engine W18.................... 209 3.22 Integrated isotope yields from engine N20.................... 210 3.23 The effect of steeper IMF on nucleosynthesis.................. 211 3.24 Ia contribution from sub-Chandrasekhar mass model.............. 212 3.25 Ia contribution from Chandrasekhar mass model................. 213 3.26 All light curves.................................. 214 3.27 Scaling law for the plateau luminosity...................... 215 3.28 Plateau durations and correction for radioactivity................ 216 3.29 The extension of plateau duration through 56Ni decay.............. 217 3.30 Scaling law for plateau durations......................... 218 3.31 Envelope and initial progenitor mass....................... 219 3.32 Correlation between plateau luminosity and duration.............. 220 3.33 Explosion energy from plateau.......................... 221 3.34 Progenitor mass from plateau........................... 222 3.35 56Ni mass estimates from Ib/c light curve.................... 223 4.1 Light curves from two different prompt energy depositions........... 240 4.2 Magnetar powered model for ASASSN-15lh................... 241 vi List of Tables 1.1 Evolution of 15 M model............................ 19 2.1 Calculations.................................... 65 2.1 Calculations.................................... 66 2.2 He Core and CO Core Sizes........................... 67 2.2 He Core and CO Core Sizes........................... 68 2.2 He Core and CO Core Sizes........................... 69 2.3 X(12C) and 12C(α;γ)16O ............................. 70 2.4 Critical Masses for Central Carbon Burning................... 70 3.1 SN 1987A Models................................ 185