Bankovní Institut Vysoká Škola Praha

Total Page:16

File Type:pdf, Size:1020Kb

Bankovní Institut Vysoká Škola Praha Bankovní institut vysoká škola Praha Katedra informačních technologií a elektronického obchodování Moderní servery a technologie Servery a superservery, moderní technologie a využití v praxi Bakalářská práce Autor: Jan Suchý Informační technologie a management Vedoucí práce: Ing. Vladimír Beneš Praha Duben, 2007 Prohlášení: Prohlašuji, ţe jsem bakalářskou práci zpracoval samostatně a s pouţitím uvedené literatury. podpis autora V Praze dne 14.4.2007 Jan Suchý 2 Anotace práce: Obsahem této práce je popis moderní technologie v oblasti procesorového vývoje a jeho nasazení do provozu v oblasti superpočítačových systémů. Vědeckotechnický pokrok je dnes významně urychlován právě specializovanými prototypy superpočítačů určenými pro nejnáročnější úkoly v oblastech jako jsou genetika, jaderná fyzika, termodynamika, farmacie, geologie, meteorologie a mnoho dalších. Tato bakalářská práce se v krátkosti zmiňuje o prvopočátku vzniku mikroprocesoru, víceprocesorové architektury aţ po zajímavé projekty, jako jsou IBM DeepBlue, Deep Thunder nebo fenomenální IBM BlueGene/L, který je v současné době nejvýkonnějším superpočítačem na světě. Trend zvyšování výkonu a důraz na náklady související s provozováním IT, vedl zároveň k poţadavku na efektivnější vyuţívání IT systémů. Technologie virtualizaci a Autonomic Computingu se tak staly fenoménem dnešní doby. 3 Obsah 1 ÚVOD 6 2 PROCESORY 7 2.1 HISTORIE A VÝVOJ 7 2.2 NOVÉ TECHNOLOGIE 8 2.2.1 Silicon Germanium - SiGe (1989) 8 2.2.2 První měděný procesor (1997) 8 2.2.3 Silicon on Insulator - SOI (1998) 9 2.2.4 Low-K dielektrikum (2000) 9 2.2.5 Strained silicon (2001) 9 2.2.6 DualCore procesor – POWER4 (2001) 10 2.2.7 IBM CELL 10 2.2.8 IBM POWER6 – blízká budoucnost 11 2.2.9 Použití v praxi 12 2.3 TRENDY VE VÝVOJI 14 2.3.1 Více jader 14 2.3.2 Více vláken (multi threads) 15 2.3.3 Vyšší frekvence 15 2.3.4 Technologie výroby 15 2.3.5 Extrémní testy a vize 16 3 ARCHITEKTURA SERVERŮ 17 3.1 VÝVOJ ARCHITEKTURY 17 3.1.1 Uniprocesor - architektura s jedním procesorem 17 3.1.2 Víceprocesorové systémy SMP 18 3.1.3 Architektura SMP pro RISC procesory 20 3.1.4 Masivně paralelní architektura 21 3.2 POUŽITÉ KONCEPTY A MODERNÍ SMP ARCHITEKTURA 22 3.2.1 IBM MCM architektura 22 3.2.2 HP/SUN „Building block“ architektura se sběrnicí 24 4 KOMERČNÍ SERVERY 26 4.1 PROCESOROVÝ DESIGN 26 4.2 ARCHITEKTURA SERVERU 27 4.3 LOGICKÉ – FYZICKÉ/LOGICKÉ DĚLENÍ - VIRTUALIZACE 27 4.4 DOSTUPNOST 28 4.5 SPOLEHLIVOST 29 5 SVĚT SUPERSERVERŮ 30 4 5.1 VÍCE SERVEROVÉ SYSTÉMY 30 5.1.1 Serverové clustery 30 5.1.2 GRID systémy 31 5.2 NEJZNÁMĚJŠÍ HPC A GRID PROJEKTY 31 5.2.1 DeepBlue – šachový velmistr 31 5.2.2 ASCI Purple – rychlý jako lidský mozek 32 5.2.3 Deep Thunder – systém pro předpověď počasí 35 5.2.4 BlueGene/L – nejvýkonnější na světě 38 5.2.5 WCG - World Community Grid 40 5.2.6 Trendy v HPC 42 6 VIRTUALIZACE VÝKONU 43 6.1 MOŽNOSTI HARDWARE 43 6.2 MOŽNOSTI SOFTWARE 44 7 AUTONOMIC COMPUTING 46 7.1 ÚVODNÍ PRINCIPY 46 7.1.1 Self-configuring 47 7.1.2 Self-healing 47 7.1.3 Self-optimizing 47 7.1.4 Self-protecting 47 7.1.5 Ambiciózní model – lidské tělo 48 7.2 BLOKOVÁ ARCHITEKTURA – PROCESNÍ KRUH 48 7.2.1 Používané procesy v praxi 48 7.2.2 Celková funkce 49 8 ZÁVĚR 51 9 SEZNAM POUŽITÉ LITERATURY 53 9.1 KNIHY 53 9.2 INTERNETOVÉ ODKAZY 53 10 SEZNAM OBRÁZKŮ A TABULEK 55 5 1 Úvod Dnešní generace obyvatel vyspělých zemí akceptuje pokrok v mnoha odvětvích a se zájmem sleduje novinky v oblastech které je zajímají. Díky novým technologiím a objevům se lidstvo posouvá ve vývoji stále rychleji kupředu, pokořuje nové cíle a dosahuje na místa o kterých dříve snilo jen v nejodváţnějších představách. Jiţ jsme si pomalu zvykli na nové fantastické zprávy o tom, co kde který počítač nebo spojení více počítačů dokáţí vypočítat nebo navrhnout, ale málokdo má představu o tom, co je potřeba za úsilí pro dosaţení takového výsledku. Ve světě běţných počítačů je primární výzkum především orientován na výrobu základních stavebních částí. Nejde tedy pouze jen o procesory, které jsou srdcem všech počítačů, ale také o další podpůrné obvody jako jsou rychlé paměti, které musí drţet krok s výkonností procesoru a sběrnice, jeţ musí přesunout stále více dat pro zpracování poţadovaných operací. Při konstrukci superserverů nebo podobných zařízení vyznačujícími se výjimečností svého technického řešení se konstruktéři často potýkají s limity standardně dostupných technologií. Proto opouštějí tyto standardně pouţívané technologie a spolupracují s vývojovými týmy, které dokáţí vyvinout unikátní supertechnologie. Ty pak slouţí pouze pro jednotlivé konkrétní účely nebo speciální úlohy, zejména pak při sloţitých výpočtech a náročném 3D modelování nebo přímo při vizualizaci. Přední světové týmy v oblasti výzkumu by dnes stěţí mohly produkovat tolik objevů v nejrůznějších oblastech pokud by neměly velmi rychlou odezvu od systémů poskytujících zpracovávání jejich úloh. Čas, který je tím nejdůleţitějším parametrem například pro úspěch ve vývoji očkovací vakcíny proti zhoubné chorobě suţující dnešní generaci lidstva je zároveň akcelerátorem, který pohání vývoj nových informačních technologií a jejich efektivnější vyuţívaní. Lidstvo takto samo produkuje další technologie pro zvýšení kvality vlastního ţivota. Moderní superservery jsou nedílnou součástí našeho ţivota a díky výsledkům jejich práce si dokáţeme výrazně usnadnit ţivot. Jedná se o velmi sofistikované systémy, které jiţ dnes oplývají schopnostmi samostatné změny konfigurace a moţnostmi, jak překlenout stav vyvolaný neočekávanou chybou bez zásahu obsluhy. Dokáţí efektivně vyuţívat svoji výkonnost pro přidělené úlohy, nebo virtuálně sdílet přidělené hardware zdroje jako jsou procesory, paměť a komunikační zařízení mezi více úlohami najednou. 6 2 Procesory V současné době jsme svědky neustálého boje mezi výrobci procesorů o prvenství na trhu. Hlavními konkurenty vyrábějící procesory pro serverové systémy jsou Intel, AMD, IBM, Motorola a SUN Microsystems. Široké veřejnosti jsou známé především firmy Intel a AMD, které produkují procesory pro osobní počítače coţ by mohlo na první pohled znamenat, ţe jsou to nejdůleţitější firmy na trhu s procesory. Co do počtu prodaných procesorů je to zcela jistě pravda, ale nás zajímá vyspělost technologie a její uvádění na trh. Kdo určuje trend a určuje cestu dalšího vývoje. Zda je frekvence tím nejdůleţitějším parametrem pro výkonnost a jaké můţeme čekat další vylepšení při vývoji příštích generací chipů. 2.1 Historie a vývoj V krátkosti se podívejme do historie procesorů. V podstatě moderní věk počítačů můţeme datovat do doby maximálně 10 – 12 let zpět ačkoliv první Intel 4004 byl uveden na trh v roce 1971 a první RISC1 procesor byt vyroben v roce 1980. Co tedy bylo aktuální v roce 1993 - 1994 a co budilo zájem veřejnosti? V krátkosti se podíváme na hlavní hráče počítačového průmyslu jako jsou firmy IBM, HP, Digital, Silicon Graphics - SGI, Tandem a SUN Microsystems. Frekvence procesorů se pohybuje na taktu okolo 100 MHz. IBM uvádí na trh první server s procesory POWER2 a první paralelní systém, který odstartoval hvězdnou dráhu procesorů POWER. V této době ale patřil spíše k outsiderům v poli procesorů. Dominantu tvořil tandem SGI a Digital. Byly to dvě hlavní firmy, které se utkávaly na poli serverů a superserverů. Procesory MIPS dominovaly všem aplikacím, kde se vyţadoval vysoký výpočetní výkon a SGI se stala firmou číslo jedna pro vědecko-technické aplikace a náročné výpočty v oblasti renderování video streamů2. Oproti tomu procesor Alpha od firmy Digital lámal rekordy v transakčním zpracování. Pro databázové prostředí byl tento procesor nepřekonatelný. Firmy, které hledaly silný stroj pro své rostoucí databáze pořizovaly Alpha servery. Jejich výkon přesahoval hranici 10 000 tpmC (transakcí za minutu). Ironií osudu je to, ţe obě tyto firmy jsou dnes jiţ minulostí. Společnost Digital 1 Reduced Instruction Set Computer – Počítač s redukovanou instrukční sadou 2 Vytváření video sekvence pro filmové zpracování. Více informací na adrese nejznámější společnosti spolupracující s filmovým průmyslem - Industrial Light and Magic - http://www.ilm.com/ 7 byla koupena společností Compaq, která později fúzovala s HP a pro Alphu najednou nebylo místo. SGI se dnes potýká s finančními problémy a v USA před nedávnem ţádala o ochranu před věřiteli. Kdo tedy bude dále investovat do dalšího vývoje? Vlivem konkurenčního boje na trhu zůstali pouze tři výrobci o kterých má smysl dále hovořit. Jsou to Intel, AMD a IBM. 2.2 Nové technologie Jednoznačně technologicky nejzajímavější se jeví produkty společnosti IBM. Je to dáno mnoţstvím vývojových laboratoří po celém světě a počtu uveřejněných patentů. Společnost IBM ročně patentuje okolo 3 500 patentů a to nejen ze sféry výpočetní techniky. Pojďme se podívat jaké významné objevy posunuly lidstvo dopředu. 2.2.1 Silicon Germanium - SiGe (1989) Ve výrobní technologii SiGe jsou elektrické vlastnosti křemíku, který je základem prakticky všech moderních mikro chipů, doplněny germaniem, aby chipy fungovaly efektivněji. Technologie SiGe zvyšuje výkon a sniţuje spotřebu energie chipů, které se pouţívají v mobilních telefonech a dalších špičkových komunikačních zařízeních. Obrázek 1: Chip IBM svou technologii SiGe poprvé uvedlo v roce 1989 a v pouţívající SiGe říjnu 1998 uvedlo první standardní, masově vyráběné chipy technologii SiGe. Od té doby se vyrobily stovky miliónů chipů s technologií SiGe. Velice rychlé SiGe obvody se mohou uplatnit v komerčních komunikačních systémech, vojenské elektronice, ve výzkumu vesmíru a ve vzdáleně nasazených senzorech. Předpokládané limity této technologie jsou aţ ve stovkách GHz, coţ je se znalostí frekvencí dnešních procesorů téměř neuvěřitelné. Dosaţením takto extrémních rychlostí s technologií SiGe, kterou lze vyrábět pomocí konvenčních levných metod, jsou vytvořeny výborné podmínky pro masově nasazované aplikace. 2.2.2 První měděný procesor (1997) Poprvé v historii se roku 1997 podařilo téměř po 30 letech výzkumu vyrobit procesor, který pouţíval měděné spoje Obrázek 2: Chip s měděnými spoji 8 namísto standardních hliníkových spojů. IBM uvedla na trh procesor POWER3 vyrobený touto technologií.
Recommended publications
  • Innovations Across the Grid Partnerships Transforming the Power Sector
    VOLUME II INNOVATIONS ACROSS THE GRID PARTNERSHIPS TRANSFORMING THE POWER SECTOR The Edison Foundation INSTITUTE for ELECTRIC INNOVATION The Edison Foundation INSTITUTE for ELECTRIC INNOVATION VOLUME II INNOVATIONS ACROSS THE GRID PARTNERSHIPS TRANSFORMING THE POWER SECTOR December 2014 © 2014 by the Institute for Electric Innovation All rights reserved. Published 2014. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system or method, now known or hereinafter invented or adopted, without the express prior written permission of the Institute for Electric Innovation. Attribution Notice and Disclaimer This work was prepared by the Edison Foundation Institute for Electric Innovation (IEI). When used as a reference, attribution to IEI is requested. IEI, any member of IEI, and any person acting on IEI's behalf (a) does not make any warranty, express or implied, with respect to the accuracy, completeness or usefulness of the information, advice, or recommendations contained in this work, and (b) does not assume and expressly disclaims any liability with respect to the use of, or for damages resulting from the use of any information, advice, or recommendations contained in this work. The views and opinions expressed in this work do not necessarily reflect those of IEI or any member of IEI. This material and its production, reproduction, and distribution by IEI does
    [Show full text]
  • Management Console Reference Guide
    Secure Web Gateway Management Console Reference Guide Release 10.0 • Manual Version 1.01 M86 SECURITY SETUP AND CONFIGURATION GUIDE © 2010 M86 Security All rights reserved. 828 W. Taft Ave., Orange, CA 92865, USA Version 1.01, published November 2010 for SWG software release 10.0 This document may not, in whole or in part, be copied, photo- copied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior written con- sent from M86 Security. Every effort has been made to ensure the accuracy of this document. However, M86 Security makes no warranties with respect to this documentation and disclaims any implied war- ranties of merchantability and fitness for a particular purpose. M86 Security shall not be liable for any error or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the examples herein. Due to future enhancements and modifications of this product, the information described in this documentation is subject to change without notice. Trademarks Other product names mentioned in this manual may be trade- marks or registered trademarks of their respective companies and are the sole property of their respective manufacturers. II M86 SECURITY, Management Console Reference Guide CONTENT INTRODUCTION TO THE SECURE WEB GATEWAY MANAGEMENT CONSOLE .................................................................... 1 WORKING WITH THE MANAGEMENT CONSOLE................ 3 Management Console . 3 Main Menu . 4 Using the Management Console . 6 Management Wizard . 10 User Groups Wizard . 11 Log Entry Wizard . 28 DASHBOARD............................................................... 33 Dashboard Console . 33 Functionality. 34 Device Gauges . 35 Performance Graphs . 38 Messages (SNMP). 40 Device Utilization Graphs. 41 USERS ......................................................................
    [Show full text]
  • Accurate Weather Forecasting Through Locality Based Collaborative Computing
    Accurate Weather Forecasting Through Locality Based Collaborative Computing Bard˚ Fjukstad John Markus Bjørndalen Otto Anshus Department of Computer Science Department of Computer Science Department of Computer Science Faculty of Science and Technology Faculty of Science and Technology Faculty of Science and Technology University of Tromsø, Norway University of Tromsø, Norway University of Tromsø, Norway Email: [email protected] Email: [email protected] and the Norwegian Meteorological Institute Forecasting Division for Northern Norway Email: [email protected] Abstract—The Collaborative Symbiotic Weather Forecasting of collaboration is when users use forecasts from the national (CSWF) system lets a user compute a short time, high-resolution weather services to produce short-term, small area, and higher forecast for a small region around the user, in a few minutes, resolution forecasts. There is no feedback of these forecasts on-demand, on a PC. A collaborated forecast giving better uncertainty estimation is then created using forecasts from other from the users to the weather services. These forecasts take users in the same general region. A collaborated forecast can be minutes to compute on a single multi-core PC. The third is visualized on a range of devices and in a range of styles, typically a symbiotic collaboration where users share on-demand their as a composite of the individual forecasts. CSWF assumes locality locally produced forecasts with each other. between forecasts, regions, and PCs. Forecasts for a region are In a complex terrain like the fjords and mountains of Nor- computed by and stored on PCs located within the region. To locate forecasts, CSWF simply scans specific ports on public IP way, the topography have a significant impact on the weather addresses in the local area.
    [Show full text]
  • Modeling and Distributed Computing of Snow Transport And
    Modeling and distributed computing of snow transport and delivery on meso-scale in a complex orography Modelitzaci´oi computaci´odistribu¨ıda de fen`omens de transport i dip`osit de neu a meso-escala en una orografia complexa Thesis dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Programa de Doctorat en Societat de la Informaci´oi el Coneixement Alan Ward Koeck Advisor: Dr. Josep Jorba Esteve Distributed, Parallel and Collaborative Systems Research Group (DPCS) Universitat Oberta de Catalunya (UOC) Rambla del Poblenou 156, 08018 Barcelona – Barcelona, 2015 – c Alan Ward Koeck, 2015 Unless otherwise stated, all artwork including digital images, sketches and line drawings are original creations by the author. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons BY-SA License, version 4.0 or ulterior at the choice of the reader/user. At the time of writing, the license code was available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode Es permet la lliure c`opia, distribuci´oi/o modificaci´od’aquest document segons els termes de la Lic`encia Creative Commons BY-SA, versi´o4.0 o posterior, a l’escollida del lector o usuari. En el moment de la redacci´o d’aquest text, es podia accedir al text de la llic`encia a l’adre¸ca: https://creativecommons.org/licenses/by-sa/4.0/legalcode 2 In memoriam Alan Ward, MA Oxon, PhD Dublin 1937-2014 3 4 Acknowledgements A long-term commitment such as this thesis could not prosper on my own merits alone.
    [Show full text]
  • Internet of Things and Big Data Analytics Toward Next-Generation Intelligence Studies in Big Data
    Studies in Big Data 30 Nilanjan Dey Aboul Ella Hassanien Chintan Bhatt Amira S. Ashour Suresh Chandra Satapathy Editors Internet of Things and Big Data Analytics Toward Next-Generation Intelligence Studies in Big Data Volume 30 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Big Data” (SBD) publishes new developments and advances in the various areas of Big Data- quickly and with a high quality. The intent is to cover the theory, research, development, and applications of Big Data, as embedded in the fields of engineering, computer science, physics, economics and life sciences. The books of the series refer to the analysis and understanding of large, complex, and/or distributed data sets generated from recent digital sources coming from sensors or other physical instruments as well as simulations, crowd sourcing, social networks or other internet transactions, such as emails or video click streams and other. The series contains monographs, lecture notes and edited volumes in Big Data spanning the areas of computational intelligence incl. neural networks, evolutionary computation, soft computing, fuzzy systems, as well as artificial intelligence, data mining, modern statistics and Operations research, as well as self-organizing systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/11970 Nilanjan Dey • Aboul Ella Hassanien Chintan Bhatt • Amira S. Ashour Suresh Chandra Satapathy Editors Internet of Things and Big Data Analytics Toward Next-Generation Intelligence 123 Editors Nilanjan Dey Amira S.
    [Show full text]
  • SPERI Paper No. 13 Climate Risk, Big Data and the Weather Market
    SPERI Paper No. 13 Climate Risk, Big Data and the Weather Market. Jo Bates About the author Jo Bates Jo Bates is a Lecturer in Information Politics and Policy in the Information School, University of Sheffield. She researches the political economy of data, particularly data sets that are produced by public bodies and which are often referred to as Public Sector Information. Her research focuses on understanding the socio- cultural and political economic factors shaping developments in this field, including the ideas, practices and policies shaping the production and distribution of public data sets and their re-use by third parties including citizens and businesses. Her research has explored the development of the UK’s Open Government Data initiative. Her current project is focused on the distribution and re-use of weather data. ISSN 2052-000X Published in May 2014 SPERI Paper No. 13 – Climate Risk, Big Data and the Weather Market 1 Introduction In a recent SPERI paper, Colin Hay and Tony Payne (2013) develop the concept of “The Great Uncertainty” to describe our current era. They point to “three major processes of structural change” which underlie this uncertainty – financial crisis, shifting economic power and environmental threat – arguing that, despite their differing historical timespans, these deep structural changes are all taking place in the present and “arguably will come to a head at broadly the same time” (Hay & Payne 2013, p. 3). This paper draws together two core elements of “The Great Uncertainty” – financial crisis and environmental threat – with Sandra Braman’s (2006) concept of “informational power” to explore the relationship between this uncertain terrain and developments in (‘big’) data analytics.
    [Show full text]
  • Intelligent Drug Supply Chain Creating Value from AI About the Deloitte Centre for Health Solutions
    Intelligent drug supply chain Creating value from AI About the Deloitte Centre for Health Solutions The Deloitte Centre for Health Solutions (CfHS) is the research arm of Deloitte’s Life Sciences and Health Care practices. We combine creative thinking, robust research and our industry experience to develop evidence-based perspectives on some of the biggest and most challenging issues to help our clients transform themselves and, importantly, benefit the patient. At a pivotal and challenging time for the industry, we use our research to encourage collaboration across all stakeholders, from pharmaceuticals and medical innovation, health care management and reform, to the patient and health care consumer. Connect To learn more about the CfHS and our research, please visit www.deloitte.co.uk/centreforhealthsolutions Subscribe To receive upcoming thought leadership publications, events and blogs from the UK Centre, please visit https://www.deloitte.co.uk/aem/centre-for-health-solutions.cfm To subscribe to our blog, please visit https://blogs.deloitte.co.uk/health/ Life sciences companies continue to respond to a changing global landscape and strive to pursue innovative solutions to address today’s challenges. Deloitte understands the complexity of these challenges and works with clients worldwide to drive progress and bring discoveries to life. Contents The rationale for transforming the biopharma supply chain 2 How AI can augment supply chain transformation 6 AI’s role in helping supply chains respond, recover and thrive after COVID-19 16 A roadmap for implementing an intelligent supply chain 21 Endnotes 32 Intelligent drug supply chain The rationale for transforming the biopharma supply chain The Intelligent biopharma series explores the ways artifi cial intelligence (AI) can impact the biopharma value chain.
    [Show full text]
  • An Ensemble of Deep Learning Models for Weather Nowcasting Based on Radar Products’ Values Prediction
    applied sciences Article NowDeepN: An Ensemble of Deep Learning Models for Weather Nowcasting Based on Radar Products’ Values Prediction Gabriela Czibula 1,*,† , Andrei Mihai 1,† and Eugen Mihule¸t 2 1 Department of Computer Science, Babe¸s-BolyaiUniversity, 400084 Cluj-Napoca, Romania; [email protected] 2 Romanian National Meteorological Administration, 013686 Bucharest, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-264-405327 † These authors contributed equally to this work. Abstract: One of the hottest topics in today’s meteorological research is weather nowcasting, which is the weather forecast for a short time period such as one to six hours. Radar is an important data source used by operational meteorologists for issuing nowcasting warnings. With the main goal of helping meteorologists in analysing radar data for issuing nowcasting warnings, we propose NowDeepN, a supervised learning based regression model which uses an ensemble of deep artificial neural networks for predicting the values for radar products at a certain time moment. The values predicted by NowDeepN may be used by meteorologists in estimating the future development of potential severe phenomena and would replace the time consuming process of extrapolating the radar echoes. NowDeepN is intended to be a proof of concept for the effectiveness of learning from radar data relevant patterns that would be useful for predicting future values for radar products based on their historical values. For assessing the performance of NowDeepN, a set of experiments on real radar data provided by the Romanian National Meteorological Administration is conducted. The impact of a data cleaning step introduced for correcting the erroneous radar products’ values is investigated both from the computational and meteorological perspectives.
    [Show full text]
  • State of New York Public Service Commission
    STATE OF NEW YORK PUBLIC SERVICE COMMISSION __________________________________________ : In the Matter of Department of Public Service : Staff Investigation into the Utilities’ : Preparation for and Response to August 2020 : Case 20-E-0586 Tropical Storm Isaias and Resulting Electric : Power Outages : ___________________________________________ AFFIDAVIT OF BRIAN CERRUTI ON BEHALF OF CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. I, Brian Cerruti, being duly sworn, depose and say: 1. My name is Brian Cerruti. My business address is 4 Irving Place, New York, New York 10003. My official title is Project Specialist, but I perform the functions of a meteorologist. I have been employed by Consolidated Edison Company of New York, Inc., (Con Edison or the Company) for seven years. 2. My responsibilities include creating custom weather forecasts for the Company, leading weather discussions on storm preparation conference calls, responding to questions from operating personnel before and during a storm, overseeing contracts with weather information vendors, developing, calibrating, verifying, and implementing outage prediction models for Con Edison and Orange and Rockland Utilities, Inc. (O&R), and providing subject matter expertise to Con Edison and O&R as needed. I am also the lead on the Company’s Probabilistic Load Forecasting Project, which is a tool co-developed with a vendor, TESLA, that quantifies weather uncertainty in the Company’s electric and steam load forecasts. 3. I earned a Bachelor of Science degree in Meteorology from Rutgers University’s George H. Cook School of Environmental and Biological Sciences and a Master of Science 1 degree in Atmospheric Science from Rutgers University’s Graduate School of Atmospheric Science.
    [Show full text]
  • Accurate Weather Forecasting Through Locality Based Collaborative Computing
    WK,(((,QWHUQDWLRQDO&RQIHUHQFHRQ&ROODERUDWLYH&RPSXWLQJ1HWZRUNLQJ$SSOLFDWLRQVDQG:RUNVKDULQJ &ROODERUDWH&RP Accurate Weather Forecasting Through Locality Based Collaborative Computing Bard˚ Fjukstad John Markus Bjørndalen Otto Anshus Department of Computer Science Department of Computer Science Department of Computer Science Faculty of Science and Technology Faculty of Science and Technology Faculty of Science and Technology University of Tromsø, Norway University of Tromsø, Norway University of Tromsø, Norway Email: [email protected] Email: [email protected] and the Norwegian Meteorological Institute Forecasting Division for Northern Norway Email: [email protected] Abstract—The Collaborative Symbiotic Weather Forecasting of collaboration is when users use forecasts from the national (CSWF) system lets a user compute a short time, high-resolution weather services to produce short-term, small area, and higher forecast for a small region around the user, in a few minutes, resolution forecasts. There is no feedback of these forecasts on-demand, on a PC. A collaborated forecast giving better uncertainty estimation is then created using forecasts from other from the users to the weather services. These forecasts take users in the same general region. A collaborated forecast can be minutes to compute on a single multi-core PC. The third is visualized on a range of devices and in a range of styles, typically a symbiotic collaboration where users share on-demand their as a composite of the individual forecasts. CSWF assumes locality locally produced forecasts with each other. between forecasts, regions, and PCs. Forecasts for a region are In a complex terrain like the fjords and mountains of Nor- computed by and stored on PCs located within the region.
    [Show full text]
  • Agenda Northeast Regional Operational Workshop XVI Albany, New York Wednesday, November 4, 2015 Session A
    Agenda Northeast Regional Operational Workshop XVI Albany, New York Wednesday, November 4, 2015 8:30 am Welcoming Remarks Raymond G. O’Keefe, Meteorologist In Charge Warren R. Snyder, Science & Operations Officer National Weather Service, Albany, New York Session A – Cold Season Topics 8:40 am A Multi-scale Analysis of the 26-27 November 2014 Pre-Thanksgiving Snowstorm Thomas A. Wasula NOAA/NWS Weather Forecast Office, Albany, New York 9:01 am Update to Gridded Snowfall Verification: Computing Seasonal Bias Maps Joseph P. Villani NOAA/NWS Weather Forecast Office, Albany, New York 9:22 am Cool-season extreme precipitation events in the Central and Eastern United States Benjamin J. Moore Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York 9:43 am A Case Study of the 18 January 2015 High-Impact Light Freezing Rain Event Across the Northern Mid-Atlantic Region Heather Sheffield NOAA/NWS Weather Forecast Office, Sterling, Virginia 10:04 am The November 26, 2014 banded snowfall case in southern New York Michael Evans NOAA / NWS Weather Forecast Office, Binghamton, New York 10:25 am Break 10:55 am An analysis of Chesapeake Bay effect snow events from 1999 to 2013 David F. Hamrick NOAA/NWS Weather Prediction Center, College Park, Maryland 11:16 am Changes in the Winter Weather Desk Operations at the Weather Prediction Center (WPC), and New Experimental Forecasts Dan Petersen NOAA/NWS/NCEP Weather Prediction Center, College Park, Maryland 11:37 am Applying Fuzzy Clustering Analysis to Assess Uncertainty and Ensemble System Performance for Cool Season High-Impact Weather Brian A.
    [Show full text]
  • Panel 4 Presentations – Enhanced Technologies for Weather Emergencies
    ITS-NY 2012 SPRING FORUM April 12, 2012 Managing Weather-Related Events with ITS Technologies PANEL 4 PRESENTATIONS “Enhanced Technologies for Weather Emergencies” Panel Moderator: “The Realities of Disasters: What New “Integrating Weather and Dr. Camille Kamga, UTRC Decision Support Systems Must Transportation Information,” Consider,” Prof. Reza Khanbilvardi, CCNY Dr. Jose Holguin-Veras, Rensselaer Polytechnic Institute “Precision Weather Modeling, Analytics and “Application of High Resolution Weather Visualization for Emergency Management,” Modeling and Damage Prediction at Con Anthony Praino, IBM Edison Emergency Management,” Carlos D. Torres, Con Edison Photos by Matt Ficarra, ITS-NY Board Member and Photographer Extraordinaire 1 The Realities of Disasters: What New Decision Support Systems Must Consider José Holguín-Veras, William H. Hart Professor, Director of the Center for Infrastructure, Transportation, and the Environment Acknowledgments Other contributors: Miguel Jaller, Noel Pérez, Lisa Destro, Tricia Wachtendorf Research was supported by NSF: NSF-RAPID CMMI-1034635 “Investigation on the Comparative Performance of Alternative Humanitarian Logistic Structures” CMMI-0624083 “DRU: Contending with Materiel Convergence: Optimal Control, Coordination, and Delivery of Critical Supplies to the Site of Extreme Events” CMS-SGER 0554949 “Characterization of the Supply Chains in the Aftermath of an Extreme Event: The Gulf Coast Experience” "RAPID: Field Investigation on Post-Disaster Humanitarian Logistic Practices under Cascading
    [Show full text]