Integrated Cosmological Probe Combination

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Cosmological Probe Combination DISS. ETH NO. 25195 Integrated cosmological probe combination A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Andrina Nicola Master of Science in Physics ETH Zürich born on February 5th, 1988 citizen of Roveredo (GR), Switzerland accepted on the recommendation of Prof. Dr. Alexandre Réfrégier Dr. Adam Amara Prof. Dr. Eiichiro Komatsu 2018 De sui ipsius et multorum ignorantia. — Francesco Petrarca Abstract Our Universe is an exciting laboratory, which we can study by observing many of its properties, called cosmological probes. Recent observational progress has led to the establishment of the ¤CDM cosmological model, which relies on the general theory of relativity, dark matter, dark energy and the existence of primordial perturbations. In spite of this progress, several questions remain unanswered, such as the nature of dark matter and dark energy and the details of the initial conditions. Constraining the key components of the standard model of cosmology is thus one of the main goals of observational cosmology today. In this thesis, we aim to improve our understanding of ¤CDM by combining the information from different cosmological probes, taking into account both the auto- and the cross-correlations. This allows us to go beyond the notion of isolated probes, towards an integrated view of the Universe and cosmology. In a first step, we compare the constraining power of a future spectroscopic galaxy redshift survey when analyzed using the spherical harmonic tomography power spectrum and the spherical Fourier-Bessel power spectrum in a Fisher matrix analysis. We then develop a framework for integrated analysis of cosmological probes in which the probes are combined starting at the map level. In a first implementation, we apply this framework to a combination of CMB temperature anisotropy measurements from the Planck satellite as well as galaxy clustering and weak lensing measured by the Sloan Digital Sky Survey. We then extend the analysis to also include CMB lensing from Planck, weak lensing from Dark Energy Survey Science Verification data as well as background probes. These analyses yield self-consistent and competitive constraints on cosmological parameters and provide a confirmation of ¤CDM through the consistency of different probes. As a complement, we quantify possible tensions between these constraints and other existing results through the relative entropy and find all data sets considered to be consistent in the framework of ¤CDM. Finally, we revisit the relative entropy and propose a novel model selection method, which combines relative entropy and posterior predictive distributions. In a series of toy models and applications to cosmological data, we show that this algorithm gives results consistent with expectations and thus appears promising for model selection in cosmology. i Introduzione - Zusammenfassung - Zämefassig L’universo é un appassionante laboratorio, che si lascia decifrare studiando le cosiddette osservabili cosmologiche. La cosmologia ha fatto dei forti progressi negli ultimi anni e questi esperimenti hanno stabilito l’attuale modello standard cosmologico, tecnicamente chiamato ¤CDM. Questo modello si basa sulla teoria della relatività generale, la materia oscura, l’energia oscura e l’esistenza di fluttuazioni primordiali. Malgrado questo progresso, molte questioni rimangono aperte: per esempio la natura della materia e dell’energia oscure, e il meccanismo delle fluttuazioni primordiali. Quindi, uno degli scopi principali della cosmologia sperimen- tale é di studiare queste componenti. In questa tesi usiamo l’informazione contenuta in diverse osservabili per migliorare la nostra conoscenza del modello standard della cosmologia. Allontanandoci quindi dallo studio di singole osservabili, arriviamo ad una visione globale dell’universo e della cosmologia. In einem ersten Projekt vergleichen wir Analysemethoden für eine zukünftige spektroskopi- sche Galaxienkartierung. Wir vergleichen deren Informationsgehalt für eine Analyse mittels Kugelfunktionen und sphärischen Fourier-Bessel Funktionen. Wir entwickeln dann eine Methode um verschiedene kosmologische Observablen gemeinsam zu analysieren. In einer ersten Arbeit verwenden wir diese Methode um Daten der kosmischen Hintergrundstrahlung (aufgenommen mit dem Planck Satelliten) mit Karten von Galaxie- positionen und -scherungen der Sloan Digital Sky Survey zu kombinieren. In einer zweiten Arbeit erweitern wir diese Analyse: (i) auf die Scherung der kosmischen Hintergrundstrahlung, gemessen mit Planck, (ii) auf Karten von Galaxiescherungen der Dark Energy Survey und (iii) auf Messungen des homogenen Universums. Diese Studien erlauben uns die Werte kosmolo- gischer Parameter einzuschränken. Zusätzlich liefert die Übereinstimmung der verschiedenen Datensätze eine Bestätigung des kosmologischen Standardmodells. Wir ergänzen diese Arbeiten indem wir unsere Resultate mit Hilfe der Kullback-Leibler (KL) Divergenz statistisch mit anderen Resultaten vergleichen. Diese Studie zeigt, dass alle be- trachteten Datensätze sowohl miteinander als auch mit dem kosmologischen Standardmodell übereinstimmen. In ere letschte Arbet chömmer nomol uf d KL Divergänz zrugg und schlönd en neui Methode vor, wo chan zum Modäll teschte brucht wärde. Die Methode verbindet d KL Divergänz mit de sogenannte posterior predictive distribution. Mir teschte d Methode i mehrere vereifachte Awändige und zeiged, dass sie s Potenzial hett, um ide Zuekunft i de Kosmologie zum Modäll teschte agwändet z wärde. iii Zusammenfassung Das Universum ist ein aufregendes Labor, das wir durch kosmologische Observablen studie- ren können. In den letzten Jahren gab es grosse Fortschritte in der Kosmologie, und diese Beobachtungen haben zur Aufstellung des kosmologischen Standardmodells, ¤CDM, geführt. Dieses basiert auf der allgemeinen Relativitätstheorie, der Existenz der dunklen Materie, der dunklen Energie und anfänglicher Dichteschwankungen. Trotz dieses Fortschritts bleiben viele Fragen bis heute ungeklärt, wie beispielsweise die physikalische Natur der dunklen Mate- rie und Energie. Eine der Hauptmotivationen der heutigen Kosmologie ist es deshalb, diese Hauptbestandteile des kosmologischen Standardmodells besser zu verstehen. In dieser Arbeit kombinieren wir mehrere kosmologische Observablen, was uns eine umfassende Sicht auf das Universums und die Kosmologie erlaubt. In einem ersten Projekt vergleichen wir Analysemethoden für eine zukünftige spektroskopi- sche Galaxienkartierung. Wir vergleichen deren Informationsgehalt für eine Analyse mittels Kugelfunktionen und sphärischen Fourier-Bessel Funktionen. Wir entwickeln dann eine Methode um verschiedene kosmologische Observablen gemeinsam zu analysieren. In einer ersten Arbeit verwenden wir diese Methode um Daten der kosmischen Hintergrundstrahlung (aufgenommen mit dem Planck Satelliten) mit Karten von Galaxie- positionen und -scherungen der Sloan Digital Sky Survey zu kombinieren. In einer zweiten Arbeit erweitern wir diese Analyse: (i) auf die Scherung der kosmischen Hintergrundstrahlung, gemessen mit Planck, (ii) auf Karten von Galaxiescherungen der Dark Energy Survey und (iii) auf Messungen des homogenen Universums. Diese Studien erlauben uns die Werte kosmolo- gischer Parameter einzuschränken. Zusätzlich liefert die Übereinstimmung der verschiedenen Datensätze eine Bestätigung des kosmologischen Standardmodells. Wir ergänzen diese Arbeiten indem wir unsere Resultate mit Hilfe der Kullback-Leibler (KL) Divergenz statistisch mit anderen Resultaten vergleichen. Diese Studie zeigt, dass alle be- trachteten Datensätze sowohl miteinander als auch mit dem kosmologischen Standardmodell übereinstimmen. In einer letzten Arbeit kehren wir zur KL Divergenz zurück und stellen eine neue Methode zur Modellüberprüfung vor. Diese basiert auf der KL Divergenz und der sogenannten posterior predictive distribution. Wir zeigen anhand verschiedener, vereinfachter Modelle, dass diese Methode das Potential hat, um in Zukunft in der Kosmologie angewandt zu werden. v Contents Abstract i Introduzione - Zusammenfassung - Zämefassig iii Zusammenfassungv 1 Introduction 1 1.1 The homogeneous Universe...............................3 1.2 The inhomogeneous Universe.............................7 1.2.1 Linear perturbation theory...........................7 1.2.2 Cosmological structure formation.......................9 1.3 Observational probes................................... 12 1.3.1 Statistics of random fields............................ 12 1.3.2 Cosmic Microwave Background........................ 14 1.3.3 Galaxy clustering................................. 15 1.3.4 Cosmic shear................................... 18 1.3.5 Background probes................................ 21 2 Three-dimensional spherical analyses of cosmological spectroscopic surveys 23 2.1 Introduction........................................ 23 2.2 Comparison baseline.................................. 24 2.3 Three-dimensional spherical power spectra..................... 26 2.3.1 The Cartesian power spectrum......................... 26 2.3.2 The spherical harmonic tomography power spectrum........... 29 2.3.3 The spherical Fourier Bessel power spectrum................ 31 2.4 Fisher matrices for 3D spherical power spectra................... 34 2.4.1 The Fisher matrix for the spherical harmonic tomography power spectrum 34 2.4.2 The Fisher matrix for the SFB power spectrum............... 35 2.5 Results........................................... 36 2.5.1 Spherical
Recommended publications
  • Correction: Corrigendum: the Superluminous Transient ASASSN
    LETTERS PUBLISHED: 12 DECEMBER 2016 | VOLUME: 1 | ARTICLE NUMBER: 0002 The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole G. Leloudas1,​2*, M. Fraser3, N. C. Stone4, S. van Velzen5, P. G. Jonker6,​7, I. Arcavi8,​9, C. Fremling10, J. R. Maund11, S. J. Smartt12, T. Krühler13, J. C. A. Miller-Jones14, P. M. Vreeswijk1, A. Gal-Yam1, P. A. Mazzali15,​16, A. De Cia17, D. A. Howell8,​18, C. Inserra12, F. Patat17, A. de Ugarte Postigo2,​19, O. Yaron1, C. Ashall15, I. Bar1, H. Campbell3,​20, T.-W. Chen13, M. Childress21, N. Elias-Rosa22, J. Harmanen23, G. Hosseinzadeh8,​18, J. Johansson1, T. Kangas23, E. Kankare12, S. Kim24, H. Kuncarayakti25,​26, J. Lyman27, M. R. Magee12, K. Maguire12, D. Malesani2, S. Mattila3,​23,​28, C. V. McCully8,​18, M. Nicholl29, S. Prentice15, C. Romero-Cañizales24,​25, S. Schulze24,​25, K. W. Smith12, J. Sollerman10, M. Sullivan21, B. E. Tucker30,​31, S. Valenti32, J. C. Wheeler33 and D. R. Young12 8 12,13 When a star passes within the tidal radius of a supermassive has a mass >10 M⊙ , a star with the same mass as the Sun black hole, it will be torn apart1. For a star with the mass of the could be disrupted outside the event horizon if the black hole 8 14 Sun (M⊙) and a non-spinning black hole with a mass <10 M⊙, were spinning rapidly . The rapid spin and high black hole the tidal radius lies outside the black hole event horizon2 and mass can explain the high luminosity of this event.
    [Show full text]
  • Report from the Dark Energy Task Force (DETF)
    Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude.
    [Show full text]
  • Perrett RTA.Pdf
    The Astronomical Journal, 140:518–532, 2010 August doi:10.1088/0004-6256/140/2/518 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY∗ K. Perrett1,2, D. Balam3, M. Sullivan4, C. Pritchet5, A. Conley1,6, R. Carlberg1,P.Astier7, C. Balland7,S.Basa8, D. Fouchez9,J.Guy7, D. Hardin7,I.M.Hook3,10, D. A. Howell11,12,R.Pain7, and N. Regnault7 1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada; [email protected] 2 Network Information Operations, DRDC Ottawa, 3701 Carling Avenue, Ottawa, ON K1A 0Z4, Canada 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 4 Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK; [email protected] 5 Department of Physics & Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC V8W 3P6, Canada 6 Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593, USA 7 LPNHE, CNRS-IN2P3 and University of Paris VI & VII, 75005 Paris, France 8 Laboratoire d’Astrophysique de Marseille, Poledel’ˆ Etoile´ Site de Chateau-Gombert,ˆ 38, rue Fred´ eric´ Joliot-Curie, 13388 Marseille cedex 13, France 9 CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9, France 10 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (RM), Italy 11 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117, USA 12 Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530, USA Received 2010 February 17; accepted 2010 June 4; published 2010 July 1 ABSTRACT The Supernova Legacy Survey (SNLS) has produced a high-quality, homogeneous sample of Type Ia supernovae (SNe Ia) out to redshifts greater than z = 1.
    [Show full text]
  • Publications RENOIR – 24 Sep 2021 Article
    Publications RENOIR { 24 Sep 2021 article 2021 1. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: one thousand multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release, C. Zhao et al., Mon. Not. Roy. Astron. Soc 503 (2021) 1149-1173 2. Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography, O. Ilbert et al., Euclid Collaboration, Astron. Astrophys. 647 (2021) A117 2020 1. Improving baryon acoustic oscillation measurement with the combination of cosmic voids and galaxies, C. Zhao et al., SDSS Collaboration, Mon. Not. Roy. Astron. Soc 491 (2020) 4554-4572 2. Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate, M. Rigault et al., Nearby Supernova Factory Collaboration, Astron. Astrophys. 644 (2020) A176 3. High-precision Monte-Carlo modelling of galaxy distribution, P. Baratta et al., Astron. Astrophys. 633 (2020) A26 4. Constraints on the growth of structure around cosmic voids in eBOSS DR14, A. J. Hawken et al., J. Cosmol. Astropart. P 2006 (2020) 012 5. SUGAR: An improved empirical model of Type Ia Supernovae based on spectral features, P.-F. L´eget et al., Nearby Supernova Factory Collaboration, Astron. Astrophys. 636 (2020) A46 6. Euclid: Reconstruction of Weak Lensing mass maps for non- Gaussianity studies, S. Pires et al., Euclid Collaboration, Astron. Astrophys. 638 (2020) A141 7. Euclid preparation: VII. Forecast validation for Euclid cosmological probes, A. Blanchard et al., Euclid Collaboration, Astron. Astrophys. 642 (2020) A191 8. Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments, P.
    [Show full text]
  • Euclid: Superluminous Supernovae in the Deep Survey? C
    A&A 609, A83 (2018) Astronomy DOI: 10.1051/0004-6361/201731758 & c ESO 2018 Astrophysics Euclid: Superluminous supernovae in the Deep Survey? C. Inserra1; 2, R. C. Nichol3, D. Scovacricchi3, J. Amiaux4, M. Brescia5, C. Burigana6; 7; 8, E. Cappellaro9, C. S. Carvalho30, S. Cavuoti5; 11; 12, V. Conforti13, J.-C. Cuillandre4; 14; 15, A. da Silva10; 16, A. De Rosa13, M. Della Valle5; 17, J. Dinis10; 16, E. Franceschi13, I. Hook18, P. Hudelot19, K. Jahnke20, T. Kitching21, H. Kurki-Suonio22, I. Lloro23, G. Longo11; 12, E. Maiorano13, M. Maris24, J. D. Rhodes25, R. Scaramella26, S. J. Smartt2, M. Sullivan1, C. Tao27; 28, R. Toledo-Moreo29, I. Tereno16; 30, M. Trifoglio13, and L. Valenziano13 (Affiliations can be found after the references) Received 11 August 2017 / Accepted 3 October 2017 ABSTRACT Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ∼ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS.
    [Show full text]
  • Arxiv:0804.4142V1 [Astro-Ph]
    Draft version April 25, 2008 Preprint typeset using LATEX style emulateapj v. 10/09/06 IMPROVED COSMOLOGICAL CONSTRAINTS FROM NEW, OLD AND COMBINED SUPERNOVA DATASETS M. Kowalski1, D. Rubin2,3, G. Aldering2, R. J. Agostinho4, A. Amadon5, R. Amanullah6, C. Balland7, K. Barbary2,3, G. Blanc8, P. J. Challis9, A. Conley10, N. V. Connolly11, R. Covarrubias12, K. S. Dawson2, S. E. Deustua13, R. Ellis14, S. Fabbro15, V. Fadeyev16, X. Fan17, B. Farris18, G. Folatelli12, B. L. Frye19, G. Garavini20, E. L. Gates21, L. Germany22, G. Goldhaber2,3, B. Goldman23, A. Goobar20, D. E. Groom2, J. Haissinski24, D. Hardin7, I. Hook25, S. Kent26, A. G. Kim2, R. A. Knop27, C. Lidman28, E. V. Linder6, J. Mendez29,30, J. Meyers2,3, G. J. Miller31, M. Moniez24, A. M. Mourao˜ 15, H. Newberg32, S. Nobili20, P. E. Nugent2, R. Pain7, O. Perdereau24, S. Perlmutter2,3, M. M. Phillips33, V. Prasad2, R. Quimby14, N. Regnault7, J. Rich5, E. P. Rubenstein34, P. Ruiz-Lapuente30, F. D. Santos35, B. E. Schaefer36, R. A. Schommer37, R. C. Smith38, A. M. Soderberg14, A. L. Spadafora2, L.-G. Strolger39, M. Strovink2,3, N. B. Suntzeff40, N. Suzuki2, R. C. Thomas2, N. A. Walton41, L. Wang40, W. M. Wood-Vasey9, J. L. Yun4 (Supernova Cosmology Project) Draft version April 25, 2008 ABSTRACT We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby- Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This “Union” compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST.
    [Show full text]
  • Annual Report Astronomy Australia Limited
    2011 / 12 Annual Report Astronomy Australia Limited Vision Astronomers in Australia will have access to the best astronomical research infrastructure. Mission AAL will achieve its vision by: 1. Engaging with Australian astronomers to advance the national research infrastructure priorities of the Australian astronomy decadal plan. 2. Advising the Australian Government on future investments in national astronomical research infrastructure. 3. Managing investments in national astronomical research infrastructure as required. Principles 1. Access to major astronomical research infrastructure should be available to any Australian-based astronomer purely on scientific merit. 2. The concept of national astronomical research infrastructure includes Australian participation in international facilities. 3. The AAO and CSIRO are empowered by the Australian Government to provide a component of the national astronomical research infrastructure and there is no need for AAL to directly manage investments to upgrade or operate the AAT and ATNF. Front cover image Gemini Legacy image of the complex planetary nebula Sh2-71 as imaged by the Gemini Multi-Object Spectrograph on Gemini North on Mauna Kea in Hawai‘i. A research team, led by Australian astronomers David Frew and Quentin Parker (Macquarie University, Sydney) are studying the dimmer, bluer star to understand its nature. The long-assumed central star is the brightest star near the centre, but the much dimmer and bluer star (just to the right and down a little) might be the parent of this beautiful object. The image is composed of three narrow- band images, and each is assigned a colour as follows: H-alpha (orange), HeII (blue) and [OIII] (cyan). Image credit: Gemini Observatory/AURA Background image Dipoles on one “tile” of the Murchison Widefield Array; one of the first telescopes with no moving parts.
    [Show full text]
  • Type Ia Supernovae As Stellar Endpoints and Cosmological Tools
    REVIEW Published 14 Jun 2011 | DOI: 10.1038/ncomms1344 Type Ia supernovae as stellar endpoints and cosmological tools D. Andrew Howell1,2 Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the Type Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now, new large surveys are bringing about a paradigm shift—we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modelling, breakthroughs in understanding all aspects of these supernovae are finally starting to happen. uest stars (who could have imagined they were distant stellar explosions?) have been surprising humans for at least 950 years, but probably far longer. They amazed and confounded the likes of Tycho, Kepler and Galileo, to name a few. But it was not until the separation of these events G 1 into novae and supernovae by Baade and Zwicky that progress understanding them began in earnest . This process of splitting a diverse group into related subsamples to yield insights into their origin would be repeated again and again over the years, first by Minkowski when he separated supernovae of Type I (no hydrogen in their spectra) from Type II (have hydrogen)2, and then by Elias et al. when they deter- mined that Type Ia supernovae (SNe Ia) were distinct3. We now define Type Ia supernovae as those without hydrogen or helium in their spectra, but with strong ionized silicon (SiII), which has observed absorption lines at 6,150, 5,800 and 4,000 Å (ref.
    [Show full text]
  • The VLT 5 Year Data Set from the Supernova Legacy Survey : Redshifts and Types of Snia Candidates
    The VLT 5 year data set from the SuperNova Legacy Survey : redshifts and types of SNia candidates F. CELLIER-HOLZEM LPNHE Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Paris 6 4 place Jussieu, 75252 Paris Cedex 05, France I present the spectral analysis of 81 Type la supernova candidates from the SuperNova Legacy Survey 5 year data set measured at the Very Large Telescope between august 2006 and septem­ ber 2007. 54 objects are identified as Type Ia supernovae and their redshifts are estimated. 1 Cosmological context and aim Using Type Ia supernovae (SNela) as standardisable candles permits to constrain the cosmo­ logical parameters governing the accelerated expansion of the universe (e.g., Perlmutter et al 1). Based on a Hubble diagram built with high, intermediate and low redshift SNela and combining with other cosmological probes (BAO+ WMAP7), Sullivan et al 2 obtain (assuming a flat uni­ verse) -1.061:!:8:8�� where is the equation of state parameter of the dark energy. The : w w SNcla used= in this analysis come from large spectro-photometric programs such as the Super­ Nova Legacy Survey (SNLS). In these programs, spectroscopy is essential to estimate redshifts and confirmthe SNia nature of the candidates. I present here a preliminary analysis of the SNLS 5 year spectroscopic data set, restricted to the spectra measured at the Very Large Telescope (VLT). 2 The SuperNova Legacy Survey experiment and the VLT 5 year spectral data The SNLS is a 5 year experiment aiming at measuring the luminosity distance of a large number SNela at intermediate to high redshift (0.15 < < 1.1) in order to constrain cosmological of z parameters.
    [Show full text]
  • Sukhbold and Woosley, 2014; Woosley and Heger
    UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title The Evolution and Explosion of Massive Stars Permalink https://escholarship.org/uc/item/6gr8s8cp Author Sukhbold, Tuguldur Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ THE EVOLUTION AND EXPLOSION OF MASSIVE STARS A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in ASTRONOMY & ASTROPHYSICS by Tuguldur Sukhbold September 2016 The Dissertation of Tuguldur Sukhbold is approved: Professor Stan Woosley, Chair Professor Greg Laughlin Professor Jonathan Fortney Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Tuguldur Sukhbold 2016 Table of Contents List of Figuresv List of Tables vii Abstract viii Dedication ix Acknowledgmentsx 1 Introduction1 1.1 Overview.....................................1 1.2 Brief Basic Background..............................3 1.3 KEPLER code................................... 14 1.4 Structure of this thesis.............................. 15 1.5 Related works not contained in this thesis.................... 17 2 The Compactness of Presupernova Stellar Cores 20 2.1 Introduction.................................... 20 2.2 Surveys of presupernova evolution........................ 24 2.2.1 Solar Metallicity Stars.......................... 25 2.2.2 Low Metallicity Stars........................... 26 2.2.3 Choice of Fiducial Mass and Time for Evaluating the Compactness.. 29 2.3 Physical Basis of the Behaviour of the Compactness Parameter......... 31 2.3.1 Evolution Through Central Carbon Depletion.............. 32 2.3.2 Carbon Shell Burning.......................... 33 2.3.3 From Oxygen Depletion to Silicon Depletion.............. 37 2.3.4 From Silicon Depletion to Presupernova................. 38 2.3.5 Fine Scale Variations and Convergence................
    [Show full text]
  • Noao Annual Report Fy07
    AURA/NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 Emission nebula NGC6334 (Cat’s Paw Nebula): star-forming region in the constellation Scorpius. This 2007 image was taken using the Mosaic-2 imager on the Blanco 4-meter telescope at Cerro Tololo Inter- American Observatory. Intervening dust in the plane of the Milky Way galaxy reddens the colors of the nebula. Image credit: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2007 Submitted to the National Science Foundation September 30, 2007 Revised as Final and Submitted January 30, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 NOAO Gemini Science Center .............................................................................. 2 GNIRS Infrared Spectroscopy and the Origins of the Peculiar Hydrogen-Deficient Stars...................... 2 Supermassive Black Hole Growth and Chemical Enrichment in the Early Universe.............................. 4 1.2 Cerro Tololo Inter-American Observatory (CTIO)................................................ 5 The Nearest Stars.......................................................................................................................................
    [Show full text]
  • Euclid: Superluminous Supernovae in the Deep Survey C
    Euclid: Superluminous supernovae in the Deep Survey C. Inserra, R.C. Nichol, D. Scovacricchi, J. Amiaux, M. Brescia, C. Burigana, E. Cappellaro, C.S. Carvalho, S. Cavuoti, V. Conforti, et al. To cite this version: C. Inserra, R.C. Nichol, D. Scovacricchi, J. Amiaux, M. Brescia, et al.. Euclid: Superluminous su- pernovae in the Deep Survey. Astron.Astrophys., 2018, 609, pp.A83. 10.1051/0004-6361/201731758. hal-01703641 HAL Id: hal-01703641 https://hal.archives-ouvertes.fr/hal-01703641 Submitted on 16 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 609, A83 (2018) Astronomy DOI: 10.1051/0004-6361/201731758 & c ESO 2018 Astrophysics Euclid: Superluminous supernovae in the Deep Survey? C. Inserra1; 2, R. C. Nichol3, D. Scovacricchi3, J. Amiaux4, M. Brescia5, C. Burigana6; 7; 8, E. Cappellaro9, C. S. Carvalho30, S. Cavuoti5; 11; 12, V. Conforti13, J.-C. Cuillandre4; 14; 15, A. da Silva10; 16, A. De Rosa13, M. Della Valle5; 17, J. Dinis10; 16, E. Franceschi13, I. Hook18, P. Hudelot19, K. Jahnke20, T. Kitching21, H. Kurki-Suonio22, I. Lloro23, G. Longo11; 12, E. Maiorano13, M. Maris24, J.
    [Show full text]