Estimation Des Taux De Mutation : Implications Pour La Diversification Et L'évolution Du Phytoplancton Eucaryote

Total Page:16

File Type:pdf, Size:1020Kb

Estimation Des Taux De Mutation : Implications Pour La Diversification Et L'évolution Du Phytoplancton Eucaryote Thèse de doctorat Université Pierre et Marie Curie Ecole doctorale « Complexité du vivant », ED 515 Estimation des taux de mutation : implications pour la diversification et l’évolution du phytoplancton eucaryote Marc Krasovec Le 19 Octobre 2016, à Banyuls sur mer Gwenaël Piganeau Université Pierre et Marie Curie Directeur de thèse Sophie Sanchez-Ferandin Université Pierre et Marie Curie Directeur de thèse Vincent Laudet Université Pierre et Marie Curie Président de Jury Laurent Duret CNRS, UMR 5558 Rapporteur Olivier Tenaillon INSERM, UMR 1137 Rapporteur Delphine Sicard INRA, UMR 1083 Examinateur 1 2 Remerciements Ma plus profonde gratitude va à mes deux directrices de thèse, Gwenaël Piganeau et Sophie Sanchez-Ferandin, pour m’avoir donné l’opportunité de réaliser cette thèse avec elles, et surtout pour le soutien indéfectible et permanent durant ces trois années. Au-delà de la grande qualité de l’encadrement qu’elles m’ont apporté, j’ai pris un grand plaisir à travailler avec elles pour leurs nombreuses qualités aussi bien professionnelles que relationnelles. Ces trois années de thèse passées avec Gwenaël et Sophie ont été pour moi un grand épanouissement professionnel et personnel, et constituent une unique et excellente expérience pour ma vie future. Je tiens également à adresser mes remerciements aux membres du jury pour avoir accepté d’évaluer mon travail, Laurent Duret, Olivier Tenaillon, Delphine Sicard et Vincent Laudet, ainsi que les membres de mes comités de thèse, Delphine Sicard, Jean-Paul Cadoret et Adam Erye-Walker. Je tiens aussi à remercier le laboratoire de Biologie Intégrative des Organismes Marins et l’équipe de génomique environnemental du phytoplancton pour m’avoir accueilli et permis de réaliser cette thèse. D’une manière plus générale, je remercie ma famille, en premier lieu ma mère Christine sans laquelle je ne serais jamais allé aussi loin aussi bien dans mes études que dans mes avancées personnelles, ainsi que mes frères et sœur Caroline, David, Frédéric (ou Lélic) et mon frère jumeau, Gabriel, comme moi grand admirateur des êtres vivants. Aussi, nombreuses sont les personnes du laboratoire Arago qui m’ont aidé dans mes travaux, en sein de l’équipe, Nigel Grimsley, Hervé Moreau, Evelyne Derelle, Sheree Yau, et enfin une grande reconnaissance pour Elodie Desgranges et Claire Hemon, mes deux collègues de bureau et de laboratoire. 3 Je remercie également les membres de la plateforme cytométrie, David Pecqueur et Christophe Salmeron, toujours disponibles pour venir à la rescousse d’un cytomètre en panne. Pour finir, je remercie mes différents amis, Florian, Sylvain, Alex (vous vous reconnaitrez) et les doctorants du laboratoire pour les discussions, les soirées avec une mention spéciale pour les gaming-night, et les amitiés qui resteront bien après la fin de cette thèse. Pour citer quelques noms, je remercie bien sûr mon cher collègue de thèse Hugo L et sa femme, Océane l’aristocrate, Sandrine et ses petits félins, Margot et son congénère larvaire qui ont toujours des bonbons à me donner, mon premier ministre imaginaire Mathieu que je remercie pour avoir effectué le déplacement, Hugo B pour les discussions philosophiques sur Homo sapiens, Marine, Tatiana et Remy, Mariana, Mathias qui va se faire séquencer, Nathalie, Brian et Elsa, Daniel. A toutes les personnes évoquées ci-dessus, je vous suis reconnaissant d’avoir supporté mes discussions parfois inutiles et inintéressantes sur les chats, les chinchillas (dont Kalam et Glorfindel sont les plus beaux représentants), et mes idées sensiblement peu démocratiques. 4 SOMMAIRE Liste des abréviations 7 CHAPITRE 1: INTRODUCTION 9 1. Introduction générale 11 2. Les enjeux de la recherche sur les mutations 12 3. Les variations du taux de mutation 14 4. Les expériences d’accumulation de mutations 15 1. Les premières expériences de Terumi Mukai 15 2. L’effet des mutations sur la fitness 17 1. Les successeurs de Terumi Mukai 17 2. Paysage adaptatif 19 3. Interactions génotype-environnement 22 1. Les changements d’effet des mutations 22 2. Le stress et les hyper mutateurs 23 5. Les estimations directes du taux de mutation 24 1. Les variations inter génomiques du taux de mutation 24 1. La taille du génome 24 2. La taille efficace (Ne) 26 3. Le temps de génération 28 4. Le taux métabolique et la température 2. Les variations intra génomiques du taux de mutation 30 1. Le sens de la transcription et de la réplication 30 2. Le temps de réplication 31 3. Les régions codantes et le niveau d'expression 31 4. La composition en GC 31 6. Nouveaux modèles biologiques 35 1. L’importance écologique du phytoplancton 35 2. Présentation des espèces 36 1. Choix des modèles biologiques 36 2. Les Mamiellophyceae 40 3. Les Trebouxiophyceae 41 1. Présentation générale 41 2. Les transferts horizontaux de gènes 42 7. Les objectifs de thèse 45 5 CHAPITRE 2: EFFETS DES MUTATIONS SUR LA FITNESS 47 CHAPITRE 3: LE TAUX DE MUTATION CHEZ LES MAMIELLOPHYCEAE 61 CHAPITRE 4: LES TRANSFERTS HORIZONTAUX DE GENES: LE CAS DE PICOCHLORUM RCC4223 81 CHAPITRE 5: IMPACT DU TAUX DE MUTATION POUR LES BIOTECHNOLOGIES 97 CHAPITRE 6: DISCUSSION ET CONCLUSION 113 1. Les variations de fitness indépendantes des mutations 115 1. La plasticité phénotypique 115 2. Les bactéries présentes dans les cultures d’O. tauri 117 3. Le rôle des variations structurelles sur le phénotype 118 2. Les limites à l’estimation du taux de mutation 120 3. Perspectives pour les EAMs 123 4. Conclusion générale 125 Annexes 127 Listes des figures et des tableaux 175 Bibliographie 181 Résumé 214 6 Liste des abréviations a : Effet de la mutation sur la fitness ADN : Acide désoxyribonucléique ARN : Acide ribonucléique CV : Variation de l’effet des mutations ΔV : Changement de variance de la donnée de fitness ΔM : Changement moyen de fitness par génération EAM : Experience d’accumulation de mutations G : Taille de génome GCeq : Contenu en GC du génome à l’équilibre Ge : Taille de génome codante GxE : Interactions Genotype-Environement HGT : Horizontal gene transfer Μb : Mega base MMR : Mismatch repair Ne : Taille efficace de population OmV1 : Ostreococcus mediterraneus Virus 1 PFGE : Pulsed-field gel electrophoresis R1 : Taux de mutation de GC vers AT R2 : Taux de mutation de AT vers GC RCC : Roscoff culture collection ROS : Reactive oxygen species TCR : Transcription-coupled repair U : Taux de mutation par génome Uc : Taux de mutation caryotypique par génome Ud : Taux de mutation délétères par génome µ : Taux de mutation par nucléotide 7 8 CHAPITRE 1: INTRODUCTION 9 10 1. Introduction générale Depuis la publication de l’origine des espèces et du principe de la sélection naturelle par Charles Darwin en 1859, des générations de biologistes ont étudié les questions fondamentales qui entourent l’évolution et la diversité du vivant. A cette époque, la génétique n’est pas connue et Darwin ignore les mécanismes qui génèrent la variabilité et la diversité soumises à la sélection naturelle. Les lois de Mendel sont redécouvertes en 1900, et en 1902 Walter Sutton propose la théorie chromosomique de l’hérédité. L’existence des mutations est démontrée en 1911 par Thomas Morgan en réalisant des expériences sur des drosophiles. Les mutations sont le moteur de l’évolution et constituent la base du potentiel adaptatif des espèces car elles constituent la principale source de diversité sur laquelle peut agir la sélection. Les biologistes s’intéressent donc depuis longtemps aux rôles des mutations, et les découvertes du début du 20ème siècle vont aboutir à la théorie synthétique de l’évolution, en particulier avec les travaux de Sewall Wright, John B. S. Haldane, Hermann J. Muller ou Julian Huxley (Haldane, 1949, 1937; Muller, 1928; Wright, 1932). La découverte de l’ADN et de sa structure (Watson and Crick, 1953) ouvrira la voie aux technologies de séquençage qui permettent d’observer directement l’apparition des mutations sur un génome, leurs fréquences et leurs distributions. Leurs effets sur la capacité de survie sont également explorés (Eyre- Walker and Keightley, 2007; Haldane, 1937; Muller, 1950) pour comprendre les différents processus évolutifs et adaptatifs des êtres vivants. La théorie neutraliste de l’évolution de Kimura dans les années 1960 apporte une nouvelle vision de l’évolution avec la mise en avant du hasard comme force aussi importante que la sélection, la dérive génétique (Kimura, 1991, 1987, 1968). Il s’agit de la variation aléatoire des fréquences alléliques dans une population (Charlesworth, 2009), indépendamment de la sélection ou des migrations. La dérive est plus forte dans des populations de petite taille, et donc de faible taille efficace (Wright, 1931), et peut aller à l’encontre de la sélection naturelle (Charlesworth, 2009; Willi et al., 2006). Les mutations sont soumises à ces forces évolutives et le taux de mutation subit lui même la sélection naturelle ou le hasard de la dérive génétique. 11 2. Les enjeux de la recherche sur les mutations La diversité que nous pouvons observer sur Terre au sein des trois empires du vivant que sont les bactéries, les archées et les eucaryotes est issue des processus de sélection et de mutations. Les mutations sont une altération de la molécule d’ADN, à un niveau ponctuel ou chromosomique. Cette altération peut être le remplacement d’un nucléotide par un autre, une insertion ou une délétion de séquence, une cassure, une duplication, un réarrangement chromosomique ou autres modifications de l’ADN. Nous pouvons distinguer deux origines aux mutations: les mutations issues des erreurs de réplication d’une part, et issues de facteurs mutagènes d’autres part (rayonnement ultra violet, stress oxydatifs ou radioactivité par exemple); voir la revue de Maki, 2002 (Maki, 2002) et la Figure 1. Les mutations constituent un large enjeu pour la recherche en biologie et en médecine. En recherche fondamentale, elles sont étudiées pour répondre à des questions centrales sur l’évolution et les capacités d’adaptation des espèces.
Recommended publications
  • Aalseth Aaron Aarup Aasen Aasheim Abair Abanatha Abandschon Abarca Abarr Abate Abba Abbas Abbate Abbe Abbett Abbey Abbott Abbs
    BUSCAPRONTA www.buscapronta.com ARQUIVO 35 DE PESQUISAS GENEALÓGICAS 306 PÁGINAS – MÉDIA DE 98.500 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • First Record of Marine Phytoplankton, Picochlorum Maculatum in the Southeastern Coast of India
    Indian Journal of Geo Marine Sciences Vol. 46 (04), April 2017, pp. 791-796 First record of marine phytoplankton, Picochlorum maculatum in the Southeastern coast of India Dinesh Kumar, S1. S. Ananth1, P. Santhanam1*, K. Kaleshkumar2 & R. Rajaram2 1Marine Planktonology & Aquaculture Lab., 2DNA Barcoding and Marine Genomics Lab., Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli- 620 024, Tamil Nadu, India. * [E-mail: [email protected], [email protected]] Received 20 October 2014 ; revised 02 January 2015 The marine phytoplankton Picochlorum maculatum (Chlorophyta:Trebouxiophyceae) is recorded for the first time in the Southeastern coast of India. In this study, marine phytoplankton were collected at Muthukkuda mangrove waters, Tamil Nadu, Southeast coast of India which was then isolated, purified and identified with rDNA sequencing. Recurrence component analysis of marine phytoplankton P. maculatum indicated that the peptides were composed of Beta structure, comprising alpha-helix, extended strand and random coil. The number of amino acids and chemical properties from the marine microalgae P. maculatum are calculated and having composition of Neutral (82.69%), Acidic (10.72%) and Basic (6.57%) amino acids. This species may be introduced by way of shipping and other transport mechanisms where organisms are inadvertently moved out of their home range, e.g., ballast water exchange. [Keywords: Microalgae, Picochlorum maculatum, Genetic Distance, Open Reading Frame, Poly A signals] Introduction The genus Picochlorum maculatum was in Indian coastal waters. There are five Picochlorum established by Henley et. al.1 based on Nannochloris were reported in species level from Japan maculta Butcher, 1952. The currently accepted name (Picochlorum atomus, Picochlorum eukaryotum, P.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • The Drawings of Cornelis Visscher (1628/9-1658) John Charleton
    The Drawings of Cornelis Visscher (1628/9-1658) John Charleton Hawley III Jamaica Plain, MA M.A., History of Art, Institute of Fine Arts – New York University, 2010 B.A., Art History and History, College of William and Mary, 2008 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Art and Architectural History University of Virginia May, 2015 _______________________________________ _______________________________________ _______________________________________ _______________________________________ Table of Contents Abstract ............................................................................................................................................. i Acknowledgements.......................................................................................................................... ii Introduction ..................................................................................................................................... 1 Chapter 1: The Life of Cornelis Visscher .......................................................................................... 3 Early Life and Family .................................................................................................................... 4 Artistic Training and Guild Membership ...................................................................................... 9 Move to Amsterdam .................................................................................................................
    [Show full text]
  • The Low Countries. Jaargang 11
    The Low Countries. Jaargang 11 bron The Low Countries. Jaargang 11. Stichting Ons Erfdeel, Rekkem 2003 Zie voor verantwoording: http://www.dbnl.org/tekst/_low001200301_01/colofon.php © 2011 dbnl i.s.m. 10 Always the Same H2O Queen Wilhelmina of the Netherlands hovers above the water, with a little help from her subjects, during the floods in Gelderland, 1926. Photo courtesy of Spaarnestad Fotoarchief. Luigem (West Flanders), 28 September 1918. Photo by Antony / © SOFAM Belgium 2003. The Low Countries. Jaargang 11 11 Foreword ριστον μν δωρ - Water is best. (Pindar) Water. There's too much of it, or too little. It's too salty, or too sweet. It wells up from the ground, carves itself a way through the land, and then it's called a river or a stream. It descends from the heavens in a variety of forms - as dew or hail, to mention just the extremes. And then, of course, there is the all-encompassing water which we call the sea, and which reminds us of the beginning of all things. The English once labelled the Netherlands across the North Sea ‘this indigested vomit of the sea’. But the Dutch went to work on that vomit, systematically and stubbornly: ‘... their tireless hands manufactured this land, / drained it and trained it and planed it and planned’ (James Brockway). As God's subcontractors they gradually became experts in living apart together. Look carefully at the first photo. The water has struck again. We're talking 1926. Gelderland. The small, stocky woman visiting the stricken province is Queen Wilhelmina. Without turning a hair she allows herself to be carried over the waters.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Comparing Relative Rates of Molecular Evolution Between Freshwater and Marine Eukaryotes
    ORIGINAL ARTICLE doi:10.1111/evo.13000 Do saline taxa evolve faster? Comparing relative rates of molecular evolution between freshwater and marine eukaryotes T. Fatima Mitterboeck,1,2,3 Alexander Y. Chen,1,2 Omar A. Zaheer,1,2 EddieY.T.Ma,1,2,4 and Sarah J. Adamowicz1,2 1Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada 2Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada 3E-mail: [email protected] 4School of Computer Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada Received June 8, 2015 Accepted June 28, 2016 The major branches of life diversified in the marine realm, and numerous taxa have since transitioned between marine and freshwaters. Previous studies have demonstrated higher rates of molecular evolution in crustaceans inhabiting continental saline habitats as compared with freshwaters, but it is unclear whether this trend is pervasive or whether it applies to the marine environment. We employ the phylogenetic comparative method to investigate relative molecular evolutionary rates between 148 pairs of marine or continental saline versus freshwater lineages representing disparate eukaryote groups, including bony fish, elasmobranchs, cetaceans, crustaceans, mollusks, annelids, algae, and other eukaryotes, using available protein-coding and noncoding genes. Overall, we observed no consistent pattern in nucleotide substitution rates linked to habitat across all genes and taxa. However, we observed some trends of higher evolutionary rates within protein-coding genes in freshwater taxa—the comparisons mainly involving bony fish—compared with their marine relatives. The results suggest no systematic differences in substitution rate between marine and freshwater organisms.
    [Show full text]
  • UNDERSTANDING the GENOMIC BASIS of STRESS ADAPTATION in PICOCHLORUM GREEN ALGAE by FATIMA FOFLONKER a Dissertation Submitted To
    UNDERSTANDING THE GENOMIC BASIS OF STRESS ADAPTATION IN PICOCHLORUM GREEN ALGAE By FATIMA FOFLONKER A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Debashish Bhattacharya And approved by _________________________________________________ _________________________________________________ _________________________________________________ _________________________________________________ New Brunswick, New Jersey January 2018 ABSTRACT OF THE DISSERTATION Understanding the Genomic Basis of Stress Adaptation in Picochlorum Green Algae by FATIMA FOFLONKER Dissertation Director: Debashish Bhattacharya Gaining a better understanding of adaptive evolution has become increasingly important to predict the responses of important primary producers in the environment to climate-change driven environmental fluctuations. In my doctoral research, the genomes from four taxa of a naturally robust green algal lineage, Picochlorum (Chlorophyta, Trebouxiphycae) were sequenced to allow a comparative genomic and transcriptomic analysis. The over-arching goal of this work was to investigate environmental adaptations and the origin of haltolerance. Found in environments ranging from brackish estuaries to hypersaline terrestrial environments, this lineage is tolerant of a wide range of fluctuating salinities, light intensities, temperatures, and has a robust photosystem II. The small, reduced diploid genomes (13.4-15.1Mbp) of Picochlorum, indicative of genome specialization to extreme environments, has resulted in an interesting genomic organization, including the clustering of genes in the same biochemical pathway and coregulated genes. Coregulation of co-localized genes in “gene neighborhoods” is more prominent soon after exposure to salinity shock, suggesting a role in the rapid response to salinity stress in Picochlorum.
    [Show full text]
  • World Scientists' Warning of a Climate Emergency
    Supplemental File S1 for the article “World Scientists’ Warning of a Climate Emergency” published in BioScience by William J. Ripple, Christopher Wolf, Thomas M. Newsome, Phoebe Barnard, and William R. Moomaw. Contents: List of countries with scientist signatories (page 1); List of scientist signatories (pages 1-319). List of 153 countries with scientist signatories: Albania; Algeria; American Samoa; Andorra; Argentina; Australia; Austria; Bahamas (the); Bangladesh; Barbados; Belarus; Belgium; Belize; Benin; Bolivia (Plurinational State of); Botswana; Brazil; Brunei Darussalam; Bulgaria; Burkina Faso; Cambodia; Cameroon; Canada; Cayman Islands (the); Chad; Chile; China; Colombia; Congo (the Democratic Republic of the); Congo (the); Costa Rica; Côte d’Ivoire; Croatia; Cuba; Curaçao; Cyprus; Czech Republic (the); Denmark; Dominican Republic (the); Ecuador; Egypt; El Salvador; Estonia; Ethiopia; Faroe Islands (the); Fiji; Finland; France; French Guiana; French Polynesia; Georgia; Germany; Ghana; Greece; Guam; Guatemala; Guyana; Honduras; Hong Kong; Hungary; Iceland; India; Indonesia; Iran (Islamic Republic of); Iraq; Ireland; Israel; Italy; Jamaica; Japan; Jersey; Kazakhstan; Kenya; Kiribati; Korea (the Republic of); Lao People’s Democratic Republic (the); Latvia; Lebanon; Lesotho; Liberia; Liechtenstein; Lithuania; Luxembourg; Macedonia, Republic of (the former Yugoslavia); Madagascar; Malawi; Malaysia; Mali; Malta; Martinique; Mauritius; Mexico; Micronesia (Federated States of); Moldova (the Republic of); Morocco; Mozambique; Namibia; Nepal;
    [Show full text]
  • An Investig Atio N of the Anabolic
    AN INVESTIGATION OF THE ANABOLIC ACTIONS OF BIOSYNTHETIC HUMAN GROWTH HORMONE AFTER INJURY BY BURNING A thesis sumitted for the degree of MASTER OF SURGERY in the UNIVERSITY OF LONDON H.J.C.R. Belcher, MB, BS(Lond), FRCS(Eng). The Blond-Mclndoe Centre, Queen Victoria Hospital, Holtye Rd, East Grinstead, SUSSEX. - 1 - ProQuest Number: U053257 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U053257 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To my wife, Georgina - 2 - ABSTRACT Previous clinical trials in normal subjects and post-operative patients have shown that biosynthetic growth hormone preparations increase nitrogen retention. It has been suggested that their administration to injured patients may be beneficial. A clinical trial is presented of twelve adult burned patients of whom six were allocated to receive biosynthetic human growth hormone (somatropin) and six to form a control group. Injury by burning is followed by increases in resting energy expenditure and urinary nitrogen excretion, accompanied by insulin resistance and glucose intolerance. There is a generalised fall in plasma protein concentrations, including the somatomedin, insulin-like growth factor-I.
    [Show full text]
  • Supporting Information
    Supporting Information Méheust et al. 10.1073/pnas.1517551113 S-Gene Expression Analysis extracellular domain. This novel protein is found only in green Given that the analysis using dozens of algal and protist genomic algae and plants, and may play a role in responding to salt stress. datasets showed that homologs of all of the S genes are expressed, For S genes present in the diatom Phaeodactylum tricornutum, we asked whether some of them might be differentially expressed we used RNA-seq data from ref. 30 that compared cultures in response to stress. This question was motivated by two ob- grown under control and nitrogen (N)-depleted conditions. This servations: (i) The composite genes entered eukaryote nuclear analysis showed that out of six families present in this alga (2, 1, genomes via primary endosymbiosis, and therefore they may still 28, 20, 35, 61), three are differentially expressed under N stress retain ancient cyanobacterial functions even when fused to novel (28, 35, 61). One of these is family 28, which encodes an domains, and (ii) many of the S genes are redox enzymes or N-terminal bacterium-derived, calcium-sensing EF-hand domain encode domains involved in redox regulation, and therefore their fused, intriguingly, to a cyanobacterium-derived region with sim- roles may involve sensing and/or responding to cellular stress ilarity to the plastid inner-membrane proten import component resulting from the oxygen-evolving photosynthetic organelle. To Tic20, which acts as a translocon channel. This fused protein may + address this issue, we inspected RNA-seq data from organisms use Ca2 as a signal for protein import, and is found in several that encoded particular S genes that had either been generated stramenopile (brown algal) species.
    [Show full text]