Morphology and Phylogeny of Picoeukaryotes and Planktonic Pennate Diatoms in the Middle and South Adriatic Sea

Total Page:16

File Type:pdf, Size:1020Kb

Morphology and Phylogeny of Picoeukaryotes and Planktonic Pennate Diatoms in the Middle and South Adriatic Sea University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF BIOLOGY Maja Mucko MORPHOLOGY AND PHYLOGENY OF PICOEUKARYOTES AND PLANKTONIC PENNATE DIATOMS IN THE MIDDLE AND SOUTH ADRIATIC SEA DOCTORAL THESIS Zagreb, 2018 Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET BIOLOŠKI ODSJEK Maja Mucko MORFOLOGIJA I FILOGENIJA PIKOEUKARIOTA I PENATNIH PLANKTONSKIH DIJATOMEJA U SREDNJEM I JUŽNOM JADRANU DOKTORSKI RAD Zagreb, 2018 This doctoral dissertation was carried out as a part of the postgraduate programme at University of Zagreb, Faculty of Science, Department of Biology – Botany, under the supervision of dr.sc. Zrinka Ljubešić. The research was performed in the frame of the Bio-tracing Adriatic Water Masses (BIOTA) project, supported by the Croatian Science Foundation (project number UIP- 2013-11-6433); project leader dr.sc. Zrinka Ljubešić). The experimental part of the research was carried out in part at Ruđer Bošković Institute, Zagreb, Croatia, while part of the bioinformatic analyses was carried out at University of Arkansas, Fayeteville, USA. Acknowledgments Firstly, I would like to express my sincere gratitude to my supervisor Dr Zrinka Ljubešić for the continuous support of my Ph.D. study and related research, for her patience, guidance, motivation, and immense knowledge. She helped me in all phases of research and writing of this thesis. I could not have imagined having a better supervisor for my Ph.D. study. In addition to my supervisor, I would like to thank my thesis committee: Dr Daniela Marić Pfannkuchen, Dr Sunčica Bosak and Dr Regine Jahn, for their insightful comments and encouragement, but also for the hard questions, which motivated me to widen my research from various perspectives. My sincere thanks also goes to Dr Sandi Orlić and Dr Petra Peharec Štefanić, who enabled me access to the laboratory and research facilities without which I would not be able to examine my samples. I would also like to thank my ‘over the sea’ colleagues and co-authors Dr Teofil Nakov, Dr Elizabeth Ruck, Dr Daniel Vaulot, Dr Romain Gastineau, Dr David G Mann and Dr Rosa Trobajo for their sincere guidance and fruitful discussions. Without they precious support it would not be possible to conduct this research. I thank my fellow lab mates, current and previous, colleagues from abroad, students, interns and colleagues passing through the lab or cafeteria☺. Thank you Sunčica, Maja, Anamarija, Pero, Kora, Tonka, Mirela, Ana, Tihana, Tanja, Mišel, Dorotea, Zuzanna, Chetan, Solenn, Karoline, Mirta, Veronika, Nikola; for the stimulating discussions, for help, support and encouragement, and for all the fun we have had in the last four years. Additionally, I would like to thank the rest of co-authors on research publications involved in this thesis. I would also like to thank my girls, my best friends, who were, are, or will be on the same life journey, professionally and privately, for their help, patience, listening, encouraging, laughing, partying, crying, and experiencing all the other feelings in between… Thank you Petra, thank you Marina, thank you Sany, thank you Franka, thank you Zrinka! Priatel’ce 4ever ☺ I would like to thank my family: my parents Pero and Ljiljanka, for their irreplaceable love and support, to my brother Danijel and my sisters Martina and Petra for supporting me spiritually throughout writing this thesis and my life in general. In the end, I want to thank my husband Antonio, for his overwhelming love, support, for being my soulmate and my rock, for giving me much needed advice, for being just the opposite to my headstrong soul in unpredictable situations, for giving me higher purpose in my life, for being just my love… To Elena… University of Zagreb Doctoral thesis Faculty of Science Department of Biology MORPHOLOGY AND PHYLOGENY OF PICOEUKARYOTES AND PLANKTONIC PENNATE DIATOMS IN THE MIDDLE AND SOUTH ADRIATIC SEA MAJA MUCKO Faculty of Science, Department of Biology The smallest protists, generally called picoeukaryotes, and planktonic pennate diatoms have received limited attention in world oceans, although they are numerous and important for primary production, biogeochemical cycles and for carbon injection into the deep ocean. In this thesis, represented through seven scientific publications, cultivated planktonic pennate diatoms and picoeukaryotes were investigated with traditional methods (light and electron microscopy, morphometry) and with molecular analyses, including multi-gene phylogenies, and were identified as genera Entomoneis, Pseudo-nitzschia, Haslea and Picochlorum. Detailed investigations of genus Entomoneis resulted with description of seven new species. General picoeukaryotic diversity was addressed by eDNA amplicon sequencing V4 variable region of nuclear 18S rRNA gene. Obtained results identified 95% of the picoeukaryotic community as hetero- or mixotrophic, mostly belonging to parasitic dinoflagellates and radiolarians, while only 5% of the community was represented with photoautotrophic picoeukaryotes belonging to classes of green algae, haptophytes, stramenopiles and cryptophytes. One cultivated Picochlorum sp. strain was subjected to growth rate experiment and pigment and lipid analyses, resulting in interesting and promising data for future biotechnological studies. (52 pages, 3 figures, 232 references, original in English) Keywords: picoeukaryotes, planktonic pennate diatoms, morphology, phylogeny Supervisor: Dr Zrinka Ljubešić, Associated Professor Reviewers: Dr Daniela Marić Pfannkuchen, Scientific collaborator Dr Sunčica Bosak, Assistant Professor Dr Regine Jahn, Scientific advisor Sveučilište u Zagrebu Doktorski rad Prirodoslovno-matematički fakultet Biološki odsjek MORFOLOGIJA I FILOGENIJA PIKOEUKARIOTA I PENATNIH PLANKTONSKIH DIJATOMEJA U SREDNJEM I JUŽNOM JADRANU MAJA MUCKO Prirodoslovno-matematički fakultet, Biološki odsjek Najmanji protisti, poznati kao pikoeukarioti i penatne planktonske diatomeje često su zanemareni u istraživanjima svjetskih oceana, iako predstavljaju brojnu i važnu komponentu za primarne proizvodnje, biogeokemijskih ciklusa i značajni su za protok ugljika u duboki ocean. U sklopu ove disertacije kroz sedam znanstvenih publikacija navedene skupine organizama istraživane su tradicionalnim metodama (svjetlosna i elektronska mikroskopija, morfometrija) i molekularnim analizama koje uključuju filogenetske anlize sa više različitih genskih markera te su identificirane kao rodovi Entomoneis, Pseudo-nitzschia, Haslea i Picochlorum. Detaljna analiza roda Entomoneis rezultirala je opisom sedam novih vrsta za znanost. Bioraznolikost ukupne pikoeukariotske zajednice u južnom Jadranu odredila se sekvenciranjem amplikona okolišne DNA i to prema varijabilnoj V4 regiji nuklearnog 18S rRNA gena. Dobiveni rezultati identificirali su 95% pikoeukariotske zajednice kao hetero- ili miksotrofne organizme, većim dijelom pripadajući parazitskim dinoflagelatima i radiolarijama, dok je samo 5% zajednice zastupljeno fotoautotrofnim pikoeukariotima koji pripadaju razredima zelenih algi, haptofita, stramenopila i kriptofita. Jedan kultivirani soj alge Picochlorum sp. istražen je kroz eksperiment određivanja brzine rasta te analizama pigmenta i lipida, što je rezultiralo zanimljivim i obećavajućim rezultatima koji mogu poslužiti kao okosnica za buduće biotehnološke studije. (52 stranice, 3 slike, 232 literaturna navoda, jezik izvornika: engleski) Ključne riječi: pikoeukarioti, penatne planktonske dijatomeje, morfologija, filogenija Mentor: Izv. prof. dr. sc. Zrinka Ljubešić Ocjenjivači: Dr. sc. Daniela Marić Pfannkuchen, znanstveni suradnik Doc. dr. sc. Sunčica Bosak Dr. sc. Regine Jahn, znanstveni savjetnik Table of content LIST OF PUBLICATIONS .............................................................................................................. I THESIS SUMMARY ........................................................................................................................II PROŠIRENI SAŽETAK.................................................................................................................. V INTRODUCTION ........................................................................................................................ VIII The unseen diversity of marine microbial protists ............................................................................1 Picoeukaryotes: significance and diversity ......................................................................................6 Diatoms: significance and diversity .................................................................................................8 Species concepts in protistology .................................................................................................... 12 Adriatic Sea: dynamic and oligotrophic ecosystem and a natural laboratory ................................. 16 THESIS OUTLINE ......................................................................................................................... 19 INDIVIDUAL PUBLICATIONS ....................................................................................................IX Publication I ..................................................................................................................................... X Publication II ...................................................................................................................................XI Publication III .................................................................................................................................XII
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • First Record of Marine Phytoplankton, Picochlorum Maculatum in the Southeastern Coast of India
    Indian Journal of Geo Marine Sciences Vol. 46 (04), April 2017, pp. 791-796 First record of marine phytoplankton, Picochlorum maculatum in the Southeastern coast of India Dinesh Kumar, S1. S. Ananth1, P. Santhanam1*, K. Kaleshkumar2 & R. Rajaram2 1Marine Planktonology & Aquaculture Lab., 2DNA Barcoding and Marine Genomics Lab., Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli- 620 024, Tamil Nadu, India. * [E-mail: [email protected], [email protected]] Received 20 October 2014 ; revised 02 January 2015 The marine phytoplankton Picochlorum maculatum (Chlorophyta:Trebouxiophyceae) is recorded for the first time in the Southeastern coast of India. In this study, marine phytoplankton were collected at Muthukkuda mangrove waters, Tamil Nadu, Southeast coast of India which was then isolated, purified and identified with rDNA sequencing. Recurrence component analysis of marine phytoplankton P. maculatum indicated that the peptides were composed of Beta structure, comprising alpha-helix, extended strand and random coil. The number of amino acids and chemical properties from the marine microalgae P. maculatum are calculated and having composition of Neutral (82.69%), Acidic (10.72%) and Basic (6.57%) amino acids. This species may be introduced by way of shipping and other transport mechanisms where organisms are inadvertently moved out of their home range, e.g., ballast water exchange. [Keywords: Microalgae, Picochlorum maculatum, Genetic Distance, Open Reading Frame, Poly A signals] Introduction The genus Picochlorum maculatum was in Indian coastal waters. There are five Picochlorum established by Henley et. al.1 based on Nannochloris were reported in species level from Japan maculta Butcher, 1952. The currently accepted name (Picochlorum atomus, Picochlorum eukaryotum, P.
    [Show full text]
  • Denis BAURAIN Département Des Sciences De La Vie Université De Liège Société Royale Des Sciences De Liège 20 Septembre 2012 Plan De L’Exposé
    L’évolution des Eucaryotes Denis BAURAIN Département des Sciences de la Vie Université de Liège Société Royale des Sciences de Liège 20 septembre 2012 Plan de l’exposé 1. Qu’est-ce qu’un Eucaryote ? 2. Quelle est la diversité des Eucaryotes ? 3. Quelles sont les relations de parenté entre les grands groupes d’Eucaryotes ? 4. D’où viennent les Eucaryotes ? Qu’est-ce1 qu’un Eucaryote ? Eukaryotic Cells définition ultrastructurale : organelles spécifiques • noyau (1) • nucléole (2) • RE (5, 8) • Golgi (6) • centriole(s) (13) • mitochondrie(s) (9) • chloroplaste(s) • ... http://en.wikipedia.org/ A eukaryotic gene is arranged in a patchwork of coding (exons) and non-coding sequences (introns). Introns are eliminated while exons are spliced together to yield the mature mRNA used for protein synthesis. http://reflexions.ulg.ac.be/ Gene DNA Transcription Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 pre-mRNA Alternatif splicing mature mRNA Translation Protein In many Eukaryotes, almost all genes can lead to different proteins through a process termed alternative splicing. http://reflexions.ulg.ac.be/ REVIEWS Box 2 | Endosymbiotic evolution and the tree of genomes Intracellular endosymbionts that originally descended from free-living prokaryotes have been important in the evolution of eukaryotes by giving rise to two cytoplasmic organelles. Mitochondria arose from α-proteobacteria and chloroplasts arose from cyanobacteria. Both organelles have made substantial contributions to the complement of genes that are found in eukaryotic nuclei today. The figure shows a schematic diagram of the evolution of eukaryotes, highlighting the incorporation of mitochondria and chloroplasts into the eukaryotic lineage through endosymbiosis and the subsequent co-evolution of the nuclear and organelle genomes.
    [Show full text]
  • Diversity in the Genus Skeletonema (Bacillariophyceae). Ii. an Assessment of the Taxonomy of S. Costatum-Like Species with the Description of Four New Species1
    J. Phycol. 41, 151–176 (2005) r 2005 Phycological Society of America DOI: 10.1111/j.1529-8817.2005.04067.x DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OF S. COSTATUM-LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES1 Diana Sarno,2 Wiebe H. C. F. Kooistra Stazione Zoologica ‘‘Anthon Dohrn,’’ Villa Comunale, 80121 Naples, Italy Linda K. Medlin Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany Isabella Percopo and Adriana Zingone Stazione Zoologica ‘‘Anthon Dohrn,’’ Villa Comunale, 80121 Naples, Italy The morphology of strains of Skeletonema Grev- Abbreviations: AIC, Akaike information criterion; ille emend Sarno et Zingone was examined in LM, CCAP, Culture Collection of Algae and Protozoa; TEM, and SEM and compared with sequence data CCMP, The Provasoli-Guillard National Center for from nuclear small subunit rDNA and partial large Cultures of Marine Phytoplankton; FP,fultoportula; subunit rDNA. Eight distinct entities were identi- FPP, fultoportula process; hLRTs, hierarchical like- fied, of which four were known: S. menzelii Guillard, lihood ratio tests; IFPP, intercalary fultoportula Carpenter et Reimann; S. pseudocostatum Medlin process; IRP, intercalary rimoportula; IRPP, inter- emend. Zingone et Sarno; S. subsalsum (Cleve) Bet- calary rimoportula process; LSU, large subunit; hge; and S. tropicum Cleve. The other four species ML, maximum likelihood; MP, maximum parsimo- were new: S. dohrnii Sarno et Kooistra sp. nov., S. ny; RP, rimoportula; RPP, rimoportula process; grethae Zingone et Sarno sp. nov., S. japonicum Zin- SSU, small subunit; SZN, Stazione Zoologica ‘‘A. gone et Sarno sp. nov., and S. marinoi Sarno et Zin- Dohrn’’ of Naples; TFP, terminal fultoportula; gone sp.
    [Show full text]
  • Perspectives in Phycology Vol
    Perspectives in Phycology Vol. 3 (2016), Issue 3, p. 141–154 Article Published online June 2016 Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences Margot Tragin1, Adriana Lopes dos Santos1, Richard Christen2,3 and Daniel Vaulot1* 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France 2 CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France 3 Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France * Corresponding author: [email protected] With 5 figures in the text and an electronic supplement Abstract: Green algae (Chlorophyta) are an important group of microalgae whose diversity and ecological importance in marine systems has been little studied. In this review, we first present an overview of Chlorophyta taxonomy and detail the most important groups from the marine environment. Then, using public 18S rRNA Chlorophyta sequences from culture and natural samples retrieved from the annotated Protist Ribosomal Reference (PR²) database, we illustrate the distribution of different green algal lineages in the oceans. The largest group of sequences belongs to the class Mamiellophyceae and in particular to the three genera Micromonas, Bathycoccus and Ostreococcus. These sequences originate mostly from coastal regions. Other groups with a large number of sequences include the Trebouxiophyceae, Chlorophyceae, Chlorodendrophyceae and Pyramimonadales. Some groups, such as the undescribed prasinophytes clades VII and IX, are mostly composed of environmental sequences. The 18S rRNA sequence database we assembled and validated should be useful for the analysis of metabarcode datasets acquired using next generation sequencing.
    [Show full text]
  • Community Composition of the Morphologically Cryptic Diatom Genus Skeletonema in Narragansett Bay
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2015 COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY Kelly Canesi University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Canesi, Kelly, "COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY" (2015). Open Access Master's Theses. Paper 549. https://digitalcommons.uri.edu/theses/549 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY BY KELLY CANESI A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2015 MASTER OF SCIENCE THESIS OF KELLY CANESI APPROVED: Thesis Committee: Major Professor: Tatiana Rynearson Candace Oviatt Christopher Lane Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT It is well known that morphologically cryptic species are routinely present in planktonic communities but their role in important ecological and biogeochemical processes is poorly understood. I investigated the presence of cryptic species in the genus Skeletonema, an important bloom-forming diatom, using high-throughput genetic sequencing and examined the ecological dynamics of communities relative to environmental conditions. Samples were obtained from the Narragansett Bay Long-Term Plankton Time Series, where Skeletonema spp.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Genes in Some Samples, Suggesting That the Gene Repertoire Is Modulated by Environmental Conditions
    Analyses de variations génomiques liées à la biogéographie des picoalgues Mamiellales. Thèse de doctorat de l'université Paris-Saclay École doctorale n°577, Structure et dynamique des systèmes vivants (SDSV) Spécialité de doctorat : Sciences de la Vie et de la Santé Unité de recherche : Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057, Evry-Courcouronnes, France. Référent : Université d'Évry Val d’Essonne Thèse présentée et soutenue à Évry, le 28/08/2020, par Jade LECONTE Composition du Jury Christophe AMBROISE Professeur des universités, Université Examinateur & Président d’Evry Val d’Essonne (UMR 8071) François-Yves BOUGET Directeur de recherche CNRS, Sorbonne Rapporteur & Examinateur Université (UMR 7232) Frédéric PARTENSKY Directeur de recherche CNRS, Sorbonne Rapporteur & Examinateur Université (UMR 7144) Ian PROBERT Ingénieur de recherche, Sorbonne Examinateur Université Olivier JAILLON Directeur de thèse Directeur de recherche, CEA (UMR 8030) Remerciements Je souhaite remercier en premier lieu mon directeur de thèse, Olivier Jaillon, pour son encadrement, ses conseils et sa compréhension depuis mon arrivée au Genoscope. J’ai appris beaucoup à ses côtés, progressé dans de nombreux domaines, et apprécié partager l’unique bureau sans moquette du troisième étage avec lui. Merci également à Patrick Wincker pour m’avoir donné l’opportunité de travailler au sein du LAGE toutes ces années. J’ai grâce à vous deux eu l’occasion de plonger un peu plus loin dans le monde de l’écologie marine à travers le projet Tara Oceans, et j’en suis plus que reconnaissante. Je tiens également à remercier les membres de mon jury de thèse, à la fois mes rapporteurs François-Yves Bouget et Frédéric Partensky qui ont bien voulu évaluer ce manuscrit, ainsi que Christophe Ambroise et Ian Probert qui ont également volontiers accepté de participer à ma soutenance.
    [Show full text]
  • Morphological and Transcriptomic Evidence for Ammonium Induction of Sexual Reproduction in Thalassiosira Pseudonana and Other Centric Diatoms
    RESEARCH ARTICLE Morphological and transcriptomic evidence for ammonium induction of sexual reproduction in Thalassiosira pseudonana and other centric diatoms Eric R. Moore1, Briana S. Bullington1, Alexandra J. Weisberg2, Yuan Jiang3, Jeff Chang2, Kimberly H. Halsey1* 1 Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America, 2 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of a1111111111 America, 3 Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract The reproductive strategy of diatoms includes asexual and sexual phases, but in many spe- cies, including the model centric diatom Thalassiosira pseudonana, sexual reproduction has OPEN ACCESS never been observed. Furthermore, the environmental factors that trigger sexual reproduc- Citation: Moore ER, Bullington BS, Weisberg AJ, tion in diatoms are not understood. Although genome sequences of a few diatoms are avail- Jiang Y, Chang J, Halsey KH (2017) Morphological able, little is known about the molecular basis for sexual reproduction. Here we show that and transcriptomic evidence for ammonium induction of sexual reproduction in Thalassiosira ammonium reliably induces the key sexual morphologies, including oogonia, auxospores, pseudonana and other centric diatoms. PLoS ONE and spermatogonia, in two strains of T. pseudonana, T. weissflogii, and Cyclotella cryptica. 12(7): e0181098. https://doi.org/10.1371/journal. RNA sequencing revealed 1,274 genes whose expression patterns changed when T. pseu- pone.0181098 donana was induced into sexual reproduction by ammonium. Some of the induced genes Editor: Douglas A. Campbell, Mount Allison are linked to meiosis or encode flagellar structures of heterokont and cryptophyte algae.
    [Show full text]
  • Epilithic Diatom Community Shows a Higher Vulnerability of the River Sava to Pollution During the Winter
    diversity Article Epilithic Diatom Community Shows a Higher Vulnerability of the River Sava to Pollution during the Winter Igor Zelnik * and Tjaša Sušin Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1-320-3339 Received: 12 November 2020; Accepted: 4 December 2020; Published: 5 December 2020 Abstract: The aim of the research was to investigate the influence of environmental factors on the structure of epilithic diatom communities in the Sava River from the source to the state border 220 km downstream. The river had numerous human influences along its course, such as municipal and industrial wastewater, agriculture, hydroelectric power plants, etc. The main objective of the research was to find out the influence of human pressure on the structure of the epilithic diatom community under winter and summer conditions. Winter and summer samples were taken at nine sites. At each sampling site, a set of abiotic factors was measured and another set of environmental parameters was evaluated. The analyses showed that nitrogen and phosphorus concentrations increased downstream. We identified 118 different species of diatoms. The most common taxa were Achnanthidium minutissimum and A. pyrenaicum. Planktonic species Cyclotella meneghiniana was only found in the samples of the lower part of the Sava, which is unusual for the epilithic community. The composition of the epilithic diatom community was significantly influenced by conductivity and water temperature, pH and distance from the source. The similarity between diatom communities closer to the source of the river was higher than between communities from the lower part of the Sava River.
    [Show full text]