Innovations Across the Grid Partnerships Transforming the Power Sector

Total Page:16

File Type:pdf, Size:1020Kb

Innovations Across the Grid Partnerships Transforming the Power Sector VOLUME II INNOVATIONS ACROSS THE GRID PARTNERSHIPS TRANSFORMING THE POWER SECTOR The Edison Foundation INSTITUTE for ELECTRIC INNOVATION The Edison Foundation INSTITUTE for ELECTRIC INNOVATION VOLUME II INNOVATIONS ACROSS THE GRID PARTNERSHIPS TRANSFORMING THE POWER SECTOR December 2014 © 2014 by the Institute for Electric Innovation All rights reserved. Published 2014. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system or method, now known or hereinafter invented or adopted, without the express prior written permission of the Institute for Electric Innovation. Attribution Notice and Disclaimer This work was prepared by the Edison Foundation Institute for Electric Innovation (IEI). When used as a reference, attribution to IEI is requested. IEI, any member of IEI, and any person acting on IEI's behalf (a) does not make any warranty, express or implied, with respect to the accuracy, completeness or usefulness of the information, advice, or recommendations contained in this work, and (b) does not assume and expressly disclaims any liability with respect to the use of, or for damages resulting from the use of any information, advice, or recommendations contained in this work. The views and opinions expressed in this work do not necessarily reflect those of IEI or any member of IEI. This material and its production, reproduction, and distribution by IEI does not imply endorsement of the material. Published by: The Edison Foundation 701 Pennsylvania Avenue, N.W. Washington, D.C. 20004- 2696 Phone: 202.508.5440 Web site: www.edisonfoundation.net Table of Contents IEI MANAGEMENT COMMITTEE VI Indianapolis Power & Light Company — Distributed Solar Generation Integration 47 IEI TECHNOLOGY MidAmerican Renewables — PARTNER ROUNDTABLE VII Grid-Friendly Utility-Scale PV Plant 51 NorthWestern Energy — INTRODUCTION 1 Grid-Supported Microgrid 57 Pacific Gas and Electric Company — Battery Energy Storage System Pilots 61 FOREWORD by Chris Johns, President, Pacific Gas and Electric Company 5 PNM Resources — Geographic Information System (GIS) Data Converter 67 FOREWORD by Bob Rowe, President Portland General Electric — Integrated and CEO, NorthWestern Energy 9 Energy System Demonstration at Salem Smart Power Center 71 NEW ENERGY RESOURCES 13 Public Service Electric & Gas Company — Solar 4 AllTM 75 Avista Utilities — Economic Dispatch of Distributed Energy Resources 17 Southern California Edison — Preferred Resources Pilot 79 Dominion North Carolina Power — North Carolina Microgrid Southern California Edison — Demonstration and Research Project 21 Tehachapi Energy Storage Project 83 Dominion Virginia Power — Tucson Electric Power — Bright Tucson Solar Partnership Program 25 Community Solar Program 87 Georgia Power — Utility-Scale and Tucson Electric Power — Distributed Solar Implementation 29 Fort Huachuca Solar Power Project 93 German Transmission System Operators Amprion & TenneT — DISTRIBUTION GRID OPTIMIZATION 97 Demand Response as Ancillary Service in Germany 33 American Electric Power — Asset Health Center Improves Infrastructure Hawaiian Electric Company — Decisions; Builds Smarter Grid 101 Solar and Wind Integrated Forecasting Tool (SWIFT) for Grid Operations 37 Baltimore Gas & Electric — Implementation of Conservation Indianapolis Power & Light Voltage Reduction 105 Company — AES Battery Integration Center 43 CenterPoint Energy — Intelligent Grid 111 III Commonwealth Edison Company — Southern California Edison — Irvine Distribution Automation 115 Smart Grid Demonstration: Substation Automation Using Open Standards 187 Commonwealth Edison Company — Resilient Electric Grid Xcel Energy — Advanced Network Superconductor Project 119 Management System 191 Consolidated Edison Company of New York — CUSTOMER SOLUTIONS 197 Digital X-Ray Technology 123 Austin Energy — Power Partner Consolidated Edison Thermostat Program 201 Company of New York — Dual-Feeder Circuit Breaker 127 CenterPoint Energy — Power Alert Service 205 DTE Energy — Leveraging Hyper- Localized Weather Forecasting Commonwealth Edison Company — for Distribution System System Improvements Map 211 Damage Prediction 131 Commonwealth Edison Company — DTE Energy — Sensors for a Nest Thermostat Demand Predictive Grid in the Motor City 137 Response and Rebates 215 Duke Energy — Field Message Bus Commonwealth Edison Company — Interoperability and the Coalition Peak Time Savings 219 of the Willing Project 143 DTE Energy — DTE Insight App and Energy Bridge 223 Électricité Réseau Distribution France (ERDF) — Duke Energy — Becoming a Trusted Nice Smart Solar District 149 Energy Advisor 227 Enel — Improving Smart Grid Gulf Power — Energy Select 231 Reliability and Operational Efficiency 153 National Grid — DemandLinkTM Pilot Florida Power and Light Company — in Rhode Island for System Optimizing the Smart Grid to Reliability Procurement 235 Enhance Service Reliability 157 NV Energy — Building Energy NSTAR — Urban Grid Monitoring Intelligence in the State of Nevada 239 and Renewable Integration 163 Pacific Gas and Electric Company — Oklahoma Gas & Electric — On-Bill Financing Marketing 243 100 Analytics Apps 167 Pepco Holdings, Inc. — Oklahoma Gas & Electric — Peak Energy Savings Credit 249 Verified Service Outage 171 Pepco Holdings, Inc. — SolutionOne 253 Pacific Gas and Electric Company — Portland General Electric — Intelligent Switches: Energy TrackerSM 257 Increasing Reliability with San Diego Gas and Electric — "Self-Healing" Technology 175 Manage-Act-Save 261 Pepco Holdings, Inc. — Southern Company — Remote Disconnect and Customer Outage Communications 265 Reconnection of Electric Service 179 Pepco Holdings, Inc. — Transformer Load Management 183 COMPANY INDEX 271 IV Institute for Electric Innovation Management Committee Executive Director — Lisa Wood Co- Chair — Christopher Johns, President, Pacific Gas and Electric Company Co- Chair — Robert Rowe, President and CEO, NorthWestern Energy Nicholas Akins David Hutchens Scott Prochazka Chairman, President, and CEO President and CEO President and CEO American Electric Power UNS Energy Corporation CenterPoint Energy, Inc. Terry Bassham Thomas King Joseph Rigby Chairman, President, and CEO President Chairman, President, and CEO Great Plains Energy, Inc. National Grid USA Pepco Holdings, Inc. Christopher Crane Mark Lantrip Charles Schrock President and CEO President and CEO Chairman, President, and CEO Exelon Corporation Southern Company Services Integrys Energy Group, Inc. Peter Delaney John McAvoy Eric Silagy Chairman, President, and CEO Chairman, President, and CEO President and CEO OGE Energy Corp. Consolidated Edison, Inc. Florida Power & Light Company Anthony Earley David Meador Andrew Vesey Chairman, President, and CEO Vice Chairman and CAO Executive Vice President PG&E Corporation DTE Energy Co. and COO AES Corporation Thomas Fanning Scott Morris Chairman, President, and CEO Chairman, President, and CEO Patricia Vincent- Collawn Southern Company Avista Corp. Chairman, President, and CEO PNM Resources, Inc. Benjamin Fowke Jim Piro Chairman, President and CEO President and CEO Xcel Energy, Inc. Portland General Electric Lynn Good Pedro Pizarro President and CEO President Duke Energy Corporation Southern California Edison VI Institute for Electric Innovation Technology Partner Roundtable Chair — Kevin Fitzgerald, Executive Vice President and General Counsel, Pepco Holdings, Inc. Alstom GridSense American Efficient IBM BRIDGE Energy Group Innovari Broadscale Group Intelligent Energy Solutions BuildingIQ Itron C3 Energy Comverge Johnson Controls Copper Development Association Opower Ecova Oracle Enbala RES Americas Energate Sensus EnerNOC Siemens First Solar Silver Spring Networks FirstFuel GE Power & Water Simple Energy Gridco Systems Tendril The IEI Partner Roundtable is a select group of innovative technology companies dedicated to advancing smart technologies with electric utilities. The roundtable is a platform to share information, ideas, innovations, and results as utilities and technology companies work together. VII “The process of integrating new resources, planning and optimizing the grid platform, and providing customer solutions is continuous, real-time, and evolving.” VIII Introduction The electric power distribution grid To integrate new energy resources; is an evolving plug-and-play platform To optimize the distribution grid for integrating new energy services platform; and and technologies. Public policies, new To provide customer solutions. technologies, innovation, and consumer needs are driving the transformation of Evolving Distribution Grid Platform the power grid. The significant investments being made in grid technologies, data Over the past decade, U.S. utilities have analytics, distribution system sensing been integrating increasing amounts of and monitoring, and controls to enhance large-scale variable renewable energy operational efficiency and to integrate resources into the grid each year, and this new resources are clear indicators of the is expected to continue. More recently, significant changes that are happening utilities have started to integrate more across the electric utility industry. distributed energy resources, such as rooftop solar photovoltaics (PV), storage, Through a series of case studies and other distributed resources onto the documenting “real world” projects, grid. This
Recommended publications
  • Management Console Reference Guide
    Secure Web Gateway Management Console Reference Guide Release 10.0 • Manual Version 1.01 M86 SECURITY SETUP AND CONFIGURATION GUIDE © 2010 M86 Security All rights reserved. 828 W. Taft Ave., Orange, CA 92865, USA Version 1.01, published November 2010 for SWG software release 10.0 This document may not, in whole or in part, be copied, photo- copied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior written con- sent from M86 Security. Every effort has been made to ensure the accuracy of this document. However, M86 Security makes no warranties with respect to this documentation and disclaims any implied war- ranties of merchantability and fitness for a particular purpose. M86 Security shall not be liable for any error or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the examples herein. Due to future enhancements and modifications of this product, the information described in this documentation is subject to change without notice. Trademarks Other product names mentioned in this manual may be trade- marks or registered trademarks of their respective companies and are the sole property of their respective manufacturers. II M86 SECURITY, Management Console Reference Guide CONTENT INTRODUCTION TO THE SECURE WEB GATEWAY MANAGEMENT CONSOLE .................................................................... 1 WORKING WITH THE MANAGEMENT CONSOLE................ 3 Management Console . 3 Main Menu . 4 Using the Management Console . 6 Management Wizard . 10 User Groups Wizard . 11 Log Entry Wizard . 28 DASHBOARD............................................................... 33 Dashboard Console . 33 Functionality. 34 Device Gauges . 35 Performance Graphs . 38 Messages (SNMP). 40 Device Utilization Graphs. 41 USERS ......................................................................
    [Show full text]
  • Accurate Weather Forecasting Through Locality Based Collaborative Computing
    Accurate Weather Forecasting Through Locality Based Collaborative Computing Bard˚ Fjukstad John Markus Bjørndalen Otto Anshus Department of Computer Science Department of Computer Science Department of Computer Science Faculty of Science and Technology Faculty of Science and Technology Faculty of Science and Technology University of Tromsø, Norway University of Tromsø, Norway University of Tromsø, Norway Email: [email protected] Email: [email protected] and the Norwegian Meteorological Institute Forecasting Division for Northern Norway Email: [email protected] Abstract—The Collaborative Symbiotic Weather Forecasting of collaboration is when users use forecasts from the national (CSWF) system lets a user compute a short time, high-resolution weather services to produce short-term, small area, and higher forecast for a small region around the user, in a few minutes, resolution forecasts. There is no feedback of these forecasts on-demand, on a PC. A collaborated forecast giving better uncertainty estimation is then created using forecasts from other from the users to the weather services. These forecasts take users in the same general region. A collaborated forecast can be minutes to compute on a single multi-core PC. The third is visualized on a range of devices and in a range of styles, typically a symbiotic collaboration where users share on-demand their as a composite of the individual forecasts. CSWF assumes locality locally produced forecasts with each other. between forecasts, regions, and PCs. Forecasts for a region are In a complex terrain like the fjords and mountains of Nor- computed by and stored on PCs located within the region. To locate forecasts, CSWF simply scans specific ports on public IP way, the topography have a significant impact on the weather addresses in the local area.
    [Show full text]
  • Bankovní Institut Vysoká Škola Praha
    Bankovní institut vysoká škola Praha Katedra informačních technologií a elektronického obchodování Moderní servery a technologie Servery a superservery, moderní technologie a využití v praxi Bakalářská práce Autor: Jan Suchý Informační technologie a management Vedoucí práce: Ing. Vladimír Beneš Praha Duben, 2007 Prohlášení: Prohlašuji, ţe jsem bakalářskou práci zpracoval samostatně a s pouţitím uvedené literatury. podpis autora V Praze dne 14.4.2007 Jan Suchý 2 Anotace práce: Obsahem této práce je popis moderní technologie v oblasti procesorového vývoje a jeho nasazení do provozu v oblasti superpočítačových systémů. Vědeckotechnický pokrok je dnes významně urychlován právě specializovanými prototypy superpočítačů určenými pro nejnáročnější úkoly v oblastech jako jsou genetika, jaderná fyzika, termodynamika, farmacie, geologie, meteorologie a mnoho dalších. Tato bakalářská práce se v krátkosti zmiňuje o prvopočátku vzniku mikroprocesoru, víceprocesorové architektury aţ po zajímavé projekty, jako jsou IBM DeepBlue, Deep Thunder nebo fenomenální IBM BlueGene/L, který je v současné době nejvýkonnějším superpočítačem na světě. Trend zvyšování výkonu a důraz na náklady související s provozováním IT, vedl zároveň k poţadavku na efektivnější vyuţívání IT systémů. Technologie virtualizaci a Autonomic Computingu se tak staly fenoménem dnešní doby. 3 Obsah 1 ÚVOD 6 2 PROCESORY 7 2.1 HISTORIE A VÝVOJ 7 2.2 NOVÉ TECHNOLOGIE 8 2.2.1 Silicon Germanium - SiGe (1989) 8 2.2.2 První měděný procesor (1997) 8 2.2.3 Silicon on Insulator - SOI (1998) 9 2.2.4
    [Show full text]
  • Modeling and Distributed Computing of Snow Transport And
    Modeling and distributed computing of snow transport and delivery on meso-scale in a complex orography Modelitzaci´oi computaci´odistribu¨ıda de fen`omens de transport i dip`osit de neu a meso-escala en una orografia complexa Thesis dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Programa de Doctorat en Societat de la Informaci´oi el Coneixement Alan Ward Koeck Advisor: Dr. Josep Jorba Esteve Distributed, Parallel and Collaborative Systems Research Group (DPCS) Universitat Oberta de Catalunya (UOC) Rambla del Poblenou 156, 08018 Barcelona – Barcelona, 2015 – c Alan Ward Koeck, 2015 Unless otherwise stated, all artwork including digital images, sketches and line drawings are original creations by the author. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons BY-SA License, version 4.0 or ulterior at the choice of the reader/user. At the time of writing, the license code was available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode Es permet la lliure c`opia, distribuci´oi/o modificaci´od’aquest document segons els termes de la Lic`encia Creative Commons BY-SA, versi´o4.0 o posterior, a l’escollida del lector o usuari. En el moment de la redacci´o d’aquest text, es podia accedir al text de la llic`encia a l’adre¸ca: https://creativecommons.org/licenses/by-sa/4.0/legalcode 2 In memoriam Alan Ward, MA Oxon, PhD Dublin 1937-2014 3 4 Acknowledgements A long-term commitment such as this thesis could not prosper on my own merits alone.
    [Show full text]
  • Internet of Things and Big Data Analytics Toward Next-Generation Intelligence Studies in Big Data
    Studies in Big Data 30 Nilanjan Dey Aboul Ella Hassanien Chintan Bhatt Amira S. Ashour Suresh Chandra Satapathy Editors Internet of Things and Big Data Analytics Toward Next-Generation Intelligence Studies in Big Data Volume 30 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Big Data” (SBD) publishes new developments and advances in the various areas of Big Data- quickly and with a high quality. The intent is to cover the theory, research, development, and applications of Big Data, as embedded in the fields of engineering, computer science, physics, economics and life sciences. The books of the series refer to the analysis and understanding of large, complex, and/or distributed data sets generated from recent digital sources coming from sensors or other physical instruments as well as simulations, crowd sourcing, social networks or other internet transactions, such as emails or video click streams and other. The series contains monographs, lecture notes and edited volumes in Big Data spanning the areas of computational intelligence incl. neural networks, evolutionary computation, soft computing, fuzzy systems, as well as artificial intelligence, data mining, modern statistics and Operations research, as well as self-organizing systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/11970 Nilanjan Dey • Aboul Ella Hassanien Chintan Bhatt • Amira S. Ashour Suresh Chandra Satapathy Editors Internet of Things and Big Data Analytics Toward Next-Generation Intelligence 123 Editors Nilanjan Dey Amira S.
    [Show full text]
  • SPERI Paper No. 13 Climate Risk, Big Data and the Weather Market
    SPERI Paper No. 13 Climate Risk, Big Data and the Weather Market. Jo Bates About the author Jo Bates Jo Bates is a Lecturer in Information Politics and Policy in the Information School, University of Sheffield. She researches the political economy of data, particularly data sets that are produced by public bodies and which are often referred to as Public Sector Information. Her research focuses on understanding the socio- cultural and political economic factors shaping developments in this field, including the ideas, practices and policies shaping the production and distribution of public data sets and their re-use by third parties including citizens and businesses. Her research has explored the development of the UK’s Open Government Data initiative. Her current project is focused on the distribution and re-use of weather data. ISSN 2052-000X Published in May 2014 SPERI Paper No. 13 – Climate Risk, Big Data and the Weather Market 1 Introduction In a recent SPERI paper, Colin Hay and Tony Payne (2013) develop the concept of “The Great Uncertainty” to describe our current era. They point to “three major processes of structural change” which underlie this uncertainty – financial crisis, shifting economic power and environmental threat – arguing that, despite their differing historical timespans, these deep structural changes are all taking place in the present and “arguably will come to a head at broadly the same time” (Hay & Payne 2013, p. 3). This paper draws together two core elements of “The Great Uncertainty” – financial crisis and environmental threat – with Sandra Braman’s (2006) concept of “informational power” to explore the relationship between this uncertain terrain and developments in (‘big’) data analytics.
    [Show full text]
  • Intelligent Drug Supply Chain Creating Value from AI About the Deloitte Centre for Health Solutions
    Intelligent drug supply chain Creating value from AI About the Deloitte Centre for Health Solutions The Deloitte Centre for Health Solutions (CfHS) is the research arm of Deloitte’s Life Sciences and Health Care practices. We combine creative thinking, robust research and our industry experience to develop evidence-based perspectives on some of the biggest and most challenging issues to help our clients transform themselves and, importantly, benefit the patient. At a pivotal and challenging time for the industry, we use our research to encourage collaboration across all stakeholders, from pharmaceuticals and medical innovation, health care management and reform, to the patient and health care consumer. Connect To learn more about the CfHS and our research, please visit www.deloitte.co.uk/centreforhealthsolutions Subscribe To receive upcoming thought leadership publications, events and blogs from the UK Centre, please visit https://www.deloitte.co.uk/aem/centre-for-health-solutions.cfm To subscribe to our blog, please visit https://blogs.deloitte.co.uk/health/ Life sciences companies continue to respond to a changing global landscape and strive to pursue innovative solutions to address today’s challenges. Deloitte understands the complexity of these challenges and works with clients worldwide to drive progress and bring discoveries to life. Contents The rationale for transforming the biopharma supply chain 2 How AI can augment supply chain transformation 6 AI’s role in helping supply chains respond, recover and thrive after COVID-19 16 A roadmap for implementing an intelligent supply chain 21 Endnotes 32 Intelligent drug supply chain The rationale for transforming the biopharma supply chain The Intelligent biopharma series explores the ways artifi cial intelligence (AI) can impact the biopharma value chain.
    [Show full text]
  • An Ensemble of Deep Learning Models for Weather Nowcasting Based on Radar Products’ Values Prediction
    applied sciences Article NowDeepN: An Ensemble of Deep Learning Models for Weather Nowcasting Based on Radar Products’ Values Prediction Gabriela Czibula 1,*,† , Andrei Mihai 1,† and Eugen Mihule¸t 2 1 Department of Computer Science, Babe¸s-BolyaiUniversity, 400084 Cluj-Napoca, Romania; [email protected] 2 Romanian National Meteorological Administration, 013686 Bucharest, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-264-405327 † These authors contributed equally to this work. Abstract: One of the hottest topics in today’s meteorological research is weather nowcasting, which is the weather forecast for a short time period such as one to six hours. Radar is an important data source used by operational meteorologists for issuing nowcasting warnings. With the main goal of helping meteorologists in analysing radar data for issuing nowcasting warnings, we propose NowDeepN, a supervised learning based regression model which uses an ensemble of deep artificial neural networks for predicting the values for radar products at a certain time moment. The values predicted by NowDeepN may be used by meteorologists in estimating the future development of potential severe phenomena and would replace the time consuming process of extrapolating the radar echoes. NowDeepN is intended to be a proof of concept for the effectiveness of learning from radar data relevant patterns that would be useful for predicting future values for radar products based on their historical values. For assessing the performance of NowDeepN, a set of experiments on real radar data provided by the Romanian National Meteorological Administration is conducted. The impact of a data cleaning step introduced for correcting the erroneous radar products’ values is investigated both from the computational and meteorological perspectives.
    [Show full text]
  • State of New York Public Service Commission
    STATE OF NEW YORK PUBLIC SERVICE COMMISSION __________________________________________ : In the Matter of Department of Public Service : Staff Investigation into the Utilities’ : Preparation for and Response to August 2020 : Case 20-E-0586 Tropical Storm Isaias and Resulting Electric : Power Outages : ___________________________________________ AFFIDAVIT OF BRIAN CERRUTI ON BEHALF OF CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. I, Brian Cerruti, being duly sworn, depose and say: 1. My name is Brian Cerruti. My business address is 4 Irving Place, New York, New York 10003. My official title is Project Specialist, but I perform the functions of a meteorologist. I have been employed by Consolidated Edison Company of New York, Inc., (Con Edison or the Company) for seven years. 2. My responsibilities include creating custom weather forecasts for the Company, leading weather discussions on storm preparation conference calls, responding to questions from operating personnel before and during a storm, overseeing contracts with weather information vendors, developing, calibrating, verifying, and implementing outage prediction models for Con Edison and Orange and Rockland Utilities, Inc. (O&R), and providing subject matter expertise to Con Edison and O&R as needed. I am also the lead on the Company’s Probabilistic Load Forecasting Project, which is a tool co-developed with a vendor, TESLA, that quantifies weather uncertainty in the Company’s electric and steam load forecasts. 3. I earned a Bachelor of Science degree in Meteorology from Rutgers University’s George H. Cook School of Environmental and Biological Sciences and a Master of Science 1 degree in Atmospheric Science from Rutgers University’s Graduate School of Atmospheric Science.
    [Show full text]
  • Accurate Weather Forecasting Through Locality Based Collaborative Computing
    WK,(((,QWHUQDWLRQDO&RQIHUHQFHRQ&ROODERUDWLYH&RPSXWLQJ1HWZRUNLQJ$SSOLFDWLRQVDQG:RUNVKDULQJ &ROODERUDWH&RP Accurate Weather Forecasting Through Locality Based Collaborative Computing Bard˚ Fjukstad John Markus Bjørndalen Otto Anshus Department of Computer Science Department of Computer Science Department of Computer Science Faculty of Science and Technology Faculty of Science and Technology Faculty of Science and Technology University of Tromsø, Norway University of Tromsø, Norway University of Tromsø, Norway Email: [email protected] Email: [email protected] and the Norwegian Meteorological Institute Forecasting Division for Northern Norway Email: [email protected] Abstract—The Collaborative Symbiotic Weather Forecasting of collaboration is when users use forecasts from the national (CSWF) system lets a user compute a short time, high-resolution weather services to produce short-term, small area, and higher forecast for a small region around the user, in a few minutes, resolution forecasts. There is no feedback of these forecasts on-demand, on a PC. A collaborated forecast giving better uncertainty estimation is then created using forecasts from other from the users to the weather services. These forecasts take users in the same general region. A collaborated forecast can be minutes to compute on a single multi-core PC. The third is visualized on a range of devices and in a range of styles, typically a symbiotic collaboration where users share on-demand their as a composite of the individual forecasts. CSWF assumes locality locally produced forecasts with each other. between forecasts, regions, and PCs. Forecasts for a region are In a complex terrain like the fjords and mountains of Nor- computed by and stored on PCs located within the region.
    [Show full text]
  • Agenda Northeast Regional Operational Workshop XVI Albany, New York Wednesday, November 4, 2015 Session A
    Agenda Northeast Regional Operational Workshop XVI Albany, New York Wednesday, November 4, 2015 8:30 am Welcoming Remarks Raymond G. O’Keefe, Meteorologist In Charge Warren R. Snyder, Science & Operations Officer National Weather Service, Albany, New York Session A – Cold Season Topics 8:40 am A Multi-scale Analysis of the 26-27 November 2014 Pre-Thanksgiving Snowstorm Thomas A. Wasula NOAA/NWS Weather Forecast Office, Albany, New York 9:01 am Update to Gridded Snowfall Verification: Computing Seasonal Bias Maps Joseph P. Villani NOAA/NWS Weather Forecast Office, Albany, New York 9:22 am Cool-season extreme precipitation events in the Central and Eastern United States Benjamin J. Moore Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York 9:43 am A Case Study of the 18 January 2015 High-Impact Light Freezing Rain Event Across the Northern Mid-Atlantic Region Heather Sheffield NOAA/NWS Weather Forecast Office, Sterling, Virginia 10:04 am The November 26, 2014 banded snowfall case in southern New York Michael Evans NOAA / NWS Weather Forecast Office, Binghamton, New York 10:25 am Break 10:55 am An analysis of Chesapeake Bay effect snow events from 1999 to 2013 David F. Hamrick NOAA/NWS Weather Prediction Center, College Park, Maryland 11:16 am Changes in the Winter Weather Desk Operations at the Weather Prediction Center (WPC), and New Experimental Forecasts Dan Petersen NOAA/NWS/NCEP Weather Prediction Center, College Park, Maryland 11:37 am Applying Fuzzy Clustering Analysis to Assess Uncertainty and Ensemble System Performance for Cool Season High-Impact Weather Brian A.
    [Show full text]
  • Panel 4 Presentations – Enhanced Technologies for Weather Emergencies
    ITS-NY 2012 SPRING FORUM April 12, 2012 Managing Weather-Related Events with ITS Technologies PANEL 4 PRESENTATIONS “Enhanced Technologies for Weather Emergencies” Panel Moderator: “The Realities of Disasters: What New “Integrating Weather and Dr. Camille Kamga, UTRC Decision Support Systems Must Transportation Information,” Consider,” Prof. Reza Khanbilvardi, CCNY Dr. Jose Holguin-Veras, Rensselaer Polytechnic Institute “Precision Weather Modeling, Analytics and “Application of High Resolution Weather Visualization for Emergency Management,” Modeling and Damage Prediction at Con Anthony Praino, IBM Edison Emergency Management,” Carlos D. Torres, Con Edison Photos by Matt Ficarra, ITS-NY Board Member and Photographer Extraordinaire 1 The Realities of Disasters: What New Decision Support Systems Must Consider José Holguín-Veras, William H. Hart Professor, Director of the Center for Infrastructure, Transportation, and the Environment Acknowledgments Other contributors: Miguel Jaller, Noel Pérez, Lisa Destro, Tricia Wachtendorf Research was supported by NSF: NSF-RAPID CMMI-1034635 “Investigation on the Comparative Performance of Alternative Humanitarian Logistic Structures” CMMI-0624083 “DRU: Contending with Materiel Convergence: Optimal Control, Coordination, and Delivery of Critical Supplies to the Site of Extreme Events” CMS-SGER 0554949 “Characterization of the Supply Chains in the Aftermath of an Extreme Event: The Gulf Coast Experience” "RAPID: Field Investigation on Post-Disaster Humanitarian Logistic Practices under Cascading
    [Show full text]